Applicants' invention relates to an ultrasound emitting device, and a method using same.
Thrombosis, the formation and development of a blood clot or thrombus within the vascular system, can be life threatening. The thrombus can block a vessel and stop blood supply to an organ or other body part. If detached, the thrombus can become an embolus and occlude a vessel distant from the original site.
Dissolution of thrombus using ultrasound is known in the art. Further, the ability of microbubbles to potentiate ultrasound-induced thrombolysis is known. The bubbles are destroyed by the ultrasound and the energy is released into the clot.
What is needed, however, is an ultrasound emitting device which can better direct the emitted ultrasound energy to the occlusion site, thereby enhancing the effectiveness of the ultrasound energy/microbubble interaction. Applicants' apparatus provides such an ultrasound emitting device.
Prior art therapeutic ultrasound emitting devices comprise a single ultrasound transducer. In contrast, Applicants' apparatus comprises a plurality of ultrasound transducers. Applicants' plurality of ultrasound transducers can be operated simultaneously, or in a programmed fashion whereunder one or more of, but fewer than all, of the transducers emit ultrasound energy at one time.
Applicants' invention comprises an ultrasound energy emitting apparatus. Applicants' ultrasound energy emitting apparatus comprises a hand-held enclosure and a plurality of ultrasound transducers disposed on that enclosure, or disposed within and extending outwardly from the enclosure. Applicants' plurality of ultrasound transducers can be operated simultaneously, or in a programmed fashion whereunder one or more of, but fewer than all, of the transducers emit ultrasound energy at one time. Applicants' invention further comprises a method using Applicants' apparatus to treat a patient having an occlusion lodged in a blood vessel.
The invention will be better understood from a reading of the following detailed description taken in conjunction with the drawings in which like reference designators are used to designate like elements, and in which:
This invention is described in preferred embodiments in the following description with reference to the Figures, in which like numbers represent the same or similar elements. The invention will be described as embodied in a hand-held ultrasound emitting device having a curved top portion. The following description of Applicant's apparatus, and method using that apparatus, is not meant, however, to limit Applicant's invention to hand-held devices having a curved top, or to only hand-held devices, as the invention herein can be applied to devices to production of ultrasound energy in general.
Referring to
Sides 140 and 160 have dimension 142 in the Y direction. In certain embodiments, dimension 142 is between about 10 cm and about 50 cm. Sides 130 and 150 have dimension 132 in the X direction. In certain embodiments, dimension 132 is between about 5 cm and about 25 cm.
In the illustrated embodiment of
Referring to
In certain embodiments, those polymeric materials comprise one or more partial-density materials, i.e. one or more cellular materials. In certain embodiments, such cellular materials comprise one or more structural foam materials formed from the group which includes one or more polyurethanes, one or more polystyrenes, and combinations thereof, and the like.
Bottom 120 in combination with housing 170 comprises an enclosure. Bottom 120 includes interior surface 122 and exterior surface 124. In certain embodiments, bottom 120 is formed from metal, one or more polymeric materials, and combinations thereof. In certain embodiments, housing 170 is formed from one or more first polymeric materials and bottom 120 is formed from one or more second polymeric materials, where the one or more first polymeric materials differ from the one or more second polymeric materials.
In certain embodiments, bottom 120 is attached to housing 170 using adhesive bonding. In certain embodiments, bottom 120 is attached to housing 170 using conventional attachment means such as, for example, screws, nuts/bolts, rivets, and the like. In certain embodiments, bottom 120 can be releaseably affixed to housing 170, such that housing 170 can be used with a variety of differing sound head matrix assemblies, as described below.
A plurality of piezoelectric transducers are disposed on, or through, the exterior surface of the bottom portion of Applicants' device. Each piezoelectric transducer, sometimes referred to as a “sound head,” includes one or more piezoelectric materials. When an alternating current is applied to such a piezoelectric material, deformation occurs wherein the peizoelectric material expands and contracts. Such expansion and contraction crystal produces vibrations, i.e. sound waves.
In certain embodiments, Applicants' piezoelectric transducers comprise one or more ceramic materials having pronounced piezoelectric characteristics. In certain embodiments, Applicants' piezoelectric transducers comprise lead zirconate titanate (“PZT”). In other embodiments, Applicants' piezoelectric material comprises lead-magnesium-niobate lead titanate, hereafter referred to for brevity by the acronym PMN-PT. Such PMN-PT materials are described in U.S. Pat. No. 6,737,789.
In certain embodiments, Applicants' piezoelectric materials are formed from a thick-film ink, wherein one or more PZT and/or PMN-PT pastes are mixed with a powdered glass and an organic carrier, which is then printed onto the bottom portion of Applicants' device.
In certain embodiments, the plurality of piezoelectric transducers disposed on the exterior of Applicants' device comprise therapeutic ultrasound transducers. By “therapeutic ultrasound transducer,” Applicants mean a device that is capable of operating at between a 0.1 percent and a 100 percent duty cycle, and that emits therapeutic ultrasound energy. By “therapeutic ultrasound energy,” Applicants mean sound waves having a frequency between about 150 kilohertz and about 10 megahertz or higher, and a power level between about 0.1 watt/cm2 and about 30 watts/cm2. In certain embodiments, when operated continuously, the output power for each of the plurality of therapeutic ultrasound transducers can as great as about 50 watts. In other embodiments, the output power for each of the plurality of therapeutic ultrasound transducers is between about 6 to about 10 watts.
The plurality of therapeutic ultrasound transducers disposed on Applicants' device comprise a sound head matrix. In certain embodiments, Applicants' sound head matrix comprises a plurality of therapeutic ultrasound transducers are arranged in columns and rows.
Each transducer comprising the sound head matrix of
In certain embodiments, planar member 420 and/or planar member 430 comprise a ceramic material. In certain embodiments, planar member 420 and/or planar member 430 comprise aluminum oxide. In certain embodiments, planar member 420 and/or planar member 430 comprise beryllium oxide.
In embodiments wherein housing 170 comprises one or more metallic components, and wherein planar members 420 and/or 430 comprise a ceramic material and/or a ceramic material encapsulating a copper core, planar members 420 and/or 430 conduct heat generated by the plurality of ultrasound emitters from the core of Applicants' device to the metallic housing, i.e. the circuit substrates in combination with the housing, comprise, inter alia, an integrated heat sink assembly which continuously dissipates heat from Applicants' hand-held device to the environment.
Planar member 420 is continuously attached to planar member 430 at common edge 405. Transducers 441, 442, 443, 444, 445, 446, 447, and 448, are disposed on, or through, surface 424 of planar member 420. Transducers 441, 442, 443, 444, 445, 446, 447, and 448, in combination with planar member 420, comprises planar assembly 460. Transducers 451, 452, 453, 454, 455, 456, 457, and 458, are disposed on, or through, surface 434 of planar member 430. Transducers 451, 452, 453, 454, 455, 456, 457, and 458, in combination with planar member 430, comprises planar assembly 470.
Planar assembly 460 in combination with planar assembly 470 comprises sound head matrix assembly 401. In certain embodiments, sound head matrix assembly 401 comprises a substantially flat structure. In other embodiments, sound head matrix assembly 401 is not flat, i.e. the dihedral angles formed by the intersection of assemblies 460 and 470 do not equal 180 degrees.
Referring to
Referring now to
In certain embodiments, angle Φ is between about 5 degrees and about 25 degrees. In certain embodiments, angle Φ is between about 10 degrees and about 20 degrees. In certain embodiments, angle Φ is about 13 degrees.
As those skilled in the art will appreciate, the interior dihedral angle formed by planar assembly 460 and planar assembly 470 is inversely proportional to the offset angle Φ. Therefore, as Φ increases from 0 degrees, the dihedral angle decreases from 180 degrees. Thus, where planar assembly 460 is “offset” from planar assembly 470 by, for example, 15 degrees, then the interior dihedral angle formed by planar assembly 460 and planar assembly 470 is 165 degrees.
Each transducer comprising the sound head matrix of
In certain embodiments, angle 518 is about 180 degrees. In these embodiments, planar member 510 is not offset from planar member 520, i.e. planar member 510 in combination with planar member 520 comprises a substantially flat assembly. In other embodiments, angle 518 is less than 180 degrees, i.e. planar member 510 is offset from planar member 520.
In certain embodiments, planar members 510 and 520 are integrally formed to include angle 518. In other embodiments, planar members 510 and 520 are individually formed, and subsequently attached using conventional attachment methods.
Planar member 520 is continuously attached to planar member 530 at common edge 521. Transducers 524, 525, 526, and 527, are disposed on, or through, surface 523 of planar member 520. Transducers 524, 525, 526, and 527, in combination with planar member 520, comprise planar assembly 560. Angle 528 comprises the interior dihedral angle formed by the intersection of planar member 520 with planar member 530.
In certain embodiments, angle 528 is about 180 degrees. In these embodiments, planar member 520 is not offset from planar member 530, i.e. planar member 520 in combination with planar member 530 comprises a substantially flat assembly. In other embodiments, angle 528 is less than 180 degrees, i.e. planar member 520 is offset from planar member 530.
In certain embodiments, planar members 520 and 530 are integrally formed to include angle 528. In other embodiments, planar members 520 and 530 are individually formed, and subsequently attached using conventional attachment methods.
Planar member 530 is continuously attached to planar member 540 at common edge 531. Transducers 534, 535, 536, and 537, are disposed on, or through, surface 533 of planar member 530. Transducers 534, 535, 536, and 537, in combination with planar member 530, comprise planar assembly 570. Angle 538 comprises the interior dihedral angle formed by the intersection of planar member 530 with planar member 540.
In certain embodiments, angle 538 is about 180 degrees. In these embodiments, planar member 530 is not offset from planar member 540, i.e. planar member 530 in combination with planar member 540 comprises a substantially flat assembly. In other embodiments, angle 538 is less than 180 degrees, i.e. planar member 530 is offset from planar member 540.
In certain embodiments, planar members 530 and 540 are integrally formed to include angle 538. In other embodiments, planar members 530 and 540 are individually formed, and subsequently attached using conventional attachment methods.
Transducers 544, 545, 546, and 547, are disposed on, or through, surface 543 of planar member 530. Transducers 544, 545, 546, and 547, in combination with planar member 540, comprise planar assembly 580.
Planar assemblies 550, 560, 570, and 580, in combination, comprise sound head matrix assembly 501. In certain embodiments, sound head matrix assembly 501 comprises a substantially flat structure. In other embodiments, sound head matrix assembly 501 is not flat.
Referring to
In certain embodiments, angle Φ1 is between about 5 degrees and about 25 degrees. In certain embodiments, angle Φ1 is between about 8 degrees and about 15 degrees. In certain embodiments, angle Φ1 is about 13 degrees.
Edge 522 of planar assembly 560 meets edge 532 of planar assembly 570 at seam 521. Dotted line 345 represents the extension of edge 522 past seam 521. As shown in
In certain embodiments, angle Φ2 is between about 5 degrees and about 25 degrees. In certain embodiments, angle Φ2 is between about 8 degrees and about 15 degrees. In certain embodiments, angle Φ2 is about 10 degrees.
Edge 532 of planar assembly 570 meets edge 542 of planar assembly 570 at seam 531. Dotted line 335 represents the extension of edge 532 past seam 531. As shown in
In certain embodiments, angle Φ3 is between about 5 degrees and about 25 degrees. In certain embodiments, angle Φ3 is between about 8 degrees and about 15 degrees. In certain embodiments, angle Φ3 is about 13 degrees.
In certain embodiments, two or more of offset angles Φ1, Φ2, and/or Φ3, are substantially the same. By “substantially the same,” Applicants means within about plus or minus ten percent or less. In other embodiments, two or more of offset angles Φ1, Φ2, and/or Φ3, differ.
In the illustrated embodiment of
As those skilled in the art will appreciate, the plurality of transducers comprising sound head matrix assembly 501 may include one or more leads which extend through holes, i.e. vias, drilled through one of the four planar assemblies. In other embodiments, the plurality of transducers comprising sound head matrix 501 each comprise what is sometimes called a “surface mounted” device, wherein that surface mounted device is attached to a solder pad disposed on surface 513, or surface 523, or surface 533, or surface 443.
Device 610 includes housing 170 and sound head matrix assembly 605. In the illustrated embodiment of
For example in certain embodiments, Applicants' hand-held ultrasonic device 610 comprises an 8×2 sound head matrix, such as the sound head matrix recited in
In the illustrated embodiment of
For example, in certain embodiments, Applicants' hand-held ultrasonic device 610 comprises offset sound head matrix assembly 401 (
Controller 620 is interconnected with hand-held device 610 by communication link 628. In certain embodiments, communication link 628 is selected from the group which includes a serial interconnection, such as RS-232 or RS-422, an ethernet interconnection, a SCSI interconnection, a Fibre Channel interconnection, an ESCON interconnection, a FICON interconnection, a Local Area Network (LAN), a private Wide Area Network (WAN), a public wide area network, Storage Area Network (SAN), Transmission Control Protocol/Internet Protocol (TCP/IP), the Internet, and combinations thereof.
Communication link 628 can be releaseably attached to coupling 630 disposed on housing 170. Coupling 630 is interconnected with control bus 640. Control bus 640 is interconnected to each transducer comprising Applicants' sound head matrix assembly 610.
In certain embodiments, controller 620 provides control signals to hand-held device 610 wirelessly. In these wireless embodiments, communication link 628 comprises a first antenna coupled to controller 620 and coupling 630 comprises a second antenna coupled to communication bus 640.
Controller 620 includes processor 622, memory 624, and device microcode 626. In certain embodiments, memory 624 comprises one or more nonvolatile memory devices. In certain embodiments, such nonvolatile memory is selected from the group which includes one or more EEPROMs (Electrically Erasable Programmable Read Only Memory), one or more flash PROMs (Programmable Read Only Memory), battery backup RAM, hard disk drive, combinations thereof, and the like.
In certain embodiments, microcode 626 is stored in memory 624. Device microcode 626 comprises instructions residing in memory, such as for example memory 624, where those instructions are executed by processor 622 to implement the selected operational mode for the plurality of transducers comprising Applicants' sound head matrix assembly.
In certain embodiments, device microcode 626 comprises instructions residing in memory, such as for example memory 624, where those instructions are executed by processor 622 to cause each of the plurality of therapeutic ultrasound transducers comprising Applicants' sound head matrix assembly 605 to operate continuously. In other embodiments, device microcode 626 comprises instructions residing in memory, such as for example memory 624, where those instructions are executed by processor 622 to cause each of the plurality of therapeutic ultrasound transducers comprising Applicants' sound head matrix assembly 605 to operate discontinuously.
As a general matter, such discontinuous operation modes include embodiments wherein each of the plurality of therapeutic ultrasound transducers comprising Applicants' sound head matrix assembly 605 operates on a duty cycle from about 0.1 percent to 100 percent. In certain embodiments, such discontinuous operation modes include embodiments wherein each of the plurality of therapeutic ultrasound transducers comprising Applicants' sound head matrix assembly 605 operates on a duty cycle selected from the group comprising a 20 percent duty cycle, a 40 percent duty cycle, a 60 percent duty cycle, and an 80 percent duty cycle.
In certain of these discontinuous operational modes, each of the plurality of therapeutic ultrasound transducers comprising Applicants' sound head matrix assembly 605 operates independently of any of the other transducer, i.e. each transducer is alternately turned on and off randomly. In other embodiments, an entire column of transducers operates at the same time, while transducers comprising other columns do not operate. In other embodiments, an entire row of transducers operates at the same time, while transducers comprising other rows do not operate.
The following examples are presented to further illustrate to persons skilled in the art how to make and use Applicants' invention, and to identify a presently preferred embodiment thereof. These examples are not intended as limitations, however, upon the scope of the invention.
For example and referring to
As a further example, in embodiments wherein Applicants' sound head matrix comprises two or more columns, controller 620 (FIG. 6)/720 (
In another example, a first row of therapeutic ultrasound transducers, which includes transducers 514, 524, 534, and 544, emit therapeutic ultrasound energy while a second row which includes transducers 515, 525, 535, 534, and while a third row which includes transducers 516, 526, 536, 545, and while a fourth row which includes transducers 517, 527, 537, and 547, do not emit therapeutic ultrasound energy. Thereafter, the transducers comprising the second row emit energy while the transducers in the first, third, and fourth rows do not. Applicants' method includes embodiments wherein any pattern of sequential activation of rows of therapeutic ultrasound transducers.
As a further example, in embodiments wherein Applicants' sound head matrix comprises two or more rows, controller 620 (FIG. 6)/720 (
In certain embodiments, controller 620 comprises a computer, which in addition to memory 624 and microcode 624, further includes one or more input devices, such as for example a key board, a mouse, a pointing device, and the like. In certain embodiments, that computer further includes one or more output devices, such as for example one or more monitors, one or more printers, and the like.
In certain embodiments of Applicants' apparatus, the external control circuitry of
Applicants' hand-held ultrasonic device 710 includes controller 720 which is interconnected to each of a plurality of therapeutic ultrasound transducers 712, 713, 714, 715, 716, 717, 718, and 719, via communication links 732, 733, 734, 735, 736, 737, 738, and 739, respectively.
For further clarity of illustration, the illustrated embodiment of
Referring now to
In certain embodiments, Applicants' hand-held ultrasonic device includes one or more diagnostic ultrasound emitters in combination with a plurality of therapeutic ultrasound emitters. Referring to
Any of the various types of diagnostic ultrasound imaging devices may be employed in the practice of the invention, the particular type or model of the device not being critical to the method of the invention. Also suitable are devices designed for administering ultrasonic hyperthermia, such devices being described in U.S. Pat. Nos. 4,620,546, 4,658,828, and 4,586,512, the disclosures of each of which are hereby incorporated herein by reference in their entirety. Preferably, the device employs a resonant frequency (RF) spectral analyzer.
Therapeutic ultrasound emitters 842, 844, and 846, are disposed on, or through, planar member 820. Emitters 842, 844, and 846, in combination with planar member 820, comprise planar assembly 860. Therapeutic ultrasound emitters 852, 854, 856, are disposed on, or through, planar member 830. Emitters 852, 854, and 856, in combination with planar member 830, comprise planar assembly 870.
Planar assembly 860 is continuously attached to planar assembly 870 at seam 825. In certain embodiments, the dihedral angle formed by the intersection of planar assembly 860 and planar assembly 870 is 180 degrees, i.e. the angle Φ shown in
Referring now to
In certain embodiments, Applicants' hand-held ultrasound device 800 includes an integral information input/output device. Referring now to
Referring now to
When using device 801, the diagnostic transceiver is first made operational. As those skilled in the art will appreciate, that diagnostic transceiver continuously emits relatively low power level ultrasound waves. The various body tissues differentially reflect a portion of those sound waves. The diagnostic transceiver detects those reflected signals. Controller 805 processes those reflected signals and generates an image signal. That image signal is provided to display device 760 which visually displays an image of the tissues and structures underlying device 801.
By monitoring display device 760, the medical provider can determine when the injected microbubbles have reached the occlusion site. At that time, the medical provider than causes the plurality of therapeutic ultrasound emitters to produce ultrasound energy having a higher power level than the diagnostic power levels emitted by transceiver 810. Those higher power ultrasound energy causes the microbubbles to rupture. After the flow of the injected microbubbles ceases, the medical provider then discontinues emission of the therapeutic ultrasound energy.
In certain embodiments Applicants' hand-held ultrasound device includes an “auto-detect” feature, wherein that devices monitors the reflected diagnostic signals, and automatically detects the arrival of the injected microbubbles at the occlusion site. When those injected microbubbles are detected, Applicants' device automatically causes the plurality of therapeutic ultrasound devices to emit therapeutic ultrasound energy. When the flow of microbubbles ceases, Applicants' device automatically causes the plurality of therapeutic ultrasound devices to stop emitting therapeutic ultrasound energy.
Referring to
In step 905, the method provides an injectable microbubble formulation. U.S. Pat. Nos. 5,656,211 and 6,033,646 teach methods to form such a microbubble formulation, and are hereby incorporated by reference herein. U.S. Pat. No. 6,039,557 teaches an apparatus for preparing such a microbubble formulation, and is hereby incorporated by reference herein.
In step 910, the method determines the situs of the blood vessel occlusion. As those skilled in the art will appreciate, various methods exist to determine that situs. Step 910 includes identifying the occluded vessel. Step 910 further includes. identifying the location of the occlusion in that subject vessel. In certain embodiments, step 910 further includes determining the depth of the occluded vessel portion from the skin surface. In certain embodiments, step 910 further includes determining the width of the vessel at the occlusion. In certain embodiments, step 910 further includes determining the height of the vessel at the occlusion.
Referring to
Referring to
Referring to
In step 915, the method selects a therapeutic ultrasound emitting device and power level based upon the determinations of step 910. Referring now to
Having determined a target energy envelope, step 915 further includes selecting a sound head matrix that emits an actual ultrasound energy envelope that most closely corresponds to the desired target energy envelope. Step 915 further includes determining output power levels, and an emitter operating protocol, i.e. continuous or discontinuous operation.
Referring again to
Device 1701 can be releaseably attached to the patient's extremity by advancing elastic straps 1740 and 1750 around that extremity, inserting tab 1745 into and through aperture 1720, securing tab 1745, inserting tab 1755 into and through aperture 1730, and securing tab 1755. In certain embodiments, tabs 1745 and 1755 are secured using hook and loop fasteners, i.e. VELCRO® fasteners. In other embodiments, tabs 1745 and 1755 are secured using buckle devices disposed on housing 1760.
Referring to
Referring again to
In step 930, Applicants' method determines if the ultrasound device selected in step 915 includes a diagnostic emitter. If Applicants' method determines in step 930 that the selected hand-held ultrasound device includes a diagnostic ultrasound emitter, then Applicant's method transitions to step 955 wherein the method determines if the selected device includes an auto-detect function. If Applicants' method determines in step 955 that the device selected in step 915 includes both a diagnostic ultrasound emitter and an auto-detect function, then Applicants' method transitions from step 955 to step 960 wherein the operator initiates the auto-detect function. In embodiments wherein the selected device includes both a diagnostic ultrasound emitter and an auto-detect function, the operator need do no more than initiate the auto-detect function. The apparatus then automatically detects the arrival of the microbubbles at the occlusion site, automatically initiates the selected ultrasound emission program, automatically detects the absence of microbubbles at the occlusion site, and automatically discontinues ultrasound emissions.
If Applicants' method determines in step 955 that the selected device does not include an auto-detect function, then the method transitions from step 955 to step 965 wherein the operator determines if the selected device includes a display screen in combination with the diagnostic ultrasound emitter. If the selected device does include a display screen in combination with the diagnostic ultrasound emitter, then the method transitions to step 975 wherein the operator monitors the display device.
In step 980, the operator visually sees, using the display device, the presence of microbubbles at the occlusion site. Applicants' method transitions from step 980 to step 985 wherein the operator causes the hand-held ultrasound device to provide therapeutic ultrasound energy to the occlusion site. In step 990, the operator visually detects the absence of microbubbles at the occlusion site. Applicants' method transitions from step 990 to step 950 wherein the operator discontinues ultrasound emissions.
If the operator determines in step 965 that the selected hand-held ultrasound device includes a diagnostic ultrasound emitter but does not include a display screen, then the method transitions from step 965 to step 970 wherein the operator receives an indication that microbubbles are present at the occlusion site. In certain embodiments, the indication of step 970 comprises a visual alert, such as for example a flashing light. In certain embodiments, the indication of step 970 comprises a auditory alert. Applicants' method transitions from step 970 to step 935 wherein the operator determines a treatment time interval. That treatment time interval comprises an estimate made by the operator of the time period in which microbubbles are likely to be present at the occlusion site. Applicants' method transitions from step 935 to step 940 wherein the operator causes the selected device to emit therapeutic ultrasound energy. In certain embodiments, steps 935 and 940 are performed substantially synchronously.
In step 945, the operator determines if the treatment time interval selected in step 935 has expired. If the operator determines that the treatment time interval has not expired, then the method continues to provide therapeutic ultrasound energy to the occlusion site. Alternatively, if the operator determines in step 945 that the treatment time interval has expired, then the method transitions from step 945 to step 950 wherein the operator discontinues ultrasound emissions.
In certain embodiments, individual steps recited in
In certain embodiments, Applicants' invention includes microcode, such as microcode 626, where that microcode is executed by a controller, such as controller 620 (FIG. 6)/720 (
In other embodiments, Applicants' invention includes instructions residing in any other computer program product, where those instructions are executed by a computer external to, or internal to, Applicants' hand-held apparatus to perform steps one or more of steps 935, 940, 945, 950, 960, 980, 985, 990, recited in
While the preferred embodiments of the present invention have been illustrated in detail, it should be apparent that modifications and adaptations to those embodiments may occur to one skilled in the art without departing from the scope of the present invention.
This application claims priority from a U.S. Provisional Application having Ser. No. 60/578,954 filed Jun. 10, 2004.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2005/020837 | 6/10/2005 | WO | 00 | 10/13/2007 |
Number | Date | Country | |
---|---|---|---|
60578954 | Jun 2004 | US |