The present invention relates generally to leads implanted in the heart and for conducting electrical signals to and from the heart. More particularly, it pertains to an ultrasound echogenic cardiac lead.
Leads implanted in or about the heart have been used to reverse certain life threatening arrhythmias, or to stimulate contraction of the heart. Electrical energy is applied to the heart via the leads to return the heart to normal rhythm. Leads have also been used to sense in the atrium or ventricle of the heart and to deliver pacing pulses to the atrium or ventricle.
Cardiac pacing may be performed by the transvenous method or by leads implanted directly onto the ventricular epicardium. Permanent transvenous pacing is performed using a lead positioned within one or more chambers of the heart. A lead may be positioned in the ventricle or in the atrium through a subclavian vein, or cephalic vein, and the lead terminal pins are attached to a pacemaker which is implanted subcutaneously or submuscularly.
As the leads are implanted, or after the leads are implanted, the leads can be monitored using fluoroscopy. However, some hospitals or other places at which implantation of leads occurs have limited or no access to fluoroscopic equipment, for instance in countries with limited economic means. In addition, some patients should not be treated using fluoroscopy, for instance, women in early stages of pregnancy.
Accordingly, there is a need for a lead which allows for monitoring of the lead during or after implantation of the lead. What is also needed is a lead which allows for monitoring of the lead without substantial risk to the patient.
A lead assembly is provided including a flexible lead body extending from a proximal end to a distal end. The lead body has at least one conductor and a layer of echogenic material disposed directly on or in the conductor or directly on an inner surface of the conductor. Optionally, the conductor includes a helix forming an active fixation device disposed at the distal end of the lead body, where the echogenic material is disposed on the helix.
The flexible lead body has an outer surface, where the layer of echogenic material is completely encapsulated by the flexible lead body. An electrode assembly has at least one electrode which is electrically coupled with the conductor. In one alternative, the lead assembly includes an inner layer of insulator, and the echogenic material is disposed between the conductor and the inner layer of insulator. In another alternative, the conductor comprises one or more filars, each filar having an outer filar surface, the echogenic material disposed directly on at least a portion of the outer filar surface. In yet another option, the echogenic material is disposed on one or more portions of a length of the lead. Optionally, the echogenic material comprises an echogenic coating. The echogenic coating optionally comprises a porous coating, a metallic coating, or a metal oxide coating.
A lead assembly is provided including a flexible lead body extending from a proximal end to a distal end. The lead body has at least one conductor and a layer of echogenic material disposed directly on or in the conductor. The conductor comprises one or more filars, each filar having an outer filar surface, the echogenic material disposed directly on at least a portion of the outer filar surface. Optionally, the conductor includes a helix forming an active fixation device disposed at the distal end of the lead body, where the echogenic material is disposed on the helix.
The flexible lead body has an outer surface, where the layer of echogenic material is completely encapsulated by the flexible lead body. An electrode assembly has at least one electrode which is electrically coupled with the conductor.
In one alternative, the lead assembly includes an inner layer of insulator, and the echogenic material is disposed between the conductor and the inner layer of insulator. In yet another option, the echogenic material is disposed on one or more portions of a length of the lead.
Optionally, the echogenic material comprises an echogenic coating. The echogenic coating optionally comprises a porous coating, a metallic coating, or a metal oxide coating.
A lead assembly is provided including a flexible lead body extending from a proximal end to a distal end. The lead body has at least one conductor and a layer of echogenic material disposed directly on or in the conductor. The echogenic material is disposed on one or more portions of a length of the lead.
Optionally, the conductor includes a helix forming an active fixation device disposed at the distal end of the lead body, where the echogenic material is disposed on the helix.
The lead includes a layer of echogenic material which provides a cost effective alternative to monitoring an implanted medical device, such as a lead. The echogenic material also allows the lead to be monitored safely, without risk to patients having sensitive medical conditions. In addition, the layer of echogenic material is encapsulated by the lead body, such that the exposed blood and tissue contact surfaces of the lead remain unaffected from long-term biocompatibility and biostability.
These and other embodiments, aspects, advantages, and features of the present invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art by reference to the following description of the invention and referenced drawings or by practice of the invention. The aspects, advantages, and features of the invention are realized and attained by means of the instrumentalities, procedures, and combinations particularly pointed out in the appended claims and their equivalents.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that structural changes may be made without departing from the scope of the present invention. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims and their equivalents.
The lead 100 includes a lead body 115, an elongate conductor 116 (
The stylet is used to stiffen the lead 100, and is manipulated to facilitate the insertion of the lead 100 into and through a vein and through an intracardiac valve to advance the distal end 102 of the lead 100 into, for example, the ventricle of the heart 101. A stylet knob is coupled with the stylet for rotating the stylet, advancing the conductor into tissue of the heart, and for manipulating the lead 100. Alternatively, the elongate conductor 116 comprises a cable conductor.
The layer of echogenic material 230 is disposed directly on or in the conductor 116. The conductor 116 is defined in part by an inner surface 132 and an outer surface 134. As shown in
The layer of echogenic material 230 optionally extends the full length of the lead 100, from the proximal end 104 to the distal end 102 of the lead body 115. Alternatively, the layer of echogenic material 230 extends for only a portion of the lead 100. In another option, as illustrated in
The conductor 116 and/or the second conductor 118 are comprised of one or more filars 260. As shown in
The layer of echogenic material 230 comprises, in one option, an echogenic coating. The echogenic coating, for use with the above discussed embodiments, optionally comprises any one of the following: a porous coating, a metallic coating, or a metal oxide coating. Alternatively, the layer of echogenic material 230 is created by surface texturing. In yet another option, the layer of echogenic material 230 is formed by mixing additives into the lead body 115 or inner insulator, where the additives are of lower or higher density than the component in which the additive is mixed. Examples of additives include, but are not limited to, metal powders, metal oxide powders, hollow glass microspheres, and various forms of carbon particles.
Advantageously, the above described lead provides a layer of echogenic material which provides a cost effective alternative to monitoring an implanted medical device, such as a lead. The echogenic material also allows the lead to be monitored safely, without risk to patients having sensitive medical conditions. Having the echogenic material disposed directly on the conductor allows for the location of the lead or medical device to be monitored more accurately. In addition, the layer of echogenic material is encapsulated by the lead body, such that the exposed blood and tissue contact surfaces of the lead remain unaffected from long-term biocompatibility and biostability.
It is to be understood that the above description is intended to be illustrative, and not restrictive. It should be noted that features of the various above-described embodiments may be interchanged to form additional combinations. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. For instance, the layer of echogenic material as described above can be incorporated into a variety of medial devices and a variety of leads. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This application is a continuation of U.S. patent application Ser. No. 09/538,675, filed on Mar. 30, 2000, now issued as U.S. Pat. No. 6,577,904, the specification of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4249539 | Vilkomerson et al. | Feb 1981 | A |
4697595 | Breyer et al. | Oct 1987 | A |
4706681 | Breyer et al. | Nov 1987 | A |
4739768 | Engelson | Apr 1988 | A |
4907973 | Hon | Mar 1990 | A |
5081997 | Bosley, Jr. et al. | Jan 1992 | A |
5095910 | Powers | Mar 1992 | A |
5131397 | Crowley | Jul 1992 | A |
5161536 | Vilkomerson et al. | Nov 1992 | A |
5289831 | Bosley | Mar 1994 | A |
5318025 | Dumoulin et al. | Jun 1994 | A |
5323781 | Ideker et al. | Jun 1994 | A |
5325860 | Seward et al. | Jul 1994 | A |
5343865 | Gardineer et al. | Sep 1994 | A |
5345940 | Seward et al. | Sep 1994 | A |
5374287 | Rubin | Dec 1994 | A |
5391199 | Ben-Haim | Feb 1995 | A |
5433198 | Desai | Jul 1995 | A |
5445150 | Dumoulin et al. | Aug 1995 | A |
5464016 | Nicholas et al. | Nov 1995 | A |
5538004 | Bamber | Jul 1996 | A |
5546951 | Ben-Haim | Aug 1996 | A |
5577502 | Darrow et al. | Nov 1996 | A |
5891137 | Chia et al. | Apr 1999 | A |
5897584 | Herman | Apr 1999 | A |
5921933 | Sarkis et al. | Jul 1999 | A |
5938659 | Tu et al. | Aug 1999 | A |
6083216 | Fischer, Sr. | Jul 2000 | A |
6106473 | Violante et al. | Aug 2000 | A |
6577904 | Zhang et al. | Jun 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20030199959 A1 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09538675 | Mar 2000 | US |
Child | 10455984 | US |