Certain embodiments of the present invention relate to an ultrasound machine for locating anatomical landmarks in the heart. More particularly, certain embodiments relate to automatically determining positions of anatomical landmarks of the heart in an image and overlaying indicia on the image that indicate the positions of the anatomical landmarks.
Echocardiography is a branch of the ultrasound field that is currently a mixture of subjective image assessment and extraction of key quantitative parameters. Evaluation of cardiac wall function has been hampered by a lack of well-established parameters that may be used to increase the accuracy and objectivity in the assessment of, for example, coronary artery diseases. Stress echo is such an example. It has been shown that the subjective part of wall motion scoring in stress echo is highly dependent on operator training and experience. It has also been shown that inter-observer variability between echo-centers is unacceptably high due to the subjective nature of the wall motion assessment.
Much technical and clinical research has focused on the problem and has aimed at defining and validating quantitative parameters. Encouraging clinical validation studies have been reported, which indicate a set of new potential parameters that may be used to increase objectivity and accuracy in the diagnosis of, for instance, coronary artery diseases. Many of the new parameters have been difficult or impossible to assess directly by visual inspection of the ultrasound images generated in real-time. The quantification has typically required a post-processing step with tedious, manual analysis to extract the necessary parameters. Determination of the location of anatomical landmarks in the heart is no exception. Time intensive post-processing techniques or complex, computation-intensive real-time techniques are undesirable.
A method in U.S. Pat. No. 5,601,084 to Sheehan et al. describes imaging and three-dimensionally modeling portions of the heart using imaging data. A method in U.S. Pat. No. 6,099,471 to Torp et al. describes calculating and displaying strain velocity in real time. A method in U.S. Pat. No. 5,515,856 to Olstad et al. describes generating anatomical M-mode displays for investigations of living biological structures, such as heart function, during movement of the structure. A method in U.S. Pat. No. 6,019,724 to Gronningsaeter et al. describes generating quasi-realtime feedback for the purpose of guiding procedures by means of ultrasound imaging.
A need exists for a simple, real-time technique for automatic localization, indication, and tracking of anatomical landmarks of the heart, such as the apex and the atrium/ventricle (AV) plane.
An embodiment of the present invention provides an ultrasound system for imaging a heart, automatically locating anatomical landmarks within the heart, overlaying indicia onto the image of the heart corresponding to the positions of the anatomical landmarks, and tracking the anatomical landmarks.
An apparatus is provided in an ultrasound machine for overlaying indicia onto a displayed image responsive to moving structure within the heart of a subject such that the indicia indicate locations of anatomical landmarks within the heart. In such an environment an apparatus displaying the indicia preferably comprises a front-end arranged to transmit ultrasound waves into a structure and to generate received signals in response to ultrasound waves backscattered from said structure over a time period. A processor is responsive to the received signals to generate a set of analytic parameter values representing movement of the cardiac structure over the time period and analyzes elements of the set of analytic parameter values to automatically extract position information of the anatomical landmarks and track the positions of the landmarks. A display is arranged to overlay indicia corresponding to the position information onto an image of the moving structure to indicate to an operator the position of the tracked anatomical landmarks.
A method is also provided in an ultrasound machine for overlaying indicia onto a displayed image responsive to moving structure within the heart of a subject such that the indicia indicate locations of anatomical landmarks within the heart. In such an environment a method for displaying the indicia preferably comprises transmitting ultrasound waves into a structure and generating received signals in response to ultrasound waves backscattered from said structure over a time period. A set of analytic parameter values is generated in response to the received signals representing movement of the cardiac structure over the time period. Position information of the anatomical landmarks is automatically extracted and the positions of the landmarks are then tracked. Indicia corresponding to the position information are overlaid onto the image of the moving structure to indicate to an operator the position of the tracked anatomical landmarks.
Certain embodiments of the present invention afford a relatively simple approach to automatically locate key anatomical landmarks of the heart, such as the apex and the AV-plane, and track the landmarks with a degree of convenience and accuracy previously unattainable in the prior art.
The foregoing summary, as well as the following detailed description of certain embodiments of the present invention, will be better understood when read in conjunction with the appended drawings. It should be understood, however, that the present invention is not limited to the arrangements and instrumentality shown in the attached drawings.
An embodiment of the present invention enables real-time location and tracking of anatomical landmarks of the heart. Moving cardiac structure is monitored to accomplish the function. As used in the specification and claims, structure means non-liquid and non-gas matter, such as cardiac wall tissue. An embodiment of the present invention helps establish improved, real-time visualization and assessment of key anatomical landmarks of the heart such as the apex and the AV-plane. The moving structure is characterized by a set of analytic parameter values corresponding to anatomical points within a myocardial segment of the heart. The set of analytic parameter values may comprise, for example, tissue velocity values, time-integrated tissue velocity values, B-mode tissue intensity values, tissue strain rate values, blood flow values, and mitral valve inferred values.
Non-Doppler processor 30 comprises amplitude detection functions and data compression functions used for imaging modes such as B-mode, B M-mode, and harmonic imaging. Doppler processor 40 comprises clutter filtering functions and movement parameter estimation functions used for imaging modes such as tissue velocity imaging (TVI), strain rate imaging (SRI), and color M-mode. The two processors, 30 and 40, accept digital signal data from the front-end 20, process the digital signal data into estimated parameter values, and pass the estimated parameter values to processor 50 and a display 75 over digital bus 70. The estimated parameter values may be created using the received signals in frequency bands centered at the fundamental, harmonics, or sub-harmonics of the transmitted signals in a manner known to those skilled in the art.
Display 75 comprises scan-conversion functions, color mapping functions, and tissue/flow arbitration functions, performed by a display processor 80 which accepts digital parameter values from processors 30, 40, and 50, processes, maps, and formats the digital data for display, converts the digital display data to analog display signals, and passes the analog display signals to a monitor 90. Monitor 90 accepts the analog display signals from display processor 80 and displays the resultant image to the operator on monitor 90.
A user interface 60 allows user commands to be input by the operator to the ultrasound machine 5 through control processor 50. User interface 60 comprises a keyboard, mouse, switches, knobs, buttons, track ball, and on screen menus.
A timing event source 65 is used to generate a cardiac timing event signal 66 that represents the cardiac waveform of the subject. The timing event signal 66 is input to ultrasound machine 5 through control processor 50.
Control processor 50 is the main, central processor of the ultrasound machine 5 and interfaces to various other parts of the ultrasound machine 5 through digital bus 70. Control processor 50 executes the various data algorithms and functions for the various imaging and diagnostic modes. Digital data and commands may be transmitted and received between control processor 50 and other various parts of the ultrasound machine 5. As an alternative, the functions performed by control processor 50 may be performed by multiple processors, or may be integrated into processors 30, 40, or 80, or any combination thereof. As a further alternative, the functions of processors 30, 40, 50, and 80 may be integrated into a single PC backend.
Referring to
In an embodiment of the present invention, in step 110 of
Such a designation of a myocardial segment 220 will force the automatic extraction and subsequent processing of the set of analytic parameter values and the display of the resultant anatomical landmark positions of the heart. As an alternative embodiment of the present invention, instead of the operator defining a ROI 230 around the myocardial segment 220, the entire image of the TVI imaging mode 160 may be automatically analyzed by host processor 50 to isolate a myocardial segment or multiple segments using automatic segmentation, thresholding, centroiding, and designation techniques in accordance with an embodiment of the present invention.
Once the anatomical points 290 within the desired myocardial segment 220 are designated, real-time tracking of each of the designated points is performed in accordance with an embodiment of the present invention. The set of analytic parameter values corresponding to the designated anatomical points 290 are sent from non-Doppler processor 30 and/or Doppler processor 40 to control processor 50, where a tracking function is applied to at least a subset of the analytic parameter values.
As an introduction to the tracking function, in accordance with an embodiment of the present invention, a tracked velocity parameter profile 350 (V1, V2, . . . , Vn) (
Si=T*(V1+V2+. . . +Vi) [1]
and where T is the time delay between two consecutive velocity estimates (T is typically based on the frame rate of the imaging mode). Si (motion value, e.g. 380) is then the longitudinal distance in millimeters (from some zero reference location 375) that a sample of tissue in the myocardium 295 has moved at time segment Ti, thus allowing the isolated tissue sample to be tracked in a longitudinal direction 301 (along the ultrasound beam) by control processor 50. The tracking function estimates the new spatial location of the anatomical tissue sample after every time segment Ti and extracts velocity estimates at the new spatial locations. The tracking is done for all of the designated anatomical points 290 along the myocardial segment 220.
The upper part of
Two-dimensional velocity estimation is necessary for accurate tracking when a substantial part of the motion of the structure is in an orthogonal direction 302 to the ultrasound beam direction 301. Tracking may be performed in any combination of longitudinal depth, lateral position, and angular position according to various embodiments of the present invention. Other tracking techniques may be employed as well.
The specifics of the preferred tracking function are now described for a given designated anatomical point within a myocardial segment in accordance with an embodiment of the present invention. The methodology generates, at a minimum, a set of tissue velocity values in step 100 of
Processor 50 selects a velocity value Vi for a designated anatomical point in the image from a spatial set of estimated tissue velocity values corresponding to a time Ti where i=1 and is called T1. Processor 50 computes the motion value Si for the designated anatomical point (e.g. 295), as
Si=T*(V1+V2+. . . +Vi) [1]
(Note that for i=1, S1=T*V1)
Processor 50 then stores Vi in a tracked velocity parameter profile array 350 and Si is stored in a motion parameter profile array 370 along with the current spatial position (e.g. 298) of the designated anatomical point (e.g. 295). Next, i is incremented by one (corresponding to the next sample time, T seconds later) and the next Vi is selected from the spatial set of velocity values based on the motion parameter Si previously computed and the previous spatial position of the anatomical location in accordance with an embodiment of the present invention (Si represents the longitudinal spatial movement in millimeters of the designated anatomical point over time interval Ti=i*T).
The tracking function then computes the next motion parameter value Si in the series using Equation [1] in the same manner. The iterative process is followed for continuous tracking of the designated anatomical point. The tracking function is performed simultaneously for each of the designated anatomical points 290 in the myocardial segment.
In step 120 of
Tstart 270 is typically selected by the operator as an offset from the R-event in the ECG signal. Tend 280 is set such that the time interval covers a selected portion of the cardiac cycle such as systole. It is also possible to select a time period corresponding to the complete cardiac cycle. Other sub-intervals of the cardiac cycle may also be selected in accordance with other embodiments of the present invention.
According to an embodiment of the present invention, once the time period is established, the stored, tracked velocity parameter profile array (e.g. 350) for each of the designated anatomical points 290 is integrated over the time period Tstart 270 to Tend 280 by control processor 50 to form motion parameter values over the image depth 340. A time integration function accomplishes the integration in control processor 50 which approximates the true time integral by summing the tracked values as follows:
Sint=T*(Vstart+V2+V3+. . . +Vend) [2]
where Sint is the time integrated value (motion parameter value), Vstart is the value in the tracked velocity parameter profile array corresponding to Tstart 270 and Vend is the value corresponding to Tend 280. Each shaded area 260 under the profiles 240 in
Care should be taken by the operator to adjust the Nyquist frequency 190 and 210 of the imaging mode such that aliasing does not occur. With aliasing present in the data, erroneous results may occur. Alternatively, well known automatic aliasing correction techniques may be employed.
In step 130 of
Also, slightly negative motion values 310 are often found in the apex 292 as a consequence of the myocardial wall thickening in the apex 292. Therefore, the negative peak is used to locate the longitudinal depth 299 of the apex 292. Processor 50 locates the apex 292 and AV-plane 296 by peak-detecting the motion gradient profile 320 over depth 340. In accordance with an embodiment of the present invention, the positive-most peak 330 is searched for and found as the AV-plane 296 location and then the negative peak 310, which is above the AV-plane 296, is searched for and found as the apex 292 location. Even though the AV-plane 296 and apex 292 are clearly shown in the illustration on the right side of
In step 140 of
Clinical trials may be performed so that locations (depths) of the anatomical landmarks may be anticipated and may be preset in the ultrasound machine. Algorithms and functions for locating the landmarks may be implemented more efficiently by, for example, limiting the part of the motion gradient profile that needs to be searched for peaks.
Referring to
As a further alternative embodiment of the present invention, tissue strain rate values may be generated by Doppler processor 40 and used to generate a strain rate gradient profile for tracked anatomical points within a myocardial segment. Since strain rate is the spatial derivative of velocity, the AV-plane may be located by finding a zero crossing of the profile.
In another alternative embodiment of the present invention, since the mitral valve is connected to the ventricle in the AV-plane, AV-plane localization may be inferred if the mitral valves may be localized. The mitral valves have characteristic shape that may be identified with B-mode imaging and are the tissue reflectors having the highest velocities in the heart. Also, color flow, PW-Doppler, and/or CW-Doppler of blood flow may be used to localize the AV-plane due to known flow singularities across the mitral valve at specific time in the cardiac cycle.
In a further alternative embodiment of the present invention, the position information of the tracked anatomical landmarks may be reported out of the ultrasound machine and/or captured in a storage device for later analysis instead of overlaying indicia on the display corresponding to the anatomical landmarks.
As another alternative embodiment of the present invention, data may be collected and processed in a 3-dimensional manner instead of the 2-dimensional manner previously described.
As still a further alternative embodiment of the present invention, the motion gradient profile 320 (or velocity gradient profile 440) may be displayed along the side of the TVI image on the monitor. The operator may then visualize where the AV-plane 296 and apex 292 are located in the image based on the peaks 310 and 330 in the displayed gradient. The operator may then manually designate the landmark locations as points in the image that may then be automatically tracked.
As still yet another alternative embodiment of the present invention, more than one myocardial segment in the image may be designated and processed at the same time.
While the invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
The present application is a continuation of U.S. patent application Ser. No. 10/248,090, entitled “Ultrasound Location Of Anatomical Landmarks,” filed Dec. 17, 2002, which is hereby incorporated by references in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 10248090 | Dec 2002 | US |
Child | 11684507 | Mar 2007 | US |