The present disclosure relates generally to imaging anatomical structures within the body during an ablation procedure. More specifically, the present disclosure relates to ultrasound imaging systems and methods.
The present disclosure relates generally to ultrasound imaging systems and methods of making and using such systems. Ultrasound imaging systems, such as intravascular ultrasound (“IVUS”) and intracardiac echo (“ICE”) imaging systems, provide visual indicia to a practitioner when diagnosing and treating various diseases and disorders. For example, intravascular ultrasound (“IVUS”) imaging systems have been used to diagnose blocked blood vessels and to provide information to a practitioner in selecting and placing stents and other devices to restore or increase blood flow to a vessel. IVUS imaging systems have also been used to diagnose plaque build-up in the blood vessels and other intravascular obstructions. Intracardiac echo (ICE) imaging systems are used to monitor one or more heart chambers. Ultrasound imaging systems can be used to visualize images of vascular tissue that are typically visualized using other imaging techniques such as angiography.
An ultrasound imaging system can include a control module, a catheter, and at least one transducer disposed in the catheter. The catheter is configured and arranged for percutaneous insertion into a patient. The catheter can be positioned in a lumen or cavity at or near a region to be imaged, such as a blood vessel wall. Electrical pulses generated by the control module are delivered to the transducer to generate acoustic pulses that are transmitted through the blood vessel wall or other patient tissue. The reflected pulses generated by these acoustic pulses are absorbed by the transducer and transformed into an electrical signal that is converted to an image visible by the practitioner.
Intravascular ultrasound imaging systems (IVUS) typically use short wavelength, high frequency (e.g., 40 MHz) ultrasound to obtain high resolution images of tissues that lie within about 10 mm of the ultrasound transducer. Intracardiac echo (ICE) imaging systems typically use longer wavelength, lower frequency (e.g., 9 MHz) ultrasound to image the walls and structures within a heart chamber that lie within about 300 mm of the ultrasound transducer.
In some procedures where tissue ablation is required, it may be desirable to use a catheter provided with an ablation tip. Examples of ablation catheters including an ablation tip are described, for example, in U.S. Pat. Nos. 5,571,088, 6,352,534, and 7,488,289, each of which is incorporated herein by reference in its entirety for all purposes. In some instances, it may be desirable to have a means for viewing the tissues adjacent to the ablation tip during the ablation procedure. For example, in ablation of tissues of the heart wall to treat arrhythmias, it is important for the ablation to extend through the wall (i.e., transmural ablation), but it is equally important to avoid ablation of sensitive structures, such as the esophagus or the phrenic nerve, that lie just behind the heart wall tissue being ablated. A means of visualizing both the direction and the progression of the ablation is therefore needed.
The present disclosure describes techniques for ultrasound imaging of tissue within the cardiovascular system. In particular, the present disclosure describes techniques that allow high resolution ultrasound imaging of patient tissue (e.g., of a blood vessel wall or heart chamber) to be performed along with ablation of the tissue using the same catheter. Using various techniques of this disclosure, an ultrasound imaging system may scan the tissue before, during, and after ablation of the tissue in order to obtain a high resolution image of a selected region.
In Example 1, an ultrasound imaging assembly for an ablation system comprises: a catheter having a proximal end and a distal end, the catheter defining a catheter lumen extending from the proximal end to the distal end, the catheter configured and arranged for insertion into a bodily lumen; an ablation tip at the distal end of the catheter, the ablation tip having a wall defining a lumen and including a plurality of openings, the lumen of the ablation tip in communication with the lumen of the catheter; and an imaging device disposed at least in part within the lumen of the ablation tip, the imaging device comprising a plurality of ultrasonic transducers and a drive motor.
In Example 2, the imaging assembly of Example 1, wherein each ultrasonic transducer is configured and arranged for transducing applied electrical signals to acoustic signals and for transducing received echo signals to electrical signals.
In Example 3, the imaging assembly of any of Examples 1 or 2, wherein the plurality of ultrasonic transducers comprises a first transducer and a second transducer.
In Example 4, the imaging assembly of Example 3, wherein the first ultrasonic transducer is configured for imaging tissue located distally of the distal end of the ablation tip, and wherein the second ultrasonic transducer is configured for imaging tissue located adjacent to a circumference of the ablation tip.
In Example 5, the imaging assembly of any of Examples 1-3, wherein the motor is coaxially aligned with each of the ultrasonic transducers.
In Example 6, the imaging assembly of any of Examples 1-4, wherein the drive motor includes a stator and a rotor.
In Example 7, the imaging assembly of Example 6, wherein the stator comprises a three-phase winding for receiving three-phase current.
In Example 8, the imaging assembly of any of Examples 1-7, wherein at least one of the ultrasonic transducers is fixed.
In Example 9, the imaging assembly of Example 6, further comprising a reflective surface that is rotatably coupled to the rotor of the motor, and wherein the acoustic signals produced by the at least one fixed ultrasonic transducer are reflected by the reflective surface through the openings.
In Example 10, the imaging assembly of Example 9, wherein the reflective surface is planar.
In Example 11, the imaging assembly of Example 9, wherein the reflective surface is non-planar.
In Example 12, the imaging assembly of Example 6, wherein at least one ultrasonic transducer is rotatably coupled to the rotor.
In Example 13, the imaging assembly of Example 12, wherein the imaging device includes a transformer configured for electrically coupling the at least one ultrasonic transducer to an electrical lead within the lumen of the catheter.
In Example 14, the imaging assembly of Example 13, wherein the transformer is further configured for rotatably coupling the at least one ultrasonic transducer to the rotor.
In Example 15, the imaging assembly of any of Examples 1-14, further comprising a sensing device configured for sensing a location of the ablation tip within the bodily lumen.
In Example 16, the imaging assembly of any of Examples 1-15, wherein the plurality of openings comprises a plurality of side openings and at least one front opening.
In Example 17, the imaging assembly of any of Examples 1-16, further comprising: a user interface; and a control unit electrically coupled to the imaging device.
In Example 18, the imaging assembly of Example 17, wherein the control unit comprises: a pulse generator electrically coupled to the ultrasonic transducers via at least one transducer conductor, the pulse generator configured for generating electric signals that are applied to each ultrasonic transducer during an imaging scan; an ablation control unit electrically coupled to the ablation tip; a motor control unit configured for controlling the motor; and a processor electrically coupled to the ultrasonic transducers via the at least one transducer conductor.
In Example 19, an ultrasound imaging assembly for an ablation system comprises: a catheter having a proximal end and a distal end, the catheter defining a catheter lumen extending from the proximal end to the distal end, the catheter configured and arranged for insertion into a bodily lumen; an ablation tip at the distal end of the catheter, the ablation tip having a wall defining a lumen in communication with the lumen of the catheter; and an imaging device disposed at least in part within the lumen of the ablation tip, the imaging device comprising: a first stationary ultrasonic transducer configured for imaging tissue located distally of the distal end of the ablation tip; a second stationary ultrasonic transducer configured for imaging tissue located adjacent to a circumference of the ablation tip; and a drive motor configured for rotating a reflective surface within the lumen of the ablation tip, wherein the reflective surface is configured for reflecting acoustic waves transmitted from and received by the second stationary ultrasonic transducer.
In Example 20, an ultrasound imaging assembly for an ablation system comprises: a catheter having a distal end and a proximal end, the catheter defining a catheter lumen extending from the proximal end to the distal end, the catheter configured and arranged for insertion into a bodily lumen; an ablation tip at the distal end of the catheter, the ablation tip having a wall defining a lumen in communication with the lumen of the catheter; and an imaging device disposed at least in part within the lumen of the ablation tip, the imaging device comprising: a first ultrasonic transducer configured for imaging tissue located distally of the distal end of the ablation tip; a stationary ultrasonic transducer configured for imaging tissue located adjacent to a circumference of the ablation tip; and a transformer electrically coupling the first and second ultrasonic transducers to an electrical lead, wherein the transformer is configured for rotating the first and second ultrasonic transducers within the lumen of the ablation tip.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
The ultrasound imaging system of the present invention includes a catheter provided with an ablation tip and an imaging device capable of producing a circumferential map of ultrasound reflectivity versus depth into body tissue. As discussed further herein, the system in some embodiments further includes a control unit and an imaging device. The device can have a sufficient resolution to enable different types of tissue to be distinguished. By integrating an ultrasound imaging device within an ablation tip of a catheter, visual feedback is provided to a practitioner, allowing the practitioner to visually determine what tissue has been ablated and what tissue is untreated.
Processor 122 is configured to control the functionality of one or more other components of the control unit 120. In one embodiment, processor 122 is used to control at least one of the frequency or duration of the electrical signals transmitted from pulse generator 126, the radio frequency signals transmitted from the ablation control unit 127, the current provided to the imaging device 114 by the motor control unit 124, or one or more properties of one or more images formed on a display. Processor 122 can also be used to control the ablation tip 112.
Processor 122 can include any one or more of a controller, a microprocessor, an application specific integrated circuit (ASIC), a digital signal processor (DSP), a field-programmable gate array (FPGA), or equivalent discrete or integrated logic circuitry. The functions attributed to processor 122 can be embodied as hardware, software, firmware, as well as combinations of hardware, software, and firmware.
The control unit 120 further includes power source 130, which delivers operating power to the components of control unit 120. In one embodiment, power source 130 includes a battery and power generation circuitry to generate the operating power. In addition, control unit 120 includes a motor control unit 124, which is configured to supply a current output to a motor (e.g., motor 206 in
The pulse generator 126 generates electrical signals (e.g., pulses) that are applied via one or more leads 132, such as a coaxial cable, to one or more ultrasound transducers (e.g., transducer 208 of
User interface 128 includes a display such as a touch screen display or other display, and in some embodiments, includes a keyboard and a peripheral pointing device such as a mouse, that allows the operator to provide input to the control unit 120.
In some embodiments, the control unit 120 further includes a memory 134. Memory 134 may include computer-readable instructions that, when executed by the processor 122, cause the processor 122 to perform various functions ascribed to the control unit 120, processor 122, motor control unit 124, pulse generator 126, ablation control unit 127, and user interface 128. The computer-readable instructions may be encoded within the memory 134. Memory 134 may comprise computer-readable storage media such as a random access memory (RAM), read-only memory (ROM), non-volatile RAM (NVRAM), electrically-erasable programmable ROM (EEPROM), flash memory, or any other volatile, non-volatile, magnetic, optical, or electrical media. In some embodiments, a processor (e.g., processor 122) determines, based on user input defining a range of angles through which a scan will be performed, one or more current values to be applied to one or more leads of a stator of a micro-motor located in the imaging device 114 of catheter 100, as described further herein.
In some embodiments, the ablation tip 112 has a plurality of openings 144 in the wall 140 of the ablation tip 112. At least some of the openings 144 extend entirely through a thickness of the wall 140. In at least some embodiments, an acoustically transparent membrane can be disposed across the least one opening 144, which allows the transducer to transmit or receive signals while preventing fluid transmission therethrough. In at least one embodiment, the ablation tip 112 has a plurality of side openings 144a that are circumferentially disposed about the ablation tip 112 and at least one front opening 144b. In some embodiments, the side openings 144a can be used for imaging, irrigation, or both. In some embodiments, the front opening 144b can be used for imaging, irrigation or both. In some embodiments, each opening 144 has the same width. In other embodiments, as shown in
The imaging device, shown generally at 114, has a proximal end 204 and a distal end 202. At least a portion of the imaging device 114 is disposed within the lumen 142 of the ablation tip 112. In some embodiments, the proximal end 204 of the imaging device 114 is disposed within the lumen 142 of the ablation tip 112. In some embodiments, the entirety of the imaging device 114 is disposed within the ablation tip 112 between the proximal end 138 and the distal end 139 of the tip 112. Imaging device 114 includes motor 206 (e.g., stepper motor, DC brushless motor, or other suitable motor) and one or more transducers 208 configured and arranged for transducing applied electrical signals received from pulse generator 126 (
This arrangement is capable of generating a high resolution image of tissue (viewable by the practitioner via the visual displays associated with the control unit 120) adjacent to the ablation tip 112 that can guide the ablation procedure and allow the practitioner to assess the extent of ablation. In some embodiments, when multiple ablations are performed (e.g., to form a line of conduction block), the acquired ultrasound images can be combined to insure that no gaps exist in the line of conduction block. By integrating the imaging device 114 into the tip 112 of the ablation catheter 100, there is no relative motion between the tip 112 and the imaging transducer, which may be the case if a second catheter were used for the imaging device 114.
In at least one embodiment, the motor 206 is a micro-motor. The motor 206 includes a rotatable magnet 209 and a stationary stator 207. In some embodiments, motor 206 is positioned proximal to transducer(s) 208, as shown, for example, in
In at least one embodiment, the magnet 209 for the motor 206 is formed from a magnetic material suitable for retrievable medical devices including, but not limited to, neodymium-iron-boron and other similar materials. In some embodiments, the magnet has a magnetization M of more than about 1.4 T. In some embodiments, the magnet has a magnetization M of more than about 1.5 T. In some embodiments, the magnet has a magnetization M of more than about 1.6 T. In some embodiments, the magnet has a magnetization vector that is perpendicular to the longitudinal axis of the magnet.
In some embodiments, the stator 207 includes at least two perpendicularly-oriented magnetic field windings, which provide a rotating magnetic field to produce torque that causes rotation of the rotor. In some embodiments, the stator 207 comprises three perpendicularly-oriented magnetic field windings. In some embodiments, the diameter of the wire used to form the windings is less than about 0.004 inches (0.010 cm). In some embodiments, the diameter of the wire is less than about 0.003 inches (0.008 cm). In some embodiments, the diameter of the wire is less than about 0.002 inches (0.005 cm). In some embodiments, the stator 207 is formed from a slotted metal tube. In some embodiments the wall thickness of the slotted metal tube is less than 0.003 inches (0.008 cm). In at least some embodiments the slotted metal tube stator 207 comprises three metal strips that carry the three phases of a three phase current motor to create a rotating magnetic field at the location of the magnet 209. The stator 207 is provided with current from the control unit 120 via one or more leads 131 that is applied to the magnetic field windings.
In some embodiments, imaging device 114 further includes a reflective surface 210 such as a mirror. The reflective surface 210 can be a reflective surface of a magnet 209 of motor 206 or, in some embodiments, a reflective surface either disposed on or coupled to the magnet 209. As shown in
In some embodiments, the reflective surface 210 is tilted at an angle so that acoustic signals output from transducer(s) 208 (e.g., pulses of ultrasound energy) are reflected in a direction that is not parallel to longitudinal axis of the imaging device 114. In at least one embodiment, the reflective surface 210 is tilted at an angle so that the acoustic signals output from transducers 208 are reflected toward patient tissue in a direction that is approximately perpendicular to the longitudinal axis of the imaging device 114.
The reflective surface 210 is tilted at an angle so that at least some of the echo signals received from patient tissue, in response to the acoustic signals output from transducer(s) 208, are reflected back to transducers 208. The echo signals are transduced into electric signals and transmitted to the processor 122 for generating an image. In some embodiments, the reflective surface 210 is tilted at an angle so that at least some of the echo signals from patient tissue are reflected to a direction that is parallel to longitudinal axis of imaging device 114. In some embodiments, for example, the reflective surface 210 is tilted at an angle in the range of between about 30 degrees and 60 degrees relative to the longitudinal axis. In one embodiment, the reflective surface 210 is titled at an angle of about 45 degrees relative to the longitudinal axis.
The at least one transducer 208 transmits and receives acoustic pulses generated from electrical pulses received from control unit 120. The at least one transducer 208 is formed from one or more known materials capable of transducing applied electrical pulses to pressure distortions at the surface of the transducers, and vice versa. Examples of such materials include, but are not limited to, piezoelectric ceramic materials, piezocomposite materials, piezoelectric plastics, barium titanates, lead zirconate titanates, lead metaniobates, and polyvinylidenefluorides. The pressure distortions at the surface of the transducer 208 form acoustic pulses of a frequency based on the resonant frequency of the transducer 208. The resonant frequency of the transducer 208 can be affected by the size, shape, and material used to form the transducer 208.
In one embodiment, each transducer 208 includes a layer of piezoelectric material sandwiched between electrically conductive coatings such as, for example, a conductive acoustic lens and a conductive backing material formed from an acoustically absorbent material. In some embodiments, during operation, the piezoelectric layer is electrically excited by applying a voltage pulse between the conductive coatings. In some embodiments, the back surface of the piezoelectric material is further coated with a material that absorbs ultrasound energy. In some embodiments, the front surface of the piezoelectric material is further coated with an impedance matching layer that has acoustic impedance midway between the acoustic impedance of the piezoelectric material and the acoustic impedance of the surrounding fluid. Ultrasound energy is projected only from the front surface of the composite transducer into the lumen 142 and through the openings 144.
The transducer 208 can be formed in any shape suitable for positioning within the catheter 100 and for propagating acoustic pulses of a desired frequency in one or more selected directions. In some embodiments, an array of transducers 208 can be used. In some embodiments, the transducer 208 can be in the form of discs, blocks, rectangles, ovals, and other shapes. The transducer can be formed in the desired shape by any process including, for example, dicing, dice and fill, machining, microfabrication, and similar processes.
In some embodiments, and as shown in
The quality of an image produced from the at least one transducer 208 can be affected by certain factors, including, but not limited to, bandwidth, transducer focus, beam pattern, as well as the frequency of the acoustic pulse. The frequency of the acoustic pulse from the transducer 208 can also affect the penetration depth of the acoustic pulse. In general, as the frequency of an acoustic pulse is lowered, the depth of the penetration of the acoustic pulse within patient tissue increases and the image resolution decreases. In at least some embodiments, the imaging device operates within a frequency range of 5 MHz to 60 MHz.
In some embodiments, the rotating reflective surface 210 is positioned proximal to the one or more fixed transducers 208. In some embodiments, the rotating reflective surface 210 is positioned distal to the one or more fixed transducers 208. In some embodiments, the rotating reflective surface 210 is disposed distally on the rotor 136, with the fixed transducer 208 disposed either proximal to the rotor 136, inside an aperture of the rotor 136, or distal to the rotor 136. In at least some embodiments, the rotating reflective surface 210 is fixedly coupled to the rotor 136 such that the reflective surface 210 rotates with the rotor 136.
In some embodiments, the reflective surface 210 is planar. In some embodiments, the reflective surface 210 is non-planar. In at least one embodiment, the reflective surface 210 is concave. In at least one embodiment, the reflective surface 210 is convex. In at least some embodiments, the shape of the reflective surface 210 is adjustable in order to allow for variable focus or depth of field for imaging tissues. In at least some embodiments, the reflective surface 210 is a coated membrane stretched over a space that contains air or other compressible substance. In some embodiments, when the pressure of the region between the one or more transducers 208 and the reflective surface 210 increases, the reflective surface 210 may deflect to produce a concave surface.
In some embodiments, the transformer 230 is positioned at a proximal end of the imaging device 114. In some embodiments, one or more leads 132 electrically couple the transformer 230 to the control unit 120. In some embodiments, the stationary component 234 of the transformer 230 is electrically coupled to the control unit 120 via the leads 132. In some embodiments, the leads 132 extend along at least a portion of the longitudinal length of the catheter 100. In some embodiments, the leads 132 are shielded electrical cables, such as a coaxial cable, a twisted pair cable, or other similar cables.
In some embodiments, the transformer 230 is positioned at a distal end of the imaging device. In at least one embodiment, one or more leads (not shown) electrically couple the transducer 208 to the rotating component 232 of transformer 230. In other embodiments, the transformer 230 is positioned proximal to the transducer 208. In some embodiments, the transformer 230 is positioned distal to the transducer 208.
In some embodiments, the rotating component 232 and the stationary component 234 of the transformer 230 are proximate a ferrite material. In at least one embodiment, the rotating component 232 and the stationary component 234 are formed from a wire. In some embodiments, the diameter of the wire is less than about 0.004 inches (0.010 cm). In some embodiments, the diameter of the wire is less than about 0.003 inches (0.008 cm). In some embodiments, the diameter of the wire is less than about 0.002 inches (0.005 cm).
In some embodiments, the motor 206 provides enough torque to rotate the one or more transducers 208 at a frequency of at least 15 Hz. In some embodiments, the motor 206 provides enough torque to rotate the one or more transducers 208 at a frequency of at least 20 Hz. In some embodiments, the motor 206 provides enough torque to rotate the one or more transducers 208 at a frequency of at least 25 Hz. In some embodiments, the motor 206 provides enough torque to rotate the one or more transducers 208 at a frequency of at least 30 Hz. In some embodiments, the motor 206 provides enough torque to rotate the one or more transducers 208 at a frequency of at least 35 Hz. In some embodiments, the motor 206 provides enough torque to rotate the one or more transducers 208 at a frequency of at least 40 Hz. In some embodiments, the transducer operates at a frequency of about 10 MHz with an image penetration depth of up to 50 mm into tissue. In some embodiments, the transducer operates at a frequency of about 40 MHz with an image penetration depth of up to 8 mm, typically between 5-8 mm, into tissue. The image penetration depth is dependent upon both the frequency and the type of tissue being viewed.
In some embodiments, such as those shown in
In some embodiments, and as shown in
In some embodiments, the RF frequencies are selectively filtered by the control unit 120 from the signals received from the transducer by the control unit 120. In some embodiments, low pass filtering may be adequate since the RF frequency is typically near 500 kHz while the ultrasound imaging may be near 40 MHz. In some embodiments, the ablation and imaging of the tissue can be done sequentially, for example by ablating for a first period of time, imaging for a second period of time, and repeating until the ablation is completed. In some embodiments, the first period of time and the second period of time are less than 1 second.
In some embodiments, the imaging device 114 defines a guidewire lumen 216, which extends at least from the proximal end 202 of imaging device 114 to the distal end 204 of imaging device 114. As shown in
In some embodiments, the imaging device 114 can be disposed within the lumen of the catheter 100 and a second catheter equipped with an ablation tip can be disposed within the lumen of catheter 100 and through a guidewire lumen within an imaging device that does not include an ablation tip. In some embodiments, the imaging system may be used with an optical coherence tomography (OCT) system such as that described, for example, in co-pending Application No. 61/428,563, filed on Dec. 30, 2010, the contents of which are incorporated herein by reference in their entirety for all purposes. Additional details describing IVUS imaging systems may be found, for example, U.S. Pat. Nos. 6,945,938 and 7,306,561; U.S. Patent Application Publication Nos. 2006/0100522, 2006/0253028, 2007/0016054, 2007/0003811, 2010/0249599, 2010/0249603, and 2010/0249604; and U.S. application Ser. Nos. 12/565,632 and 12/566,390, each of which is incorporated herein by reference in its entirety for all purposes.
In any of the embodiments, the imaging device 114 can also have a sensing device for sensing the location or orientation of the imaging device 114. In some embodiments, a magnetic sensing device is provided that measures an amplitude or orientation of the rotating magnetic field vector produced by the rotating magnet of the motor. In some embodiments, data from the magnetic sensing device may be input to a drive circuit to provide controlled rotation of the imaging device 114 (e.g., through a feedback loop). In any of the embodiments, a sensing device can be provided for sensing the location or orientation of the ablation tip 112. The data provided by these sensing devices can be used to make an anatomical map of the vessel or organ or portion thereof, such as the heart chamber. The data provided by these sensing devices can also be used for electro-anatomical mapping. The data can also be used to plot the current position of the ablation tip 112 and can be combined with data from a local electrocardiogram. In some embodiments, the sensing device is located outside of the patient.
The above disclosure is not limited to vascular applications, and can be used in other bodily lumens that are accessible by catheters. In one example of a vascular application, the catheter 100 could be used to ablate nerves and ganglia adjacent the renal artery to control hypertension. In such applications, the cooling required for the tip may be adjusted by the control unit 120 based upon visual indicia provided by the imaging device 114. For example, the cooling may be adjusted to a depth at which the nerves reside, without ablating adjacent muscle tissue or endothelium that may be immediately adjacent to the ablation tip.
Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.
This application claims priority to both U.S. Provisional Application No. 61/428,798, entitled, “Ultrasound Guided Tissue Ablation,” filed on Dec. 30, 2010, and U.S. Provisional Application No. 61/475,390, entitled “Ultrasound Guided Tissue Ablation,” filed on Apr. 14, 2011, the contents of which are incorporated herein by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3773401 | Douklias et al. | Nov 1973 | A |
4763660 | Kroll et al. | Aug 1988 | A |
5029588 | Yock et al. | Jul 1991 | A |
5178150 | Silverstein et al. | Jan 1993 | A |
5240003 | Lancee et al. | Aug 1993 | A |
5254088 | Lundquist et al. | Oct 1993 | A |
5331966 | Bennett et al. | Jul 1994 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5385146 | Goldreyer | Jan 1995 | A |
5385148 | Lesh et al. | Jan 1995 | A |
5391199 | Ben-Haim | Feb 1995 | A |
5398683 | Edwards et al. | Mar 1995 | A |
5485849 | Panescu et al. | Jan 1996 | A |
5494042 | Panescu et al. | Feb 1996 | A |
5500012 | Brucker et al. | Mar 1996 | A |
5571088 | Lennox et al. | Nov 1996 | A |
5579764 | Goldreyer | Dec 1996 | A |
5582609 | Swanson et al. | Dec 1996 | A |
5647870 | Kordis et al. | Jul 1997 | A |
5788636 | Curley | Aug 1998 | A |
5800482 | Pomeranz et al. | Sep 1998 | A |
5830213 | Panescu et al. | Nov 1998 | A |
5833621 | Panescu et al. | Nov 1998 | A |
5871483 | Jackson et al. | Feb 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6050994 | Sherman | Apr 2000 | A |
6059778 | Sherman | May 2000 | A |
6064905 | Webster, Jr. et al. | May 2000 | A |
6070094 | Swanson et al. | May 2000 | A |
6101409 | Swanson et al. | Aug 2000 | A |
6116027 | Smith et al. | Sep 2000 | A |
6165123 | Thompson | Dec 2000 | A |
6171305 | Sherman | Jan 2001 | B1 |
6200314 | Sherman | Mar 2001 | B1 |
6206831 | Suorsa et al. | Mar 2001 | B1 |
6233491 | Kordis et al. | May 2001 | B1 |
6241754 | Swanson et al. | Jun 2001 | B1 |
6290697 | Tu et al. | Sep 2001 | B1 |
6352534 | Paddock et al. | Mar 2002 | B1 |
6423002 | Hossack | Jul 2002 | B1 |
6475213 | Whayne et al. | Nov 2002 | B1 |
6488678 | Sherman | Dec 2002 | B2 |
6491710 | Satake | Dec 2002 | B2 |
6508767 | Burns et al. | Jan 2003 | B2 |
6508769 | Bonnefous | Jan 2003 | B2 |
6516667 | Broad et al. | Feb 2003 | B1 |
6544175 | Newman | Apr 2003 | B1 |
6547788 | Maguire et al. | Apr 2003 | B1 |
6572547 | Miller et al. | Jun 2003 | B2 |
6575969 | Rittman et al. | Jun 2003 | B1 |
6579278 | Bencini | Jun 2003 | B1 |
6582372 | Poland | Jun 2003 | B2 |
6589182 | Loftman et al. | Jul 2003 | B1 |
6592525 | Miller et al. | Jul 2003 | B2 |
6620103 | Bruce et al. | Sep 2003 | B1 |
6632179 | Wilson et al. | Oct 2003 | B2 |
6638222 | Chandrasekaran et al. | Oct 2003 | B2 |
6640120 | Swanson et al. | Oct 2003 | B1 |
6656174 | Hegde et al. | Dec 2003 | B1 |
6658279 | Swanson et al. | Dec 2003 | B2 |
6676606 | Simpson et al. | Jan 2004 | B2 |
6692441 | Poland et al. | Feb 2004 | B1 |
6705992 | Gatzke | Mar 2004 | B2 |
6709396 | Flesch et al. | Mar 2004 | B2 |
6735465 | Panescu | May 2004 | B2 |
6736814 | Manna et al. | May 2004 | B2 |
6743174 | Ng et al. | Jun 2004 | B2 |
6773402 | Govari et al. | Aug 2004 | B2 |
6776758 | Peszynski et al. | Aug 2004 | B2 |
6796980 | Hall | Sep 2004 | B2 |
6824517 | Salgo et al. | Nov 2004 | B2 |
6837884 | Woloszko | Jan 2005 | B2 |
6917834 | Koblish et al. | Jul 2005 | B2 |
6922579 | Taimisto et al. | Jul 2005 | B2 |
6932811 | Hooven et al. | Aug 2005 | B2 |
6945938 | Grunwald | Sep 2005 | B2 |
6950689 | Willis et al. | Sep 2005 | B1 |
6952615 | Satake | Oct 2005 | B2 |
6958040 | Oliver et al. | Oct 2005 | B2 |
7001383 | Keidar | Feb 2006 | B2 |
7037264 | Poland | May 2006 | B2 |
7047068 | Haissaguerre | May 2006 | B2 |
7097643 | Cornelius et al. | Aug 2006 | B2 |
7105122 | Karason | Sep 2006 | B2 |
7112198 | Satake | Sep 2006 | B2 |
7115122 | Swanson et al. | Oct 2006 | B1 |
7131947 | Demers | Nov 2006 | B2 |
7166075 | Varghese et al. | Jan 2007 | B2 |
7220233 | Nita et al. | May 2007 | B2 |
7232433 | Schlesinger et al. | Jun 2007 | B1 |
7247155 | Hoey et al. | Jul 2007 | B2 |
7270634 | Scampini et al. | Sep 2007 | B2 |
7288088 | Swanson | Oct 2007 | B2 |
7291142 | Eberl et al. | Nov 2007 | B2 |
7306561 | Sathyanarayana | Dec 2007 | B2 |
7335052 | D'Sa | Feb 2008 | B2 |
7347820 | Bonnefous | Mar 2008 | B2 |
7347821 | Dkyba et al. | Mar 2008 | B2 |
7347857 | Anderson et al. | Mar 2008 | B2 |
7361144 | Levrier et al. | Apr 2008 | B2 |
7422591 | Phan | Sep 2008 | B2 |
7438714 | Phan | Oct 2008 | B2 |
7455669 | Swanson | Nov 2008 | B2 |
7488289 | Suorsa et al. | Feb 2009 | B2 |
7507205 | Borovsky et al. | Mar 2009 | B2 |
7529393 | Peszynski et al. | May 2009 | B2 |
7534207 | Shehada et al. | May 2009 | B2 |
7544164 | Knowles et al. | Jun 2009 | B2 |
7549988 | Eberl et al. | Jun 2009 | B2 |
7569052 | Phan et al. | Aug 2009 | B2 |
7578791 | Rafter | Aug 2009 | B2 |
7582083 | Swanson | Sep 2009 | B2 |
7585310 | Phan et al. | Sep 2009 | B2 |
7648462 | Jenkins et al. | Jan 2010 | B2 |
7697972 | Verard et al. | Apr 2010 | B2 |
7704208 | Thiele | Apr 2010 | B2 |
7720420 | Kajita | May 2010 | B2 |
7727231 | Swanson | Jun 2010 | B2 |
7736362 | Eberl et al. | Jun 2010 | B2 |
7740629 | Anderson et al. | Jun 2010 | B2 |
7758508 | Thiele et al. | Jul 2010 | B1 |
7766833 | Lee et al. | Aug 2010 | B2 |
7776033 | Swanson | Aug 2010 | B2 |
7785324 | Eberl | Aug 2010 | B2 |
7794398 | Salgo | Sep 2010 | B2 |
7796789 | Salgo et al. | Sep 2010 | B2 |
7799025 | Wellman | Sep 2010 | B2 |
7815572 | Loupas | Oct 2010 | B2 |
7819863 | Eggers et al. | Oct 2010 | B2 |
7837624 | Hossack et al. | Nov 2010 | B1 |
7859170 | Knowles et al. | Dec 2010 | B2 |
7862561 | Swanson et al. | Jan 2011 | B2 |
7862562 | Eberl | Jan 2011 | B2 |
7892228 | Landis et al. | Feb 2011 | B2 |
8016822 | Swanson | Sep 2011 | B2 |
8740900 | Kim et al. | Jun 2014 | B2 |
20020087208 | Koblish et al. | Jul 2002 | A1 |
20030013958 | Govari et al. | Jan 2003 | A1 |
20030158548 | Phan et al. | Aug 2003 | A1 |
20030158549 | Swanson | Aug 2003 | A1 |
20040147920 | Keidar | Jul 2004 | A1 |
20040162556 | Swanson | Aug 2004 | A1 |
20040186467 | Swanson et al. | Sep 2004 | A1 |
20040210136 | Varghese et al. | Oct 2004 | A1 |
20040215177 | Swanson | Oct 2004 | A1 |
20040215186 | Cornelius et al. | Oct 2004 | A1 |
20050059862 | Phan | Mar 2005 | A1 |
20050059962 | Phan et al. | Mar 2005 | A1 |
20050059963 | Phan et al. | Mar 2005 | A1 |
20050059965 | Eberl et al. | Mar 2005 | A1 |
20050065506 | Phan | Mar 2005 | A1 |
20050090817 | Phan | Apr 2005 | A1 |
20050119545 | Swanson | Jun 2005 | A1 |
20050119648 | Swanson | Jun 2005 | A1 |
20050119649 | Swanson | Jun 2005 | A1 |
20050119653 | Swanson | Jun 2005 | A1 |
20050119654 | Swanson et al. | Jun 2005 | A1 |
20050124881 | Kanai et al. | Jun 2005 | A1 |
20050187544 | Swanson et al. | Aug 2005 | A1 |
20060089634 | Anderson et al. | Apr 2006 | A1 |
20060100522 | Yuan et al. | May 2006 | A1 |
20060161146 | Cornelius et al. | Jul 2006 | A1 |
20060247607 | Cornelius et al. | Nov 2006 | A1 |
20060247683 | Danek et al. | Nov 2006 | A1 |
20060253028 | Lam et al. | Nov 2006 | A1 |
20060253116 | Avitall et al. | Nov 2006 | A1 |
20070003811 | Zerfass et al. | Jan 2007 | A1 |
20070016054 | Yuan et al. | Jan 2007 | A1 |
20070016228 | Salas | Jan 2007 | A1 |
20070049925 | Phan et al. | Mar 2007 | A1 |
20070073135 | Lee et al. | Mar 2007 | A1 |
20070088345 | Larson et al. | Apr 2007 | A1 |
20070270794 | Anderson et al. | Nov 2007 | A1 |
20080009733 | Saksena | Jan 2008 | A1 |
20080025145 | Peszynski et al. | Jan 2008 | A1 |
20080058836 | Moll et al. | Mar 2008 | A1 |
20080091109 | Abraham | Apr 2008 | A1 |
20080140065 | Rioux et al. | Jun 2008 | A1 |
20080161795 | Wang et al. | Jul 2008 | A1 |
20080195089 | Thiagalingam et al. | Aug 2008 | A1 |
20080228111 | Nita | Sep 2008 | A1 |
20080243214 | Koblish | Oct 2008 | A1 |
20080281322 | Sherman et al. | Nov 2008 | A1 |
20080287803 | Li et al. | Nov 2008 | A1 |
20090030312 | Hadjicostis | Jan 2009 | A1 |
20090048591 | Ibrahim et al. | Feb 2009 | A1 |
20090062790 | Malchano et al. | Mar 2009 | A1 |
20090076390 | Lee et al. | Mar 2009 | A1 |
20090093810 | Subramaniam et al. | Apr 2009 | A1 |
20090093811 | Koblish et al. | Apr 2009 | A1 |
20090216125 | Lenker | Aug 2009 | A1 |
20090240247 | Rioux et al. | Sep 2009 | A1 |
20090259274 | Simon et al. | Oct 2009 | A1 |
20090292209 | Hadjicostis | Nov 2009 | A1 |
20090299360 | Ormsby | Dec 2009 | A1 |
20100010487 | Phan et al. | Jan 2010 | A1 |
20100057072 | Roman et al. | Mar 2010 | A1 |
20100106155 | Anderson et al. | Apr 2010 | A1 |
20100113938 | Park et al. | May 2010 | A1 |
20100168568 | Sliwa | Jul 2010 | A1 |
20100168570 | Sliwa et al. | Jul 2010 | A1 |
20100249599 | Hastings et al. | Sep 2010 | A1 |
20100249603 | Hastings et al. | Sep 2010 | A1 |
20100249604 | Hastings et al. | Sep 2010 | A1 |
20100298826 | Leo et al. | Nov 2010 | A1 |
20100331658 | Kim et al. | Dec 2010 | A1 |
20110071400 | Hastings et al. | Mar 2011 | A1 |
20110071401 | Hastings et al. | Mar 2011 | A1 |
20110125143 | Gross et al. | May 2011 | A1 |
20110130648 | Beeckler et al. | Jun 2011 | A1 |
20110144491 | Sliwa et al. | Jun 2011 | A1 |
20110144524 | Fish et al. | Jun 2011 | A1 |
20120136351 | Weekamp et al. | May 2012 | A1 |
20120172698 | Hastings et al. | Jul 2012 | A1 |
20120172727 | Hastings et al. | Jul 2012 | A1 |
20120310064 | McGee | Dec 2012 | A1 |
20120330304 | Vegesna et al. | Dec 2012 | A1 |
20130023897 | Wallace | Jan 2013 | A1 |
20130066312 | Subramaniam et al. | Mar 2013 | A1 |
20130066315 | Subramaniam et al. | Mar 2013 | A1 |
20130172742 | Rankin et al. | Jul 2013 | A1 |
20130197363 | Rankin et al. | Aug 2013 | A1 |
20140066764 | Subramaniam et al. | Mar 2014 | A1 |
20140081262 | Koblish et al. | Mar 2014 | A1 |
20140276052 | Rankin et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
1343426 | Sep 2003 | EP |
1343427 | Sep 2003 | EP |
1547537 | Jun 2005 | EP |
1717601 | Nov 2006 | EP |
1935332 | Jun 2008 | EP |
2000000242 | Jan 2000 | JP |
2007163559 | Jun 2007 | JP |
WO9927862 | Jun 1999 | WO |
WO0029062 | May 2000 | WO |
WO0164145 | Sep 2001 | WO |
WO0168173 | Sep 2001 | WO |
WO0205868 | Jan 2002 | WO |
WO0209599 | Feb 2002 | WO |
WO0219934 | Mar 2002 | WO |
WO02102234 | Dec 2002 | WO |
WO03039338 | May 2003 | WO |
WO2007079278 | Jul 2007 | WO |
WO2008046031 | Apr 2008 | WO |
WO2009032421 | Mar 2009 | WO |
2011033421 | Mar 2011 | WO |
WO2011024133 | Mar 2011 | WO |
WO2011089537 | Jul 2011 | WO |
WO2011095937 | Aug 2011 | WO |
WO2012001595 | Jan 2012 | WO |
WO2012049621 | Apr 2012 | WO |
WO2012066430 | May 2012 | WO |
Entry |
---|
International Search Report and Written Opinion issued in PCT/US2013/060612, mailed Feb. 28, 2014, 16 pages. |
Invitation to Pay Additional Fees and Partial International Search Report issued in PCT/US2014/027491, mailed Jul. 28, 2014, 5 pages. |
Goldberg, S. Nahum et al., “Variables Affecting Proper System Grounding for Radiofrequency Ablation in an Animal Model”, JVIR, vol. 11, No. 8, Sep. 2000, pp. 1069-1075. |
International Search Report and Written Opinion issued in PCT/US2008/058324, dated Aug. 18, 2008, 11 pages. |
Machi MD, Junji, “Prevention of Dispersive Pad Skin Burns During RFA by a Simple Method”, Editorial Comment, Surg Laparosc Endosc Percutan Tech, vol. 13, No. 6, Dec. 2003, pp. 372-373. |
Neufeld, Gordon R. et al., “Electrical Impedance Properties of the Body and the Problem of Alternate-site Burns During Electrosurgery”, Medical Instrumentation, vol. 19, No. 2, Mar-Apr. 1985, pp. 83-87. |
Steinke, Karin et al., “Dispersive Pad Site burns With Modern Radiofrequency Ablation Equipment”, Surg Laparosc Endosc Percutan Tech, vol. 13, No. 6, Dec. 2003, pp. 366-371. |
International Search Report and Written Opinion issued in PCT/US2012/031819, mailed Sep. 27, 2012, 16 pages. |
International Search Report and Written Opinion issued in PCT/US2012/055309, mailed Nov. 19, 2012, 13 pages. |
International Search Report and Written Opinion issued in PCT/US2012/072061, mailed Mar. 21, 2013, 9 pages. |
International Search Report and Written Opinion issued in PCT/US2013/020503, mailed Mar. 20, 2013, 10 pages. |
Partial International Search Report issued in PCT/US2012/0551545, mailed Dec. 20, 2012, 7 pages. |
International Search Report and Written Opinion issued in PCT/US2013/058105, mailed Nov. 22, 2013, 16 pages. |
International Search Report and Written Opinion issued in PCT/US2014/027491, mailed Sep. 23, 2014, 17 pages. |
Number | Date | Country | |
---|---|---|---|
20120172871 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
61428798 | Dec 2010 | US | |
61475390 | Apr 2011 | US |