Embodiments of the subject matter disclosed herein generally relate to an electrical power generator and method for generating electrical energy from acoustic energy, and more particularly, to an MXene Hydrogel based electrical power generator that is configured to transform ultrasound energy into electrical energy.
Conventional drug delivery routes provide limited control over the spatial and temporal resolution of the drug release. Often, the desired availability of the therapeutic drug in the target site can only be achieved by either increasing the dose volume or the dosing frequency, both of which are undesired due to possible mis-dosage.
With the advance of semiconductor devices and increased miniaturization of devices that use such semiconductor devices, many applications are targeting the human body and the specific field of supplying a desired drug to the human body, or collecting information about the human body, or supplying an electrical current to the human body. However, as shown in
However, the induction effect generates heat, which can make uncomfortable the subject wearing the semiconductor device 100. Further, the subject has to remember every day or at a given time, to bring the external coil 110 next to the internal coil 106, to recharge the battery 106.
Thus, there is a need for finding other means for recharging a battery associated with a semiconductor device that is implanted into the human body, or has no available energy source for recharging.
According to an embodiment, there is an electrical power generator that includes an M-gel layer that includes MXene and a hydrogel, first and second flexible layers that sandwich the M-gel layer so that the M-gel layer is sealed from an ambient, and a single terminal electrically connected to the M-gel layer. The M-gel layer (202) is configured to transform acoustic energy into electrical energy.
According to another embodiment, there is a recharging system that includes a medical device that includes a battery, the medical device being configured to monitor a parameter of a human body or for delivering a substance to the human body, and an electrical power generator for recharging the battery with electrical energy. The electrical power generator includes an M-gel layer that includes MXene and a hydrogel, first and second flexible layers that sandwich the M-gel layer so that the M-gel layer is sealed from an ambient, and a single terminal electrically connected to the M-gel layer. The M-gel layer is configured to transform acoustic energy into the electrical energy.
According to still another embodiment, there is a method for recharging a medical device that includes a battery. The method includes using the medical device to monitor a parameter of a human body or to deliver a substance to the human body, harvesting with an electrical power generator acoustic energy, transforming the acoustic energy into electrical energy with an electrical power generator that is located inside the human body, wherein the electrical power generator includes an M-gel layer that includes MXene and a hydrogel, first and second flexible layers that sandwich the M-gel layer so that the M-gel layer is sealed from an ambient, and a single terminal electrically connected to the M-gel layer, and re-charging the battery of the medical device with the electrical energy generated the electrical power generator.
Fora more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The following description of the embodiments refers to the accompanying drawings. The same reference numbers in different drawings identify the same or similar elements. The following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims. The following embodiments are discussed, for simplicity, with regard to a drug delivery system that is implanted into the human body for delivering a drug, and has as a source of energy a battery. However, the embodiments to be discussed next are not limited to a drug delivery system, but may be applied to other delivery systems or monitoring systems, i.e. systems that do not deliver anything.
Reference throughout the specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with an embodiment is included in at least one embodiment of the subject matter disclosed. Thus, the appearance of the phrases “in one embodiment” or “in an embodiment” in various places throughout the specification is not necessarily referring to the same embodiment. Further, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
According to an embodiment, a novel energy generating device includes an MXene hydrogel layer sandwiched between two flexible layers. Acoustic energy, either from the ambient or generated on purpose, interacts with the MXene hydrogel layer. The MXene hydrogel layer transforms the acoustic energy (especially ultrasound energy) into electrical energy, which is harvested and supplied to a battery for recharging the battery.
In this regard, the acoustic energy is a ubiquitous, clean and sustainable energy resource. The major approach to utilize it is to harvest ultrasonic power based on mechanisms such as piezoelectric and tribo-electric effects. However, it requires specific materials and carefully designed complex device geometries that can cause enough mechanical displacement of the active materials to convert the acoustic energy into the electric energy. Therefore, traditional ultrasonic transducers based on piezoelectric or tribo-electric effects are insufficient for miniaturized, flexible and implantable device applications.
Moreover, when an ultrasound wave passes through more than two media, a part of its energy is consumed because of not only the acoustic impedance, but also the reflection between the media. Reflectance of the ultrasound wave when passing through two different media increases as the difference of acoustic impedance between the media is increased (the high density materials have higher acoustic impedance than the low density materials). Therefore, it is necessary to match the various media with similar density to reduce the reflection of the ultrasound waves.
According to an embodiment, it is possible to harvest the acoustic energy by using an electrical power generator, which is based on the electroacoustic phenomena of the MXene hydrogel material (called herein M-gel layer) under compressional ultrasound waves. This electrical power generator that uses the M-gel layer is called herein the “M-gel generator.” As discussed later, the output performance of this electrical power generator is improved by coupling it with tribo-electric active materials. Moreover, the M-gel generator can be used in applications such as quick charging of a capacitor, and powering implantable devices through skin.
As shown in
In one embodiment, the flexible layers have a surface area larger than the M-gel layer 202 so that the two flexible layers can fully encapsulate the M-gel layer. In one application, the two flexible layers are fully connected to their circumferences (or perimeters) to form an internal chamber to receive and fully seal the M-gel layer inside the formed chamber. In this way, no humidity or any other chemical may enter the chamber and the M-gel layer. The two flexible layers may be formed from any material that is easily bendable so that the exterior acoustic energy can deform them, so that these layers directly act on the M-gel layer and also easily conform to parts of the human body. For example, in one embodiment, the two layers may be formed from an eco-flex material, e.g., silicone rubber or a polymer. The material for the two flexible layers is also selected to not be toxic to the human body, and not to release or leak any dangerous components into the human body.
The M-gel layer 202 may include a polymer composite material that is very malleable. When strain is applied to the polymer composite, its fractional resistance changes (henceforth referred to as ΔR/R0, where R0 is the resistance of the sensing material without strain and ΔR is the amount of resistance change after applying strain) according to curve 300 shown in
According to an embodiment, this polymer composite material includes (1) a viscoelastic hydrogel and (2) conductive nanofillers. The hydrogel is a class of viscoelastic materials composed of three-dimensional (3D) networks of hydrophilic polymers crosslinked, chemically or physically, with the capacity to absorb and retain a large amount of water (up to 90%). The hydrogel may include natural or synthetic polymeric networks. The hydrogels also possess a degree of flexibility very similar to natural tissue, due to their significant water content. The term “viscoelastic” is understood herein to be a property of materials to exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials resist shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and quickly return to their original state once the stress is removed. Viscoelastic materials have elements of both of these properties and, as such, exhibit time-dependent strain.
Conductive hydrogels are potential candidates for electro-mechanical sensing materials for applications such as wearable electronics, soft robotics and prosthetics, which require the sensors to be highly sensitive, stretchable, and easily adhere to arbitrary and complex surfaces, such as human skin. However, hydrogel based electro-mechanical sensors generally exhibit relatively low sensitivity. Furthermore, as viscoelastic materials, their electro-mechanical responses to external forces show unstable noises with hysteresis and fluctuation due to the unexpected viscous deformations.
Recently, a special class of conductive nanofillers, whose geometry and conductivity can both be changed by deformations, have been used to improve the sensitivity of composite strain sensors (see, for example, Wang et al., Rev. Sci. Instrum. 84, (2013) 105005, Lin et al., J. Mater. Chem. C, 4, (2016) 6345-6352, Tang et al., ACS Appl. Mater. Interfaces 7, (2015) 27432-27439, and Boland et al., Science 354, (2016) 1257-1260). Although these nanofiller networks can greatly improve the sensitivity, they still cannot overcome the limitations originated from viscous deformations. In addition, these nanofillers usually cannot maintain their deformed network structure caused by viscous deformations, due to their easy motion within the hydrogel matrix and possible rearrangement of the network structure by an electric field. As a result, their sensing reliability is compromised.
The inventors of the present application have realized that MXenes, a class of two-dimensional (2D) early transition metal carbides and/or carbonitrides and/or nitrides, might cure the problems noted in the above nanofillers. These materials consist of few atoms thick layers of transition metal carbides, nitrides or carbonitrides. More specifically, a MXene includes (1) a transition metal M and (2) atom X, which can be C or N based. The MXenes may also include a functional group T, which may include O, F or OH. The MXenes may be generically represented as Mn+1Xn, when n is 1, 2 or 3. MXenes combine the metallic conductivity of the transition metal carbides and hydrophilic nature because of their hydroxyl or oxygen terminated surface.
The MXenes may be prepared by selectively etching out the element “A” from the three-dimensional (3D) structured ceramic known as MAX. Similar to graphene, these 2D laminated nanocrystals exhibit large specific surface area, high electrical conductivity, favorable mechanical strength and other interesting characteristics. Owing to the abundant surface function groups T (OH, O, F, H, etc.), MXenes show good hydrophilicity. Because of the multiple active sites on the surface, MXenes can be used as active materials for catalysis, electrochemical energy storage, etc.
According to an embodiment, a method for preparing MXene based hydrogel (called M-hydrogel in here) is now discussed. Note that the M-hydrogel now discussed is only one possible implementation of the polymer composite material discussed above. In a first step, MXene (Ti3C2) nanosheets are provided in a mixing bowl. Next, a commercial low-cost hydrogel (“crystal clay,” which is composed of Poly (vinyl alcohol), water and anti-dehydration additives) is also provided in the mixing bowl. Next, the two components are mixed together to form the M-hydrogel. In one application, the nanosheets are randomly distributed inside the hydrogel. The concentration of the Mxene by mass weight may be larger than zero and smaller than 10%. The resulting M-hydrogel shows extremely high-strechability, which is much higher than the pristine hydrogel, and malleability. These properties are attributed to the abundant hydrophilic surface functional groups such as —F and —OH on MXene nanosheets, which form strong hydrogen bonds between the MXene nanosheets and the hydrogel matrix.
Thus, unlike traditional hydrogels using other conductive fillers, the M-hydrogels is “softer” and more stretchable than the pristine hydrogel. The strong hydrogen bonding and the half-liquid property of hydrogel also endow the M-hydrogel with instantaneous self-healability (i.e., the object can restore its original properties after plastic and/or viscous deformations), and an excellent conformability and adhesiveness to various surfaces including the human skin.
It was observed that the addition of MXene nanosheets to the hydrogel may significantly improve the tensile strain sensitivity of the hydrogel, e.g., 5 times increase at 4.1 wt % of the MXene nanosheets. At the same time, the hydrogel shows a much higher sensitivity under compressive strains.
Returning to the M-gel generator 200,
It was found that the M-gel generator 200 generates an alternating voltage 500, during the on periods 502, as shown in
For the configuration shown in
If the thickness T of the medium is zero, which means that the ultrasonic-tip is in direct contact to the top surface of the M-gel generator 200, the output voltages with the water, hydrogel, and eco-flex medium were almost the same, at around 2.8 V, as shown by curves 620 to 624 in
The inventors also found that the electrical output of the M-gel generator can be improved by changing the electrolytic state of the M-gel layer 202, by adding 0.1˜0.5 wt % of H2SO4 into the hydrogel of the M-gel layer. The output voltage of such M-gel layer almost quadrupled (see
The voltage generation of the M-gel generator 200 can be further improved by harnessing the power of the tribo-electricity effect. To determine the effect of the tribo-electricity on the M-gel generator 200, two configurations were used. The first configuration is illustrated in
The oscillation of the grounded M-gel layer 202 due to the shaker (20 Hz) generates a small AC voltage 840, as shown in
The small voltage fluctuation 840 at the initial stage is due to the electrostatic induction between the slightly charged nylon surface and the M-gel layer. By applying the ultrasound waves to the second flexible layer/Nylon layer, the nylon material becomes more positively charged because ultrasound waves cause tribo-electrification between the second flexible layer and the nylon layer. This tribo-electricity makes larger voltage fluctuations than without ultrasound. The frequency of the induced voltage is similar to the frequency of the shaker, even when applying the ultrasound wave, as shown in
The results noted in
While the embodiments discussed above used a nylon layer 810 for producing the tribo-electricity, it is possible to use other materials for achieving the same effect. In this regard, note that for having a strong tribo-electricity effect, the two layers that generate the static charging are preferably selected from a positive charge material and a negative charge material, so that the electrostatic charges from one material can move to the other material to electrically charge both materials. Thus, in the following, a positive charged material and a negative charged material are preferably selected as components of the M-gel generator 200 that promote the tribo-electricity effect. The positive and negative charged materials have been studied over time and they are generally understood. The table shown in
The output power of the M-gel generator 200 can be improved by adding a first nylon membrane 1104 (or other positive charged material from the table in
The inventors have tested the feasibility of the M-gel generator 200 for in-vivo applications. For this test, the inventors inserted the enhanced M-gel generator 200 within a piece of fresh beef, as shown in
For experimental purposes, a voltage measuring device 1430 is connected across the load 1420 for monitoring the voltage generated by the generator 200. The rectified voltage is maintained above 6V, as shown in
The power delivered from the enhanced M-gel generator can serve as a power source to continuously drive any desired device, for example, the medical device. The medical device 1420, which is schematically shown in
The medical device 1420 may also include the power source 1730, for example, a battery. The power source 1730 supplies all the above noted components of the medical device with electrical energy. The power source may be electrically connected to the M-gel generator 200 discussed above, for being able to be recharged when desired. For this operation, either ambient ultrasound waves or ultrasound waves produced on purpose, for example, with the sonicator 420, are transformed into electrical energy by the M-gel generator 200.
According to an embodiment, which is illustrated in
The disclosed embodiments provide an electrical power generator which uses ultrasonic energy for generating electrical power. It should be understood that this description is not intended to limit the invention. On the contrary, the embodiments are intended to cover alternatives, modifications and equivalents, which are included in the spirit and scope of the invention as defined by the appended claims. Further, in the detailed description of the embodiments, numerous specific details are set forth in order to provide a comprehensive understanding of the claimed invention. However, one skilled in the art would understand that various embodiments may be practiced without such specific details.
Although the features and elements of the present embodiments are described in the embodiments in particular combinations, each feature or element can be used alone without the other features and elements of the embodiments or in various combinations with or without other features and elements disclosed herein.
This written description uses examples of the subject matter disclosed to enable any person skilled in the art to practice the same, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the subject matter is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims.
This application claims priority to U.S. Provisional Patent Application No. 62/843,743, filed on May 6, 2019, entitled “ULTRASOUND DRIVEN MXENE HYDROGEL ELECTRICAL POWER GENERATOR FOR IMPLANTABLE BATTERIES,” the disclosure of which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2020/054223 | 5/4/2020 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62843743 | May 2019 | US |