This disclosure generally relates to a device, system, and method for generating and transmitting ultrasonic vibrations to a treatment location. More particularly, the disclosure relates to an ultrasound device, system, and method for ablating obstructions within tubular anatomical structures such as blood vessels.
There are many procedures and systems for treating vascular or venous obstructions that are occluded with atheroma, plaque, calcific material, and the like. Such obstructions are often referred to as vascular occlusions. Occlusions can be treated, for example, by a surgical bypass procedure or a catheter-based intervention such as angioplasty.
Ultrasound systems and devices have been proposed for use in ablating or removing obstructive material from blood vessels. Ultrasound catheters have been utilized to ablate various types of obstructions from blood vessels of humans and animals Successful applications of ultrasound energy to smaller blood vessels, such as the coronary arteries, require the use of relatively small diameter ultrasound catheters which are sufficiently small and flexible to undergo transluminal advancement through the tortuous vasculature of the aortic arch and coronary tree. These ultrasound catheters incorporate a very small diameter ultrasound transmission member which extends through such catheters.
In some embodiments, a therapeutic ultrasonic vibration delivery system comprises an elongate ultrasound transmission device having a distal end and a proximal end and an ultrasonic driver coupled to the proximal end of the transmission device and configured to drive the transmission device such that the distal end of the transmission device vibrates at a frequency of at least 18 kHz. In some aspects, the transmission device comprises an ultrasound transmission member disposed within a lumen of a catheter body. The ultrasonic driver may include a signal generator coupled to an ultrasound transducer. The ultrasonic driver may be configured to deliver pulses of ultrasonic vibration. The ultrasonic driver may be configured to drive the transmission device at a resonant frequency of the transmission device.
In some embodiments, a method of recanalizing a lumen of a vessel comprises positioning an ultrasonic device having a distal end in a first position within the lumen of the occluded vessel, transmitting an ultrasonic vibration of at least 18 kHz though the ultrasonic device, and advancing the distal end through the occluded vessel to recanalize the vessel. The positioning step may include snaking the device through a tortuous path. In some aspects, the transmitted vibration is about 40 kHz.
In some embodiments, a therapeutic ultrasonic vibration delivery system comprises an elongate ultrasound transmission device having a distal end and a proximal end, and an ultrasonic driver coupled to the proximal end of the transmission device and configured to drive the transmission device in a pulsed mode. The pulsed mode may drive the device with a duty cycle of about 50% which may be optimized for ablating a particular substrate.
In some embodiments, a method of recanalizing a lumen of a vessel comprises positioning an ultrasonic device having a distal end in a first position within the lumen of the vessel, transmitting pulsed ultrasonic vibrations though the ultrasonic device to the distal end, and advancing the distal end through the vessel to recanalize the vessel. The pulsed ultrasonic vibrations can increase the displacement of the distal end of the ultrasonic device.
In some embodiments, a therapeutic ultrasonic vibration delivery system comprises an elongate ultrasound transmission device having a distal end and a proximal end and an ultrasonic driver coupled to the proximal end of the transmission device and configured to drive the transmission device through a range of ultrasonic frequencies. The ultrasonic driver may be configured to drive the transmission device by sweeping continuously through a range of ultrasonic frequencies. The range of ultrasonic frequencies may be between about 18 kHz and 22 kHz and may include at least one resonant frequency of the transmission device.
In some embodiments, a method of recanalizing a lumen of a vessel comprises positioning an ultrasonic device having a distal end in a first position within the lumen of the vessel, transmitting a range of ultrasonic vibrations though the ultrasonic device to the distal end, and advancing the distal end through the lumen of the vessel to recanalize the vessel.
In some embodiments, a therapeutic ultrasonic vibration delivery system comprises an elongate ultrasound transmission device having a distal end and a proximal end, a detector configured to determine a resonant frequency of the ultrasound transmission device, and an ultrasonic driver coupled to the proximal end of the transmission device and configured to drive the ultrasound transmission device at the resonant frequency. The resonant frequency may be determined by using a measurement pulse transmitted through the transmission device.
In some embodiments, a therapeutic ultrasonic vibration delivery system comprises an elongate ultrasound transmission device having a distal end and a proximal end, an ultrasonic driver coupled to the proximal end of the transmission device and configured to transmit ultrasonic vibrations through the transmission device, and a detector coupled to the transmission device and configured to determine the displacement of the distal end of the transmission device. The detector may be configured to determine the displacement of the distal end of the transmission device at least in part by detecting a reflected vibration.
In some embodiments, a method of controlling the frequency of vibration applied to an ultrasound device, comprises applying a vibration having an ultrasonic frequency to the ultrasound device, detecting a reflected vibration, and applying a second vibration based at least in part on the detected vibration.
In some embodiments, a method of recanalizing a lumen of a vessel, comprises positioning an ultrasonic device having a distal end in a first position within the lumen of the vessel, determining a resonant frequency of an ultrasound transmission device, vibrating the ultrasound transmission device at the resonant frequency, and advancing the distal end through the occluded vessel to recanalize the vessel. The determining step may occur when the distal end is within the lumen of the occluded vessel.
In some embodiments, a therapeutic ultrasonic vibration delivery system comprises an elongate ultrasound transmission device having a distal end and a proximal end, and an ultrasonic driver coupled to the proximal end of the transmission device and configured to drive the transmission device such that the distal end of the transmission device vibrates at a frequency of at least 20 kHz. The ultrasonic driver may be configured to deliver pulses of ultrasonic vibrations. The pulsed delivery may include a pulse repetition frequency between about 5 milliseconds and 30 milliseconds. In some embodiments, the pulsed delivery comprises delivering a first vibration for a first time period and delivering a second vibration for a second time period. In some embodiments, the pulsed delivery comprises applying a first vibration for a first time period, and then turning the driver off for a second time period, followed by applying a third vibration for a third time period. In some embodiments, a method of driving a therapeutic ultrasound device comprises determining a resonant frequency of an ultrasound transmission device and vibrating the ultrasound transmission device at the resonant frequency.
The following description and the accompanying figures describe and show the preferred embodiments as well as demonstrate several possible configurations for a device, system, and method. The illustrations are not intended to limit the disclosed aspects and features of the invention to the specified embodiments or to usage only with the illustrated device. Those of skill in the art will recognize that the disclosed aspects and features of the invention are not limited to any particular embodiment of a device, which may include one or more of the inventive aspects and features described herein.
To assist in the description of these components of the device, the following coordinate terms are used. A “longitudinal axis” is generally parallel to a portion of the device as well as parallel to the axis of a vessel through which the device can travel. A “lateral axis” is normal to the longitudinal axis. A “transverse axis” extends normal to both the longitudinal and lateral axes. In addition, as used herein, “the longitudinal direction” refers to a direction substantially parallel to the longitudinal axis; “the lateral direction” refers to a direction substantially parallel to the lateral axis; and “the transverse direction” refers to a direction substantially parallel to the transverse axis. The term “axial” as used herein refers to the axis of the device, and therefore is substantially synonymous with the term “longitudinal” as used herein. Also, the terms “proximal” and “distal,” which are used to describe the present system, are used consistently with the description of the exemplary applications (i.e., the illustrative examples of the use applications). Thus, proximal and distal are also used in reference to the respective ends of the device.
To facilitate a complete understanding of the embodiments, the remainder of the detailed description describes the system with reference to the Figures; wherein like elements among the embodiments are referenced with like numerals throughout the following description.
The ultrasound device 120 may include an elongate body having a proximal portion 122 and a distal portion 121. The ultrasound device 120 may be an ultrasonic energy delivery member, or a catheter having at least one lumen extending longitudinally with an ultrasound transmission member extending therethrough.
The ultrasound device 120 may also include a Y-connector 123 that is operatively coupled to the ultrasound transducer 126. For example, the Y-connector 123 may be coupled to the ultrasound transducer 126 by way of a device knob 124 and a slide collar 125. The ultrasound transducer 126 may be connected to a signal generator 127, which may be coupled to a foot actuated on-off switch 128. The signal generator 127 can be supported by an IV pole 129. When the on-off switch 128 is depressed, the signal generator 127 can send an electrical signal to the ultrasound transducer 126, which converts the electrical signal to ultrasound energy. Such ultrasound energy can subsequently pass through the ultrasound device 120 and be delivered to the distal portion 121. A conventional guidewire may be utilized in conjunction with the device 120. The distal portion 121 may comprise a distal end 300.
The frontal portion of the Y-connector 123 may be connected to the proximal end 122 of the ultrasound device 120 using techniques that are well-known in the art. An injection pump 130 or IV bag or syringe may be connected, by way of an infusion tube 131, to an infusion port or sidearm 132 of the Y-connector 123. The injection pump 130 can be used to infuse coolant fluid into and/or through the device 120. Such flow of coolant fluid may be utilized to prevent overheating of the ultrasound transmission member and may serve to bathe the outer surface of the ultrasound transmission member, thereby providing for an equilibration of temperature between the coolant fluid and the ultrasound transmission member. The temperature and/or flow rate of coolant fluid may be adjusted to provide adequate cooling and/or other temperature control of the ultrasound transmission member. The irrigation fluid can include a pharmacological agent and/or microbubbles. In addition to the foregoing, the injection pump 130 or syringe may be utilized to infuse a radiographic contrast medium into the device 120 for purposes of imaging. Examples of iodinated radiographic contrast media which may be selectively infused into the ultrasonic device 120 via the injection pump 130 are commercially available as Angiovist 370 from Berlex Labs, Wayne, N.J. and Hexabrix from Malinkrodt, St. Louis, Mo.
Generally, the ultrasonic device 120 may include any suitable number of side-arms or ports for passage of a guidewire, application of suction, infusing and/or withdrawing irrigation fluid, dye and/or the like, or any other suitable ports or connections. Also, the device may be used with any suitable ultrasound transducer 126, signal generator 127, coupling device(s) and/or the like. Therefore, the exemplary embodiment shown in
Continuing with
The catheter body 204 may be a generally flexible, tubular, elongate member, having any suitable diameter and length for reaching a vascular occlusion. In some embodiments, for example, the catheter body 204 has a length in the range of about 100-200 cm. In one embodiment, the catheter body 204 has an outer diameter in the range of about 0.5-5.0 mm. In other embodiments, for use in relatively small vessels for example, the catheter body 204 may have an outer diameter in the range of about 0.25-2.5 mm. However, any other suitable length or diameter may be used without departing from the scope of the present invention. Examples of catheter bodies similar to those which may be used in the present invention are described in U.S. Pat. Nos. 5,267,954 and 5,989,208, which are herein incorporated by reference in their entireties. In one embodiment, the catheter body 204 is formed of a flexible polymeric material such as nylon (Pebax™) manufactured by Atochimie, Cour be Voie, Hauts Ve-Sine, France. The catheter body 204 can insulate the ultrasound transmission member 230 and prevent an operator's hands from contacting the ultrasound transmission member 230 during use of the device.
In some embodiments, the catheter body 204 includes one or more radiopaque markers located at a distal portion 214 of the catheter body 204. In one embodiment, the distal portion 214 is made of a radiopaque polymer or similar materials known in the art. The radiopaque materials can increase visibility under fluoroscopy and facilitate the correct positioning of the device. In another embodiment, intravascular ultrasound or other imaging modalities may be employed. Alternate imaging techniques may include Optical Coherence Tomography (OCT) and/or magnetic fields (Stereotaxis Inc.) to further facilitate positioning of the distal portion 214 within a patient.
The inner cavity 244 may include one or more vibration absorption members 250. The vibration absorption members 250 can increase the ease of use by decreasing vibrations transmitted from the ultrasound transmission member 230 through the housing 208. The sonic connector 252 can facilitate the coupling of the ultrasound transmission member 230 to an ultrasound transducer device 126. The ultrasound transmission member 230 may extend distally from the sonic connector 252, through the inner cavity 244, Y-connector 123, and catheter body 204.
Continuing with
Any suitable fluid may be passed through the sidearm 132 and catheter body 204. Suitable fluids include, for example, refrigerated fluids, lubricious fluids, saline, saturated saline, super-saturated saline, contrast/saline mixtures, or the like. Cooling and/or lubricating the ultrasound transmission member 230 may reduce friction and/or wear and tear of the ultrasound transmission member 230, thus prolonging the ultrasound transmission member's useful life and enhancing overall performance.
As shown in
In some embodiments, the ultrasound transmission member 230, wire, or wave guide extends longitudinally through a lumen of the catheter body 204. Ultrasonic energy can travel through the ultrasound transmission member 230 from an ultrasound transducer 126 connected to the proximal end of housing 208 to the distal portion of the device. The ultrasound transmission member 230 may operate at frequencies between about 18 kHz to about 150 kHz. In one embodiment, the frequency of vibration is about 20 kHz. In some embodiments, the ultrasound transmission member 230 operates at frequencies between about 40 kHz to about 150 kHz. In one embodiment, the frequency of vibration is greater than about 40 kHz. The ultrasound transmission member 230 may operate in continuous mode, pulse mode, or combination of both.
The ultrasound transmission member 230 may be formed of any material capable of effectively transmitting ultrasonic energy from the ultrasound transducer to the distal end of the ultrasound transmission member 230. These materials include, but are not limited to, metals such as pure titanium or aluminum, or titanium or aluminum alloys, such as NiTi. The ultrasound transmission member 230 may include one or more tapered regions and/or steps. The tapered regions and steps may increase and/or decrease in width or diameter along the length of the ultrasound transmission member 230 in the distal direction. In one embodiment, the ultrasound transmission member 230 includes at least one portion tapered in a direction extending distally from the proximal end. In another embodiment, the ultrasound transmission member 230 is continuously tapered in a direction extending distally from the proximal end. In one embodiment, the ultrasound transmission member 230 tapers in diameter from about 800 μm proximally, to about 200 μm distally.
Additional details of ultrasound systems and devices that include ultrasound transmission members (and their distal tips), catheter bodies (and their distal tips), ultrasound transducers, sonic connectors, and their connections to ultrasound devices are disclosed, for example, in U.S. Pat. Nos. 5,827,203, 6,007,514, 6,427,118; 6,702,748; 6,855,123; 6,942,620; 6,942,677; 7,137,963; 7,220,233; 7,297,131; 7,335,180; 7,393,338; 7,540,852, 7,604,608, 8,133,236 and in U.S. Pat. App. Pub. Nos. 2006/0161098, 2007/0239027, 2008/0108937, 2008/0287804, 2010/0317973, the disclosures of which are hereby incorporated by reference in their entireties.
Returning to
In use, the system must provide sufficient ultrasonic vibration to the treatment location in order to provide a therapeutic benefit. For example, when used to open or recanalize a fully or partially blocked vessel or lumen, the system 100 must provide enough vibration to penetrate and/or ablate the blockage. Often, after treating an occluded vessel, a stent can be placed in the vessel to enlarge and/or support the vessel. Various system parameters can be adjusted and optimized as will be explained below.
In some embodiments, the power delivery can be optimized to deliver ultrasonic vibrations to a treatment site at the end of a tortuous path. For example, the signal generator 127, ultrasound transducer 126, and/or any other suitable component can be configured such that the ultrasound device 120 can penetrate and/or ablate occlusions when the ultrasound device 120 is threaded through tortuous paths. That is to say, when the ultrasound device 120 is threaded through the vasculature to a treatment location, the ultrasound device 120 must bend. The more tortuous the path through the vasculature (for instance, during coronary applications), the more bends the ultrasound device 120 must undertake. Higher frequency (shorter wavelength) ultrasonic energy travels easier around bends than lower frequency (longer wavelength) ultrasonic energy. Because higher frequency ultrasonic energy (for example 40 kHz) travels easier around bends than lower frequency ultrasonic energy, less energy is lost when traveling through the ultrasonic device and more energy is delivered to the treatment location. Accordingly, the system disclosed herein can include a signal generator 127 and/or ultrasound transducer 126 configured to drive the ultrasound device 120 at frequencies greater than or equal to about 18 kHz. In some embodiments, the signal generator 127 is configured to provide drive frequencies from about 18 kHz to about 150 kHz. In some embodiments, the ultrasound transducer 126 is configured to deliver ultrasonic vibrations from about 18 kHz to about 150 kHz through the ultrasonic device. In some embodiments, mass of the ultrasound transducer 126 is reduced in order to run at higher drive frequencies, for example, above 40 kHz.
In some embodiments, power delivery is optimized by delivering pulsed ultrasonic vibrations to a treatment location. With reference to
In a pulsed operation, parameters such as the number of pulses occurring in a given time period (pulse frequency), the time from the beginning of one pulse to the beginning of the next (pulse period), and the time it takes for one pulse to occur (pulse duration) can all be adjusted and selected. For example, in certain embodiments the time between pulses is 5 milliseconds which results in much faster “drilling.” The signal generator 127 can further be operated at a higher frequency, such as 135 kHz.
In some embodiments, the signal generator 127, ultrasound transducer 126, and/or any other suitable component may be configured to provide a pulsed ultrasound signal. The pulsed ultrasound signal can have any suitable duty cycle. In some embodiments, the duty cycle can be in the range of approximately 30-70% (i.e., off 70-30%) or any other suitable range. The frequency of the duty cycle can be any suitable frequency and can be adjusted prior to use or during use. In other words, the length of time that the device is on or off in a given period can be manipulated and optimized. For example, the duty cycle can be optimized for particular materials that the device may encounter. In particular, the device can penetrate harder materials in pulsed operation. Thus, the applied wave form can be altered and/or optimized.
In some embodiments, when ultrasound energy travels through the ultrasound device, there is an initial period of time during which the distal tip of the ultrasound device vibrates in a more random and aggressive manner than during later time periods in the same activation cycle in part because the tip vibrations settle into a steady state. These initial vibrations may provide the greatest erosion performance against harder substrates. Therefore, by pulsing the energy on and off rapidly, this start-up energy can be supplied many more times in a given time period. For example, in some embodiments, a 50% duty cycle with 30 ms on and 30 ms off pulses can provide one start-up burst every 60 ms. A 50% duty cycle with 10 ms on and 10 ms off can provide three start-up bursts every 60 ms. Furthermore, a 33% duty cycle with 10 ms on and 20 ms off can provide two start-up bursts every 60 ms. In some embodiments, the ultrasound device can operate at lower temperature and fatigue after a longer time period, at least in part because of the reduced duty cycle.
The signal generator 127 can be configured to provide square wave signals or sinusoidal wave signals to the ultrasound transducer 126. In some embodiments, the signal generator 127 is configured to provide any programed wave shape. In one embodiment for example, the signal generator 127 is configured to provide one or more input signals to the ultrasound transducer 126 separated by time gaps when no signal is provided. The pulse period, pulse frequency, and pulse duration can be selected and optimized.
The pulsed operation of the devices disclosed herein can increase displacement of the distal tip 300 and can cause the distal tip 300 to move erratically. This increased displacement and erratic movement enhances the ability of the distal tip 300 to penetrate hard and/or dense materials. In other words, operating the device in a pulsed ultrasonic mode can increase the effectiveness of the device by increasing movement of the distal end of the ultrasonic device to, for example, ablate the desired material.
With reference to
In some embodiments, the signal generator 127, ultrasound transducer 126, and/or any other suitable component can be configured to operate at the resonant frequency of a particular ultrasound device 120 during use. For example, a particular ultrasound device 120 has a particular resonant frequency associated with the device 120. The resonant frequency can depend on the unique characteristics of the ultrasound device 120 (for example, the particular ultrasound transmission member and/or catheter body used and/or the particular configuration of the distal end). Factors such as length, thickness, and material of the ultrasound transmission member and/or catheter body can also affect the resonant frequency. Thus, prior to use, the resonant frequency for a particular ultrasound device 120 can be determined. In general, the resonant frequency can be expected to be similar for the particular ultrasound device 120 within manufacturing tolerances. However, in some embodiments, the resonant frequency of each particular ultrasound device can be determined prior to use.
Furthermore, during use, the resonant frequency of the particular ultrasound device 120 changes because of factors such as the amount of tortuosity the ultrasound device 120 and/or components thereof is subjected to, the temperature, and the load on the distal end 300. These changing factors during use of the ultrasound device 120 can change the resonant frequency of the device by, for example, about +/−10%.
In some embodiments, the ultrasound system 100 is configured such that the ultrasound device 120 operates at resonant frequency for at least a period of time by continually sweeping across a range of applied ultrasonic frequencies during operation. For example, the signal generator 127, ultrasound transducer 126, and/or any other suitable component can be configured to apply ultrasound vibration to the ultrasound device 120 in a back and forth sweeping manner through a range of frequencies. By sweeping across a given range of frequencies, the ultrasound device 120 is likely to achieve resonance for at least a portion of time during the sweep.
In some embodiments, prior to using the device, the resonant frequency for a particular ultrasound device 120 design can be determined. The system 100 can then be configured to sweep across this resonant frequency in a range of about +/−10% of the known resonant frequency. In one embodiment, for example, the vibration applied to the ultrasound device 120 sweeps continually back and forth between the range of 18 kHz and 22 kHz. In another embodiment, the vibration applied to the ultrasound device 120 sweeps continually from 18 kHz to 22 kHz and then repeats the sweep starting again at 18 kHz. The range of ultrasonic frequencies may be between about 1 kHz and 10 MHz. In some embodiments, the range of ultrasonic frequencies is between about 10 kHz and 50 kHz. In one embodiment, the applied ultrasonic frequency on the ultrasound device 120 is increased and/or decreased in discrete incremental steps though a given frequency range. For example, the applied frequency can start at 18 kHz and increase in 0.1 kHz increments until 22 kHz is reached and then decrease in 0.1 kHz increments until 18 kHz is reached. The sweep interval, or the period of time it takes to sweep through a given frequency range, can also be adjusted and optimized.
The materials for the ultrasound device 120 may be selected to facilitate the penetration and/or ablation by the ultrasound device 120. These different materials can have different physical properties such as hardness or density. Different frequencies of vibration may be preferred over others depending on the physical properties of such materials. In some embodiments, the device is optimized and/or adjusted to penetrate hard plaques and/or rigid deposits and in other embodiments, the device is optimized and/or adjusted to penetrate soft tissues. In some embodiments, the device is optimized and/or adjusted to penetrate fibrous tissue. As such, configuring the system 100 to sweep through a range of frequencies can also increase the likelihood that the ultrasound device 120 will vibrate at the particular frequency and/or wave form best suited for removing the particular material.
In some embodiments, the signal generator 127, ultrasound transducer 126, and/or any other suitable component can be configured to determine the resonant frequency of a particular ultrasound device 120 during use. Once the resonant frequency is determined, the system can then be configured to operate at resonance during use. As discussed above, the resonant frequency for the ultrasound device 120 can change during use due to factors such as, for example, the amount of tortuosity the ultrasound device 120 is subjected to, the temperature, and the load on the distal end 300. The resonant frequency of the system may also change when the transducer changes temperature. In one embodiment, the resonant frequency during use of the device is determined by configuring the signal generator 127, ultrasound transducer 126, and/or any other suitable component to be paused briefly during use. In other words, the ultrasound transducer 126 can momentarily stop transmitting vibrations through the ultrasound device 120. Such stoppages may be intermittent and/or periodic.
While the transmission of vibrations is momentarily stopped, the ultrasound transducer 126 and/or other suitable component can send a measurement pulse through the ultrasound device 120. The measurement pulse can then be used to determine the actual resonance of the ultrasound device 120. The signal generator 127, ultrasound transducer 126, and/or any other suitable component can then be adjusted to deliver this resonant frequency through the ultrasound device 120. In some embodiments, this measurement and adjustment is done automatically. At a later point in time, the transmission of vibrations can again be momentarily stopped, a measurement signal can be sent through the device, the resonant frequency can be determined, and the system can be adjusted to deliver this resonant frequency. As such, in some embodiments, the resonant frequency of the ultrasound device 120 can be determined and the device adjusted to operate at or near resonance during a procedure.
In some embodiments, the ultrasound system 100 is configured such that the displacement of the distal end 300 of the ultrasound device 120 is measured and controlled during use. For example, as shown in
The ultrasound transducer 126 or another transducer or device can be configured to detect and measure the amplitude of the reflected wave 510. The difference in amplitude between the input wave 505 and the reflected wave 510 can be used at least in part to determine the amplitude of the transmitted wave 520. As such, the ultrasound system 100 can determine the amplitude of the transmitted wave 520 by comparing the values of the amplitude of the transmitted wave 520 and the amplitude of the reflected wave 510. The device can adjust the amplitude of the input wave based at least in part on amplitude of the transmitted wave 520. For example, the input wave can be adjusted so as to keep the amplitude of the transmitted wave 520 relatively constant. In other words, the displacement of the distal end of the ultrasonic device can be monitored in real time and the ultrasonic drive system can be continually adjusted so that the displacement of the distal tip can be controlled.
The following illustrates an exemplary method of using the ultrasonic system 100 described above. The discussion of this implementation and the example methods of use are meant to augment the description of the invention above and both should be read together. A method of penetrating and/or removing a blockage in the vasculature can begin with positioning an ultrasonic device 120 having a distal end within a blood vessel. The ultrasonic device 120 can include an ultrasonic transmission member surrounded by a catheter body.
The method continues by advancing the ultrasonic device 120 until the distal end is adjacent to a blockage. The ultrasonic device 120 can be advanced using a monorail or over-the-wire technique, with or without the use of a separate guidewire. In some embodiments, the ultrasonic device 120 is positioned so as to abut the blockage. The blockage may be located in a coronary artery. The ultrasonic device 120 can be visualized or otherwise located using a suitable technique known in the art. For example, the ultrasonic device 120 can include one or more radiopaque markers. The method can continue by transmitting a vibration of greater than or equal to about 18 kHz to the distal end of the ultrasound device 120. In some embodiments, the transmitted vibration is greater than about 40 kHz.
In some embodiments, the vibration that is transmitted through the ultrasound device 120 is pulsed and has a duty cycle. The duty cycle and/or frequency of the duty cycle can be optimized for a particular device and/or particular substrate that the device is likely to encounter. In contrast to the application of a continuously applied constant vibration, the application of a pulsed ultrasonic vibration can cause greater displacement and/or more erratic movement of the distal portion of the ultrasonic device which can increase the device's ability to penetrate hard substances.
In some embodiments, the vibration that is transmitted through the ultrasound device 120 starts at a first frequency and changes to at least a second frequency different than the first frequency. In some embodiments, the applied frequency vibration sweeps through a range of frequencies from a first frequency to a second frequency. The sweep can be a continuous sweep though predetermined ranges of frequencies. In some embodiments, the sweep through a range of frequencies comprises discrete incremental steps up and or down through a range of frequencies. In some embodiments the range of ultrasonic frequencies applied to the device is random and/or discontinuous. In some embodiments the range of frequencies includes at least one resonant frequency of the ultrasonic device.
In some embodiments, the resonant frequency of the device is determined and the system drives the ultrasonic device at or near the resonant frequency of the device. The resonant frequency can be determined prior to or during use of the device. In some embodiments the energy that is transmitted through the device can be paused and a measurement signal can be sent through the device. The measurement signal can be used to determine the actual resonant frequency of the device at that particular point in time. The system can then adjust to drive the device at the actual resonant frequency.
In some embodiments, the system determines the displacement of the distal end of the device. The reflected vibrations can be monitored to help determine the amount of ultrasonic energy that reaches the distal end of the device. The applied vibration can then be adjusted based at least in part on how much energy is reflected. That is to say, if the system determines that a large portion of the applied vibration is being reflected, the system can increase the amplitude of the input wave applied to the device. In this way, the drive can be continuously adjusted to help ensure that enough energy is reaching the distal end of the device. In some embodiments, the displacement of the distal tip is kept relatively constant by adjusting the applied wave form based at least in part on the amount of energy that is reflected.
The method can continue by advancing the distal end 300 of the ultrasound device 120 through the blockage. The ultrasound device 120 can then be removed from the patient. In some embodiments, a stent is placed in the vessel.
The various embodiments described above thus provide a number of ways to provide for treatment of occluded vessels. In addition, the techniques described may be broadly applied for use with a variety of medical procedures. Of course, it is to be understood that not necessarily all such objectives or advantages may be achieved in accordance with any particular embodiment using the systems described herein. Thus, for example, those skilled in the art will recognize that the systems may be developed in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objectives or advantages as may be taught or suggested herein.
Furthermore, the skilled artisan will recognize the interchangeability of various features from different embodiments. Although these techniques and devices have been disclosed in the context of certain embodiments and examples, it will be understood by those skilled in the art that these techniques and devices may be extended beyond the specifically disclosed embodiments to other embodiments and/or uses and obvious modifications and equivalents thereof. Additionally, it is contemplated that various aspects and features of the invention described can be practiced separately, combined together, or substituted for one another, and that a variety of combination and subcombinations of the features and aspects can be made and still fall within the scope of the invention. Thus, it is intended that the scope of the systems disclosed herein should not be limited by the particular disclosed embodiments described above.
This application is a division of U.S. patent application Ser. No. 14/415,126, filed Jan. 15, 2015, which is a U.S. national stage application under 35 USC § 371 of International Application No. PCT/US2013/053306, filed Aug. 1, 2013, claiming priority to U.S. Provisional Application No. 61/678,920, filed Aug. 2, 2012, each of which is incorporated by reference in its entirety into this application.
Number | Name | Date | Kind |
---|---|---|---|
3296620 | Rodda | Jan 1967 | A |
3433226 | Boyd | Mar 1969 | A |
3443226 | Knight | May 1969 | A |
3565062 | Kurls | Feb 1971 | A |
3585082 | Siller | Jun 1971 | A |
3612038 | Halligan | Oct 1971 | A |
3631848 | Muller | Jan 1972 | A |
3679378 | Van Impe et al. | Jul 1972 | A |
3719737 | Vaillancourt et al. | Mar 1973 | A |
3739460 | Addis et al. | Jun 1973 | A |
3754746 | Thiele | Aug 1973 | A |
3823717 | Pohlman et al. | Jul 1974 | A |
3835690 | Leonhardt et al. | Sep 1974 | A |
3839841 | Amplatz | Oct 1974 | A |
3896811 | Storz | Jul 1975 | A |
4016882 | Broadwin et al. | Apr 1977 | A |
4033331 | Guss et al. | Jul 1977 | A |
4136700 | Broadwin et al. | Jan 1979 | A |
4337090 | Harrison | Jun 1982 | A |
4368410 | Hance et al. | Jan 1983 | A |
4417578 | Banko | Nov 1983 | A |
4425115 | Wuchinich | Jan 1984 | A |
4453935 | Newton | Jun 1984 | A |
4486680 | Bonnet et al. | Dec 1984 | A |
4495232 | Bauser et al. | Jan 1985 | A |
4505767 | Quin | Mar 1985 | A |
4535759 | Polk et al. | Aug 1985 | A |
4545767 | Suzuki et al. | Oct 1985 | A |
4565589 | Harrison | Jan 1986 | A |
4565787 | Bossle et al. | Jan 1986 | A |
4572184 | Stohl et al. | Feb 1986 | A |
4664112 | Kensey et al. | May 1987 | A |
4665906 | Jervis | May 1987 | A |
4679558 | Kensey et al. | Jul 1987 | A |
4700705 | Kensey et al. | Oct 1987 | A |
4721117 | Mar et al. | Jan 1988 | A |
4750902 | Wuchinich et al. | Jun 1988 | A |
4781186 | Simpson et al. | Nov 1988 | A |
4808153 | Parisi | Feb 1989 | A |
4811743 | Stevens | Mar 1989 | A |
4827911 | Broadwin et al. | May 1989 | A |
4838853 | Parisi | Jun 1989 | A |
4854325 | Stevens | Aug 1989 | A |
4870953 | DonMicheal et al. | Oct 1989 | A |
4886060 | Wiksell | Dec 1989 | A |
4920954 | Alliger et al. | May 1990 | A |
4923462 | Stevens | May 1990 | A |
4924863 | Sterzer | May 1990 | A |
4931047 | Broadwin et al. | Jun 1990 | A |
4936281 | Stasz | Jun 1990 | A |
4936845 | Stevens | Jun 1990 | A |
4979952 | Kubota et al. | Dec 1990 | A |
5000185 | Yock | Mar 1991 | A |
5015227 | Broadwin et al. | May 1991 | A |
5026384 | Farr et al. | Jun 1991 | A |
5030201 | Palestrant | Jul 1991 | A |
5030357 | Lowe | Jul 1991 | A |
5046503 | Schneiderman | Sep 1991 | A |
5053008 | Bajaj | Oct 1991 | A |
5058570 | Idemoto et al. | Oct 1991 | A |
5076276 | Sakurai et al. | Dec 1991 | A |
5091205 | Fan | Feb 1992 | A |
5100423 | Fearnot | Mar 1992 | A |
5109859 | Jenkins | May 1992 | A |
5114414 | Buchbinder | May 1992 | A |
5116350 | Stevens | May 1992 | A |
5127917 | Niederhauser et al. | Jul 1992 | A |
5131393 | Ishiguro et al. | Jul 1992 | A |
5156143 | Bocquet et al. | Oct 1992 | A |
5163421 | Bernstein et al. | Nov 1992 | A |
5171216 | Dasse et al. | Dec 1992 | A |
5180363 | Idemoto et al. | Jan 1993 | A |
5183470 | Wettermann | Feb 1993 | A |
5195955 | Don Michael | Mar 1993 | A |
5215614 | Wijkamp et al. | Jun 1993 | A |
5217565 | Kou et al. | Jun 1993 | A |
5221255 | Mahurkar et al. | Jun 1993 | A |
5226421 | Frisbie et al. | Jul 1993 | A |
5234416 | Macaulay et al. | Aug 1993 | A |
5236414 | Takasu | Aug 1993 | A |
5238004 | Sahatjian et al. | Aug 1993 | A |
5242385 | Strukel | Sep 1993 | A |
5243997 | Uflacker et al. | Sep 1993 | A |
5248296 | Alliger | Sep 1993 | A |
5255669 | Kubota et al. | Oct 1993 | A |
5267954 | Nita | Dec 1993 | A |
5269291 | Carter | Dec 1993 | A |
5269297 | Weng et al. | Dec 1993 | A |
5269793 | Simpson | Dec 1993 | A |
5279546 | Mische et al. | Jan 1994 | A |
5287858 | Hammerslag et al. | Feb 1994 | A |
5290229 | Paskar | Mar 1994 | A |
5304115 | Pflueger et al. | Apr 1994 | A |
5304131 | Paskar | Apr 1994 | A |
5312328 | Nita et al. | May 1994 | A |
5318014 | Carter | Jun 1994 | A |
5318570 | Hood et al. | Jun 1994 | A |
5324255 | Passafaro et al. | Jun 1994 | A |
5324260 | O'Neill et al. | Jun 1994 | A |
5325860 | Seward et al. | Jul 1994 | A |
5326342 | Pflueger et al. | Jul 1994 | A |
5328004 | Fannin et al. | Jul 1994 | A |
5329927 | Gardineer et al. | Jul 1994 | A |
5341818 | Abrams et al. | Aug 1994 | A |
5342292 | Nita et al. | Aug 1994 | A |
5344395 | Whalen et al. | Sep 1994 | A |
5346502 | Estabrook et al. | Sep 1994 | A |
5362309 | Carter | Nov 1994 | A |
5368557 | Nita | Nov 1994 | A |
5368558 | Nita et al. | Nov 1994 | A |
5376084 | Bacich et al. | Dec 1994 | A |
5378234 | Hammerslag et al. | Jan 1995 | A |
5380274 | Nita | Jan 1995 | A |
5380316 | Aita et al. | Jan 1995 | A |
5382228 | Nita et al. | Jan 1995 | A |
5383460 | Jang et al. | Jan 1995 | A |
5389096 | Aita et al. | Feb 1995 | A |
5391144 | Sakurai et al. | Feb 1995 | A |
5397293 | Alliger et al. | Mar 1995 | A |
5397301 | Pflueger et al. | Mar 1995 | A |
5403324 | Ciervo et al. | Apr 1995 | A |
5405318 | Nita | Apr 1995 | A |
5409483 | Campbell et al. | Apr 1995 | A |
5417672 | Nita et al. | May 1995 | A |
5417703 | Brown et al. | May 1995 | A |
5421923 | Clarke et al. | Jun 1995 | A |
5427118 | Nita et al. | Jun 1995 | A |
5431168 | Webster, Jr. | Jul 1995 | A |
5431663 | Carter | Jul 1995 | A |
5443078 | Uflacker | Aug 1995 | A |
5447509 | Mills et al. | Sep 1995 | A |
5449369 | Imran | Sep 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5451209 | Ainsworth et al. | Sep 1995 | A |
5452611 | Jones | Sep 1995 | A |
5462529 | Simpson et al. | Oct 1995 | A |
5465733 | Hinohara et al. | Nov 1995 | A |
5474530 | Passafaro et al. | Dec 1995 | A |
5474531 | Carter | Dec 1995 | A |
5480379 | La Rosa | Jan 1996 | A |
5484398 | Stoddard | Jan 1996 | A |
5487757 | Truckai et al. | Jan 1996 | A |
5498236 | Dubrul et al. | Mar 1996 | A |
5507738 | Ciervo | Apr 1996 | A |
5516043 | Manna et al. | May 1996 | A |
5527273 | Manna et al. | Jun 1996 | A |
5538512 | Zenzon et al. | Jul 1996 | A |
5540656 | Pflueger et al. | Jul 1996 | A |
5542917 | Nita et al. | Aug 1996 | A |
5597497 | Dean et al. | Jan 1997 | A |
5597882 | Schiller et al. | Jan 1997 | A |
5607421 | Jeevanandam et al. | Mar 1997 | A |
5611807 | O'Boyle | Mar 1997 | A |
5618266 | Liprie | Apr 1997 | A |
5626593 | Imran | May 1997 | A |
5627365 | Chiba et al. | May 1997 | A |
5649935 | Kremer et al. | Jul 1997 | A |
5658282 | Daw et al. | Aug 1997 | A |
5665062 | Houser | Sep 1997 | A |
5685841 | Mackool | Nov 1997 | A |
5695460 | Siegel et al. | Dec 1997 | A |
5695507 | Auth et al. | Dec 1997 | A |
5715825 | Crowley | Feb 1998 | A |
5720724 | Ressemann et al. | Feb 1998 | A |
5725494 | Brisken | Mar 1998 | A |
5728062 | Brisken | Mar 1998 | A |
5738100 | Kagami et al. | Apr 1998 | A |
5797876 | Spears et al. | Aug 1998 | A |
5816923 | Milo et al. | Oct 1998 | A |
5827203 | Nita | Oct 1998 | A |
5827971 | Hale et al. | Oct 1998 | A |
5830127 | DeCastro | Nov 1998 | A |
5830222 | Makower | Nov 1998 | A |
5846218 | Brisken et al. | Dec 1998 | A |
5873835 | Hastings et al. | Feb 1999 | A |
5876385 | Ikari et al. | Mar 1999 | A |
5893838 | Daoud et al. | Apr 1999 | A |
5895397 | Jang et al. | Apr 1999 | A |
5902287 | Martin | May 1999 | A |
5904667 | Falwell | May 1999 | A |
5916192 | Nita et al. | Jun 1999 | A |
5916912 | Ames et al. | Jun 1999 | A |
5935142 | Hood | Aug 1999 | A |
5935144 | Estabrook | Aug 1999 | A |
5937301 | Gardner et al. | Aug 1999 | A |
5944737 | Tsonton et al. | Aug 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957899 | Spears et al. | Sep 1999 | A |
5964223 | Baran | Oct 1999 | A |
5967984 | Chu et al. | Oct 1999 | A |
5971949 | Levin et al. | Oct 1999 | A |
5976119 | Spears et al. | Nov 1999 | A |
5989208 | Nita | Nov 1999 | A |
5989275 | Estabrook et al. | Nov 1999 | A |
5997497 | Nita et al. | Dec 1999 | A |
6004280 | Buck et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6007499 | Martin et al. | Dec 1999 | A |
6007514 | Nita | Dec 1999 | A |
6022309 | Celliers et al. | Feb 2000 | A |
6024764 | Schroeppel | Feb 2000 | A |
6029671 | Stevens et al. | Feb 2000 | A |
6030357 | Daoud et al. | Feb 2000 | A |
6036689 | Tu et al. | Mar 2000 | A |
6051010 | DiMatteo et al. | Apr 2000 | A |
6066135 | Honda | May 2000 | A |
6113558 | Rosenschein et al. | Sep 2000 | A |
6120515 | Rogers et al. | Sep 2000 | A |
6123698 | Spears et al. | Sep 2000 | A |
6142971 | Daoud et al. | Nov 2000 | A |
6149596 | Bancroft | Nov 2000 | A |
6159176 | Broadwin et al. | Dec 2000 | A |
6159187 | Park et al. | Dec 2000 | A |
6165127 | Crowley | Dec 2000 | A |
6165188 | Saadat et al. | Dec 2000 | A |
6179809 | Khairkhahan et al. | Jan 2001 | B1 |
6180059 | Divino, Jr. et al. | Jan 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6206842 | Tu et al. | Mar 2001 | B1 |
6210356 | Anderson et al. | Apr 2001 | B1 |
6217543 | Anis et al. | Apr 2001 | B1 |
6217565 | Cohen | Apr 2001 | B1 |
6217588 | Jerger et al. | Apr 2001 | B1 |
6221015 | Vock | Apr 2001 | B1 |
6231546 | Milo et al. | May 2001 | B1 |
6231587 | Makower | May 2001 | B1 |
6235007 | Divino, Jr. et al. | May 2001 | B1 |
6241692 | Tu et al. | Jun 2001 | B1 |
6241703 | Levin et al. | Jun 2001 | B1 |
6241744 | Imran et al. | Jun 2001 | B1 |
6248087 | Spears et al. | Jun 2001 | B1 |
6277084 | Abele et al. | Aug 2001 | B1 |
6283983 | Makower et al. | Sep 2001 | B1 |
6287271 | Dubrul et al. | Sep 2001 | B1 |
6287285 | Michal et al. | Sep 2001 | B1 |
6287317 | Makower et al. | Sep 2001 | B1 |
6296620 | Gesswein et al. | Oct 2001 | B1 |
6298620 | Hatzinikolas | Oct 2001 | B1 |
6302875 | Makower et al. | Oct 2001 | B1 |
6309358 | Okubo | Oct 2001 | B1 |
6315741 | Martin et al. | Nov 2001 | B1 |
6315754 | Daoud et al. | Nov 2001 | B1 |
6331171 | Cohen | Dec 2001 | B1 |
6346192 | Buhr et al. | Feb 2002 | B2 |
6379378 | Werneth et al. | Apr 2002 | B1 |
6387109 | Davison et al. | May 2002 | B1 |
6387324 | Patterson et al. | May 2002 | B1 |
6394956 | Chandrasekaran et al. | May 2002 | B1 |
6398736 | Seward | Jun 2002 | B1 |
6409673 | Yock | Jun 2002 | B2 |
6416533 | Gobin et al. | Jul 2002 | B1 |
6423026 | Gesswein et al. | Jul 2002 | B1 |
6427118 | Suzuki | Jul 2002 | B1 |
6433464 | Jones | Aug 2002 | B2 |
6434418 | Neal et al. | Aug 2002 | B1 |
6450975 | Brennan et al. | Sep 2002 | B1 |
6454737 | Nita et al. | Sep 2002 | B1 |
6454757 | Nita et al. | Sep 2002 | B1 |
6454997 | Divino, Jr. et al. | Sep 2002 | B1 |
6484052 | Visuri et al. | Nov 2002 | B1 |
6491707 | Makower et al. | Dec 2002 | B2 |
6494891 | Cornish et al. | Dec 2002 | B1 |
6494894 | Mirarchi | Dec 2002 | B2 |
6500141 | Irion et al. | Dec 2002 | B1 |
6508781 | Brennan et al. | Jan 2003 | B1 |
6508784 | Shu | Jan 2003 | B1 |
6511458 | Milo et al. | Jan 2003 | B2 |
6514249 | Maguire et al. | Feb 2003 | B1 |
6524251 | Rabiner et al. | Feb 2003 | B2 |
6533766 | Patterson et al. | Mar 2003 | B1 |
6544215 | Bencini et al. | Apr 2003 | B1 |
6547754 | Evans et al. | Apr 2003 | B1 |
6547788 | Maguire | Apr 2003 | B1 |
6551337 | Rabiner et al. | Apr 2003 | B1 |
6554846 | Hamilton et al. | Apr 2003 | B2 |
6555059 | Myrick et al. | Apr 2003 | B1 |
6558502 | Divino, Jr. et al. | May 2003 | B2 |
6562031 | Chandrasekaran et al. | May 2003 | B2 |
6573470 | Brown et al. | Jun 2003 | B1 |
6576807 | Brunelot et al. | Jun 2003 | B1 |
6582387 | Derek et al. | Jun 2003 | B2 |
6589253 | Cornish et al. | Jul 2003 | B1 |
6595989 | Schaer | Jul 2003 | B1 |
6596235 | Divino, Jr. et al. | Jul 2003 | B2 |
6602467 | Divino, Jr. et al. | Aug 2003 | B1 |
6602468 | Patterson et al. | Aug 2003 | B2 |
6605217 | Buhr et al. | Aug 2003 | B2 |
6607698 | Spears et al. | Aug 2003 | B1 |
6610077 | Hancock et al. | Aug 2003 | B1 |
6613280 | Myrick et al. | Sep 2003 | B2 |
6615062 | Ryan et al. | Sep 2003 | B2 |
6616617 | Ferrera et al. | Sep 2003 | B1 |
6622542 | Derek et al. | Sep 2003 | B2 |
6623448 | Slater | Sep 2003 | B2 |
6635017 | Moehring et al. | Oct 2003 | B1 |
6650923 | Lesh et al. | Nov 2003 | B1 |
6652547 | Rabiner et al. | Nov 2003 | B2 |
6660013 | Rabiner et al. | Dec 2003 | B2 |
6676900 | Divino, Jr. et al. | Jan 2004 | B1 |
6682502 | Bond et al. | Jan 2004 | B2 |
6685657 | Jones | Feb 2004 | B2 |
6689086 | Nita et al. | Feb 2004 | B1 |
6695781 | Rabiner et al. | Feb 2004 | B2 |
6695782 | Ranucci et al. | Feb 2004 | B2 |
6695810 | Peacock, III et al. | Feb 2004 | B2 |
6702748 | Nita et al. | Mar 2004 | B1 |
6702750 | Yock | Mar 2004 | B2 |
6719715 | Newman et al. | Apr 2004 | B2 |
6719725 | Milo et al. | Apr 2004 | B2 |
6729334 | Baran | May 2004 | B1 |
6733451 | Rabiner et al. | May 2004 | B2 |
6758846 | Goble et al. | Jul 2004 | B2 |
6761698 | Shibata et al. | Jul 2004 | B2 |
6814727 | Mansouri-Ruiz | Nov 2004 | B2 |
6855123 | Nita | Feb 2005 | B2 |
6866670 | Rabiner et al. | Mar 2005 | B2 |
6936025 | Evans et al. | Aug 2005 | B1 |
6936056 | Nash et al. | Aug 2005 | B2 |
6942620 | Nita et al. | Sep 2005 | B2 |
6942677 | Nita et al. | Sep 2005 | B2 |
6955680 | Satou et al. | Oct 2005 | B2 |
7004173 | Sparks et al. | Feb 2006 | B2 |
7004176 | Lau | Feb 2006 | B2 |
7056294 | Khairkhahan et al. | Jun 2006 | B2 |
7131983 | Murakami | Nov 2006 | B2 |
7137963 | Nita et al. | Nov 2006 | B2 |
7149587 | Wardle et al. | Dec 2006 | B2 |
7150853 | Lee et al. | Dec 2006 | B2 |
7166098 | Steward et al. | Jan 2007 | B1 |
7220233 | Nita et al. | May 2007 | B2 |
7267650 | Chow et al. | Sep 2007 | B2 |
7297131 | Nita | Nov 2007 | B2 |
7335180 | Nita et al. | Feb 2008 | B2 |
7341569 | Soltani et al. | Mar 2008 | B2 |
7384407 | Rodriguez et al. | Jun 2008 | B2 |
7393338 | Nita | Jul 2008 | B2 |
7421900 | Karasawa et al. | Sep 2008 | B2 |
7425198 | Moehring et al. | Sep 2008 | B2 |
7494468 | Rabiner et al. | Feb 2009 | B2 |
7503895 | Rabiner et al. | Mar 2009 | B2 |
7540852 | Nita et al. | Jun 2009 | B2 |
7604608 | Nita et al. | Oct 2009 | B2 |
7621902 | Nita et al. | Nov 2009 | B2 |
7621929 | Nita et al. | Nov 2009 | B2 |
7628763 | Noriega et al. | Dec 2009 | B2 |
7648478 | Soltani et al. | Jan 2010 | B2 |
7758510 | Nita et al. | Jul 2010 | B2 |
7771358 | Moehring et al. | Aug 2010 | B2 |
7771452 | Pal et al. | Aug 2010 | B2 |
7775994 | Lockhart | Aug 2010 | B2 |
7776025 | Bobo, Jr. | Aug 2010 | B2 |
7819013 | Chan et al. | Oct 2010 | B2 |
7850623 | Griffin et al. | Dec 2010 | B2 |
7918819 | Karmarkar et al. | Apr 2011 | B2 |
7935108 | Baxter et al. | May 2011 | B2 |
7938819 | Kugler et al. | May 2011 | B2 |
7942809 | Leban | May 2011 | B2 |
7955293 | Nita et al. | Jun 2011 | B2 |
7993308 | Rule et al. | Aug 2011 | B2 |
8038693 | Allen | Oct 2011 | B2 |
8043251 | Nita et al. | Oct 2011 | B2 |
8052607 | Byrd | Nov 2011 | B2 |
8083727 | Kugler et al. | Dec 2011 | B2 |
8133236 | Nita | Mar 2012 | B2 |
8152753 | Nita et al. | Apr 2012 | B2 |
8172758 | Harhen | May 2012 | B2 |
8221343 | Nita et al. | Jul 2012 | B2 |
8226566 | Nita | Jul 2012 | B2 |
8246643 | Nita | Aug 2012 | B2 |
8257378 | O'connor | Sep 2012 | B1 |
8308677 | Nita et al. | Nov 2012 | B2 |
8343134 | Kost et al. | Jan 2013 | B2 |
8414543 | Mcguckin, Jr. et al. | Apr 2013 | B2 |
8496669 | Nita et al. | Jul 2013 | B2 |
8506519 | Nita | Aug 2013 | B2 |
8613700 | Ueno et al. | Dec 2013 | B2 |
8613751 | Nita et al. | Dec 2013 | B2 |
8617096 | Nita et al. | Dec 2013 | B2 |
8632560 | Pal et al. | Jan 2014 | B2 |
8641630 | Nita et al. | Feb 2014 | B2 |
8647293 | Nita | Feb 2014 | B2 |
8647296 | Moberg et al. | Feb 2014 | B2 |
8663259 | Levine et al. | Mar 2014 | B2 |
8668709 | Nita et al. | Mar 2014 | B2 |
8690818 | Bennett et al. | Apr 2014 | B2 |
8690819 | Nita et al. | Apr 2014 | B2 |
8702595 | Ueki | Apr 2014 | B2 |
8708892 | Sugiyama et al. | Apr 2014 | B2 |
8708994 | Pettis et al. | Apr 2014 | B2 |
8725228 | Koblish et al. | May 2014 | B2 |
8764700 | Zhang et al. | Jul 2014 | B2 |
8768433 | Jenkins et al. | Jul 2014 | B2 |
8790291 | Nita et al. | Jul 2014 | B2 |
8974446 | Nguyen et al. | Mar 2015 | B2 |
8978478 | Ishioka | Mar 2015 | B2 |
9101387 | Plowe et al. | Aug 2015 | B2 |
9107590 | Hansmann et al. | Aug 2015 | B2 |
9237837 | Omoto et al. | Jan 2016 | B2 |
9265520 | Nita | Feb 2016 | B2 |
9282984 | Nita | Mar 2016 | B2 |
9314258 | Nita et al. | Apr 2016 | B2 |
9381027 | Nita et al. | Jul 2016 | B2 |
9421024 | Nita et al. | Aug 2016 | B2 |
9433433 | Nita et al. | Sep 2016 | B2 |
9603615 | Sarge | Mar 2017 | B2 |
9770250 | Nita et al. | Sep 2017 | B2 |
9955994 | Nita | May 2018 | B2 |
10004520 | Nita et al. | Jun 2018 | B2 |
20020022858 | Demond et al. | Feb 2002 | A1 |
20020049409 | Noda et al. | Apr 2002 | A1 |
20020077550 | Rabiner et al. | Jun 2002 | A1 |
20020188276 | Evans et al. | Dec 2002 | A1 |
20020189357 | Lai et al. | Dec 2002 | A1 |
20030009153 | Brisken et al. | Jan 2003 | A1 |
20030036705 | Hare et al. | Feb 2003 | A1 |
20030040762 | Dorros et al. | Feb 2003 | A1 |
20030060820 | Maguire | Mar 2003 | A1 |
20030199817 | Thompson et al. | Oct 2003 | A1 |
20030216732 | Truckai et al. | Nov 2003 | A1 |
20030225332 | Okada et al. | Dec 2003 | A1 |
20040019349 | Fuimaono et al. | Jan 2004 | A1 |
20040024393 | Nita et al. | Feb 2004 | A1 |
20040054367 | Teodoro, Jr. et al. | Mar 2004 | A1 |
20040164030 | Lowe et al. | Aug 2004 | A1 |
20040167511 | Buehlmann et al. | Aug 2004 | A1 |
20040193033 | Badehi et al. | Sep 2004 | A1 |
20050033311 | Guldfeldt et al. | Feb 2005 | A1 |
20050119606 | Nita | Jun 2005 | A1 |
20050149110 | Wholey et al. | Jul 2005 | A1 |
20050165388 | Bhola | Jul 2005 | A1 |
20050171527 | Bhola | Aug 2005 | A1 |
20050228286 | Messerly et al. | Oct 2005 | A1 |
20060074441 | Mcguckin, Jr. et al. | Apr 2006 | A1 |
20060116610 | Hare | Jun 2006 | A1 |
20060149169 | Nunomura et al. | Jul 2006 | A1 |
20060206028 | Lee | Sep 2006 | A1 |
20060206039 | Wilson et al. | Sep 2006 | A1 |
20060264809 | Hansmann et al. | Nov 2006 | A1 |
20070032749 | Overall et al. | Feb 2007 | A1 |
20070161945 | Nita et al. | Jul 2007 | A1 |
20070178768 | Harshman et al. | Aug 2007 | A1 |
20080033284 | Hauck | Feb 2008 | A1 |
20080071343 | Mayberry et al. | Mar 2008 | A1 |
20080208084 | Horzewski et al. | Aug 2008 | A1 |
20080221506 | Rodriguez et al. | Sep 2008 | A1 |
20080294037 | Richter | Nov 2008 | A1 |
20090017293 | Arai et al. | Jan 2009 | A1 |
20090143795 | Robertson | Jun 2009 | A1 |
20090209900 | Carmeli | Aug 2009 | A1 |
20090292296 | Pansky | Nov 2009 | A1 |
20100004558 | Frankhouser et al. | Jan 2010 | A1 |
20100023037 | Nita et al. | Jan 2010 | A1 |
20100069854 | Okoh et al. | Mar 2010 | A1 |
20100076454 | Bos | Mar 2010 | A1 |
20100121144 | Farhadi | May 2010 | A1 |
20100217306 | Raabe et al. | Aug 2010 | A1 |
20100268206 | Manwaring et al. | Oct 2010 | A1 |
20110046522 | Chan et al. | Feb 2011 | A1 |
20110105960 | Wallace | May 2011 | A1 |
20110130834 | Wilson et al. | Jun 2011 | A1 |
20110196384 | Pansky | Aug 2011 | A1 |
20110196399 | Robertson et al. | Aug 2011 | A1 |
20110196403 | Robertson et al. | Aug 2011 | A1 |
20110237982 | Wallace | Sep 2011 | A1 |
20110313328 | Nita | Dec 2011 | A1 |
20120010506 | Ullrich | Jan 2012 | A1 |
20120109021 | Hastings et al. | May 2012 | A1 |
20120130475 | Shaw | May 2012 | A1 |
20120217306 | Morrill Webb et al. | Aug 2012 | A1 |
20120238916 | Nita et al. | Sep 2012 | A1 |
20120238946 | Nita et al. | Sep 2012 | A1 |
20120311844 | Nita et al. | Dec 2012 | A1 |
20120330196 | Nita | Dec 2012 | A1 |
20130046297 | Lingeman et al. | Feb 2013 | A1 |
20130060169 | Kamada | Mar 2013 | A1 |
20130066200 | Frankhouser | Mar 2013 | A1 |
20130331652 | Okamoto | Dec 2013 | A1 |
20130338580 | Kamatani et al. | Dec 2013 | A1 |
20140005706 | Gelfand et al. | Jan 2014 | A1 |
20140012087 | Omoto | Jan 2014 | A1 |
20140039491 | Bakos et al. | Feb 2014 | A1 |
20140171804 | Van Hoven | Jun 2014 | A1 |
20140236118 | Unser et al. | Aug 2014 | A1 |
20140243712 | Humayun et al. | Aug 2014 | A1 |
20140350401 | Sinelnikov | Nov 2014 | A1 |
20140358028 | Vetter et al. | Dec 2014 | A1 |
20140358029 | Vetter et al. | Dec 2014 | A1 |
20150025544 | Nita et al. | Jan 2015 | A1 |
20150073357 | Bagwell et al. | Mar 2015 | A1 |
20150105621 | Farhadi | Apr 2015 | A1 |
20150105715 | Pikus et al. | Apr 2015 | A1 |
20150133918 | Sachar | May 2015 | A1 |
20150148795 | Amos et al. | May 2015 | A1 |
20150157443 | Hauser et al. | Jun 2015 | A1 |
20150190660 | Sarge et al. | Jul 2015 | A1 |
20150297258 | Escudero et al. | Oct 2015 | A1 |
20150359651 | Wübbeling | Dec 2015 | A1 |
20160128717 | Nita | May 2016 | A1 |
20160128767 | Azamian et al. | May 2016 | A1 |
20160135835 | Onuma | May 2016 | A1 |
20160183956 | Nita | Jun 2016 | A1 |
20160183963 | Richter | Jun 2016 | A1 |
20160271362 | Van Liere | Sep 2016 | A1 |
20160328998 | Nita et al. | Nov 2016 | A1 |
20160338722 | Nita et al. | Nov 2016 | A1 |
20160367284 | Nita et al. | Dec 2016 | A1 |
20170065288 | Imai et al. | Mar 2017 | A1 |
20170128090 | Sarge | May 2017 | A1 |
20170224375 | Robertson et al. | Aug 2017 | A1 |
20170265879 | Washburn, II et al. | Sep 2017 | A1 |
20170265886 | Nita et al. | Sep 2017 | A1 |
20170354428 | Nita et al. | Dec 2017 | A1 |
20180042636 | Nita | Feb 2018 | A1 |
20180140321 | Deepa | May 2018 | A1 |
20180168668 | Zheng | Jun 2018 | A1 |
20180177515 | Boyle et al. | Jun 2018 | A1 |
20180197856 | Chou et al. | Jul 2018 | A1 |
20180221040 | Roll Hoye | Aug 2018 | A1 |
20180280005 | Parmentier | Oct 2018 | A1 |
20180280044 | Nita et al. | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
2007240154 | Jan 2008 | AU |
2256127 | May 1974 | DE |
2438648 | Feb 1976 | DE |
8910040 | Dec 1989 | DE |
3821836 | Jan 1990 | DE |
4042435 | Feb 1994 | DE |
10146011 | Apr 2003 | DE |
0005719 | Dec 1979 | EP |
0316789 | May 1989 | EP |
0316796 | May 1989 | EP |
0376562 | Jul 1990 | EP |
0379156 | Jul 1990 | EP |
0394583 | Oct 1990 | EP |
0443256 | Aug 1991 | EP |
0472368 | Feb 1992 | EP |
0541249 | May 1993 | EP |
0820728 | Jan 1998 | EP |
1323481 | Jul 2003 | EP |
1106957 | Mar 1968 | GB |
H2-7150 | Oct 1988 | JP |
01-099547 | Apr 1989 | JP |
6086822 | Mar 1994 | JP |
H07500752 | Jan 1995 | JP |
7116260 | May 1995 | JP |
9-503137 | Mar 1997 | JP |
10-216140 | Aug 1998 | JP |
2000-291543 | Oct 2000 | JP |
2001-104356 | Apr 2001 | JP |
2001-321388 | Nov 2001 | JP |
2002-186627 | Jul 2002 | JP |
2005-253874 | Sep 2005 | JP |
2006-522644 | Oct 2006 | JP |
2007512087 | May 2007 | JP |
2007520255 | Jul 2007 | JP |
8705739 | Sep 1987 | WO |
8705793 | Oct 1987 | WO |
8906515 | Jul 1989 | WO |
8001300 | Feb 1990 | WO |
8004362 | May 1990 | WO |
9107917 | Jun 1991 | WO |
9211815 | Jul 1992 | WO |
9308750 | May 1993 | WO |
9316646 | Sep 1993 | WO |
9412140 | Jun 1994 | WO |
9414382 | Jul 1994 | WO |
9508954 | Apr 1995 | WO |
9509571 | Apr 1995 | WO |
9515192 | Jun 1995 | WO |
9635469 | Nov 1996 | WO |
9705739 | Feb 1997 | WO |
9721462 | Jun 1997 | WO |
9745078 | Dec 1997 | WO |
9827874 | Jul 1998 | WO |
9835721 | Aug 1998 | WO |
9851224 | Nov 1998 | WO |
9852637 | Nov 1998 | WO |
9925412 | May 1999 | WO |
0053341 | Sep 2000 | WO |
0067830 | Nov 2000 | WO |
02094103 | Nov 2002 | WO |
03039381 | May 2003 | WO |
2004012609 | Feb 2004 | WO |
2004093736 | Nov 2004 | WO |
2004112888 | Dec 2004 | WO |
2005053769 | Jun 2005 | WO |
2005112770 | Dec 2005 | WO |
2006049593 | May 2006 | WO |
2013109269 | Jul 2013 | WO |
2014022716 | Feb 2014 | WO |
2014105754 | Jul 2014 | WO |
2014106847 | Jul 2014 | WO |
2018097856 | May 2018 | WO |
20180187159 | Oct 2018 | WO |
Entry |
---|
Noone, D.: Experimental and Numerical Investigation of Wire Waveguides for Therapeutic Ultrasound Angioplasty. M.Eng. Dublin City University. 2008. |
Definition of the term “connected”, retrieved on Sep. 21, 2013. <www.thefreedictionary.com/connected> 1 page total. |
Supplemental European Search Report dated Nov. 5, 2009 for European Application No. EP03766931. |
International Search Report dated Oct. 28, 2003 for PCT Application No. PCT/US2003/023468. |
Extended European Search Report dated Mar. 22, 2012 for European Application No. EP11188799. |
International Search Report dated Dec. 23, 2005 for PCT Application No. PCT/US2004/019378. |
Extended European Search Report for Patent Application No. 06718204.8, dated May 30, 2012. |
International Search Report dated Aug. 1, 2013 for PCT Application No. PCT/US2013/053306. |
International Preliminary Report dated Aug. 1, 2013 for PCT Application No. PCT/US2013/053306. |
Written Opinion dated Aug. 1, 2013 for PCT Application No. PCT/US2013/053306. |
Supplemental European Search Report dated Apr. 29, 2009 for European Application No. EP 04711207.3. |
Office Action dated Aug. 3, 2010 from Japanese Application No. 2006-517355 filed on Jun. 16, 2004. |
Office Action dated Jan. 26, 2010 from Japanese Application No. 2006-517355 filed on Jun. 16, 2004. |
International Preliminary Report and Written Opinion dated Aug. 1, 2017 for PCT Application No. PCT/US2017/030675. |
International Preliminary Report and Written Opinion dated Feb. 6, 2018 for PCT Application No. PCT/US2018/017022. |
Extended European Search Report dated Mar. 5, 2012 for European Application No. 12153606.4-1269. |
MargareT Fyfe et al., Mast cell degranulation and increased vascular permeability induced by therapeutic' ultrasound in the rate ankle joint, Br. J. exp. Path., 1984, vol. 65, pp. 671-676. |
“Irradiation, Biological, and Other Technologies: E-beam, Biological, and Sharps Treatment Systems”, Non-Incineration Medical Waste Treatment Technologies, Aug. 2001, Chapter 9, pp. 69-74, Health Care Without Harm, Washington, DC. |
Paul Yock et al., Catheter-Based Ultrasound Thrombolysis Shake, Rattle, and Reperfuse, https://doi.org/10.1161/01.CIR.95.6.1360 Circulation. 1997;95:1360-1362 Originally published Mar. 18, 1997. |
Calhoun et al., “Electron-Beam Systems for Medical Device Sterilization”, downloaded from web on Oct. 8, 2002 <http://www.devicelink.com/mpb/archive/97/07/002.html> 7 pages total. |
Definition of the term “coupled”, retrieved on May 18, 2013. <http://www.merriam-webster.com/dictionary/couple> 1 page total. |
“E-Beam Theory” RDI-IBA Technology Group, downloaded from web on Oct. 8, 2002 <http://www.e-beamrdi/EbeamTheory.htm> 2 pages total. |
Office Action dated May 20, 2010 from Japanese Application No. 2006-541200 filed on Oct. 25, 2004. |
Office Action dated Oct. 11, 2012 from Japanese Application No. 2010-181956. |
Japanese Office Action for Japanese Application No. 2010-134566, dated Mar. 2, 2012. |
Sehgal, et al., Ultrasound-Assisted Thrombolysis, Investigative Radiology, 1993, vol. 28, Issue 10, pp. 939-943. |
Siegel, et al., “In Vivo Ultrasound Arterial Recanalization of Atherosclerotic Total Occlusions”, Journal of the American College of Cardiology, Feb. 1990, vol. 15, No. 2, pp. 345-351. |
“What is Electron Beam Curing?” downloaded from web on Nov. 14, 2002, 4 pages total. <http://www.ms.oml.gov/researchgroups/composites/new%20orccmt%20pages/pages/ebwha>. |
EP Extended Search Report dated Aug. 13, 2009; Application 04710537.5-1269, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20190151684 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
61678920 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14415126 | US | |
Child | 16257774 | US |