The present invention relates generally to ultrasound, and more particularly to an ultrasound medical treatment system and method.
Known ultrasound medical systems and methods include deploying an end effector having an ultrasound transducer (powered by a controller) outside the body to break up kidney stones inside the body, endoscopically inserting an end effector having an ultrasound transducer in the rectum to medically destroy prostate cancer, laparoscopically inserting an end effector having an ultrasound transducer in the abdominal cavity to medically destroy a cancerous liver tumor, intravenously inserting a catheter end effector having an ultrasound transducer into a vein in the arm and moving the catheter to the heart to medically destroy diseased heart tissue, and interstitially inserting a needle end effector having an ultrasound transducer needle into the tongue to medically destroy tissue to reduce tongue volume to reduce snoring.
A discrepancy in ultrasound thermal ablation results has been observed between in vitro and in vivo exposures. In the in vivo case, more power (such as, for example, a higher constant power or a greater duty cycle for pulsed power) and/or a longer treatment time were needed. This discrepancy could be explained by in vivo related effects, such as blood perfusion and tissue motion, which tend to remove thermal energy from the heated region. However, this contradicts the fact that the tissue initial temperature in the in vivo exposures (37° C.) was more than that in the in vitro exposures (25° C.). The higher in vivo tissue initial temperature would suggest that less energy is required to reach the ablation target temperature in the in vivo case.
Still, scientists and engineers continue to seek improved ultrasound medical treatment systems and methods.
An embodiment of an ultrasound medical treatment system includes an ultrasound medical-treatment transducer and a controller. The controller powers the transducer to deliver ultrasound to thermally ablate patient tissue in vivo. In a first expression of the embodiment and/or a first method for thermally ablating patient tissue in vivo which optionally can employ the embodiment, the transducer is powered to deliver ultrasound for or beyond an in vivo treatment time which is a function of an experimentally-determined in vitro treatment time for the same ultrasound acoustic power. In a second expression of the embodiment and/or a second method, the transducer is powered to deliver ultrasound at or above an in vivo ultrasound acoustic power which is a function of an experimentally-determined in vitro ultrasound acoustic power for the same treatment time. In a third expression of the embodiment and/or a third method, the transducer is powered to deliver ultrasound at or above an ultrasound acoustic power threshold which is calculated from an equation.
Several benefits and advantages are obtained from one or more of the examples of the embodiment and/or methods of the invention. Determining an in vivo treatment time from an experimentally-determined in vitro treatment time for the same ultrasound acoustic power, and/or calculating an in vivo ultrasound acoustic power from an experimentally-determined in vitro ultrasound acoustic power for the same treatment time, allows experimental in vitro treatments to be applied to in vivo treatments despite initial temperature differences of in vivo and in vitro tissue and despite the presence of blood perfusion for in vivo tissue which is not present for in vitro tissue. Calculating an ultrasound acoustic power threshold allows the user to determine if a particular ultrasound medical treatment system has the power required to ablate patient tissue.
The present invention has, without limitation, application in conventional extracorporeal, endoscopic, laparoscopic, intra-cardiac, intravenous, interstitial and open surgical instrumentation as well as application in robotic-assisted surgery.
Before explaining the present invention in detail, it should be noted that the invention is not limited in its application or use to the details of construction and arrangement of parts and/or steps illustrated in the accompanying drawings and description. The illustrative embodiment, examples, and methods of the invention may be implemented or incorporated in other embodiments, examples, methods, variations and modifications, and may be practiced or carried out in various ways. Furthermore, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative embodiment and methods of the present invention for the convenience of the reader and are not for the purpose of limiting the invention.
It is understood that any one or more of the following-described examples, methods, implementations, applications, variations, modifications, etc. can be combined with any one or more of the other following-described examples, methods, implementations, applications, variations, modifications, etc. For example, and without limitation, the third method which calculates an ultrasound acoustic power threshold to thermally ablate patient tissue in vivo can be combined with the first method for thereafter determining an in vivo treatment time as a function of an in vitro treatment time.
Referring now to the drawings, an embodiment of an ultrasound medical treatment system 10 is shown in
In one construction of the first expression of the embodiment of
In one application of the first expression of the embodiment of
In Equation #1, timein vivo is the in vivo treatment time in seconds to from an in vivo lesion, timein vitro is the in vitro treatment time in seconds to form an in vitro lesion, ρ is the patient tissue density in kilograms per cubic meter, w is the blood perfusion rate in kilograms per cubic meter—seconds, Tthreshold is the temperature threshold for tissue ablation in degrees Celsius, Toin vivo is the initial in vivo patient tissue temperature in degrees Celsius, and Toin vitro is the initial in vitro patient tissue temperature in degrees Celsius.
In one example of Equation #1, ρ=1060 kg m−3, w is 18 kg m−3 s−1, Tthreshold is 60° C., Toin vivo is 37° C., and Toin vitro is 25° C.
In a second expression of the embodiment of
In one application of the second expression of the embodiment of
In Equation #2, qin vivo is the in vivo ultrasound acoustic power density (i.e., heat deposition density) in Joules per second—cubic meter to form an in vivo lesion, qin vitro is the in vitro ultrasound acoustic power density in Joules per second—cubic meter to form an in vitro lesion, time is the same in vivo and in vitro treatment time in seconds to form a lesion, ρ is the patient tissue density in kilograms per cubic meter, w is the blood perfusion rate in kilograms per cubic meter—seconds, Tthreshold is the temperature threshold for tissue ablation in degrees Celsius, Toin vivo is the initial in vivo patient tissue temperature in degrees Celsius, and Toin vitro is the initial in vitro patient tissue temperature in degrees Celsius.
In one example of Equation #2, ρ=1060 kg m−3, w is 18 kg m−3 s−1, Tthreshold is 60° C., Tovivo is 37° C., and Toin vitro is 25° C.
In a third expression of the embodiment of
In Equation #3, APOthreshold is the ultrasound acoustic power threshold in Joules per second to ablate patient tissue in vivo, F is a coefficient to compensate for neglected heat conduction losses in the equation and is between and including 1.05 and 1.15, Tthreshold is the temperature threshold for tissue ablation in degrees Celsius, Tb is the blood temperature in the in vivo patient tissue in degrees Celsius, w is the blood perfusion rate in kilograms per cubic meter—seconds, cb is the patient tissue specific heat capacity in Joules per kilogram—degrees Celsius, “Area of transducer” is the ultrasound emitting area of the transducer 12 in square meters, α is the patient tissue frequency-dependent absorption/attenuation coefficient in Nepers per meter at the transducer frequency, {overscore (I)}ave is the intensity gain (local intensity divided by transducer intensity) in the region where the gain is equal to or greater than a certain threshold intensity gain value, and DC is the dimensionless duty cycle of the controller 14 (i.e., DC is the ratio of the therapy on time to the total treatment time for a pulsed controller and DC is 1 [unity] for a non-pulsed controller).
In one example of Equation #3, F=1.1, Tthreshold=60° C., Tb=37° C., cb=3600 J kg−°C.−1, the Area of transducer is a nominal area expressed in m2, w=18 kg m−3 s−1, α=5.75 Np m−1 at the transducer frequency, {overscore (I)}ave=1.025, and DC is a nominal value (40%-100%). Applicants had 102 in vivo exposures performed based on equation #3 with the experimental results in 96 of the 102 cases yielding agreement of the theoretical predictions with the experimental results. In 5 of the other 6 cases no lesion was formed although the applied ultrasound acoustic power was more than the calculated threshold. In the remaining case, a lesion was formed although the applied ultrasound acoustic power was less than the calculated threshold.
A first method of the invention is shown in block diagram form in
In one implementation of the first method, step c) is calculated from an equation substantially equivalent to the previously-described Equation #1.
A second method of the invention is shown in block diagram form in
In one implementation of the second method, step c) is calculated from an equation substantially equivalent to the previously-described Equation #2.
A third method of the invention is shown in block diagram form in
As can be appreciated by those skilled in the art, in one application, the previously-described ultrasound medical treatment system embodiments and methods of the invention are extended to allow treatment plans to be modified not only for the in-vivo versus in-vitro case, but also for cases involving changes in other relevant parameters, such as (without limitation) tissue absorption, initial temperature, and perfusion. The lesioning threshold, required therapy time, and/or required therapy power are all updated based on changes in these parameters using the previously-described or similar formulae. Changes in the parameters, in one illustration, are entered manually, determined from a lookup table based on the tissue type (e.g., liver, kidney, muscle, various tumor types, etc.), or automatically measured by ultrasound or other means.
Also, the methods of the invention, more broadly and collectively expressed as one method, include the step of experimentally determining power and/or timing requirements for one situation (e.g., in vitro) and include the step of determining the corresponding power and/or timing requirements for another situation (e.g., in vivo) using the previously-determined experimental results and a simplified bio-heat model (e.g., considering only bulk tissue heating and perfusion losses and neglecting thermal diffusion as in the cases of the previously-described equations). Likewise, the ultrasound medical treatment system embodiments of the invention, more broadly and collectively expressed as one system embodiment include an ultrasound medical-treatment transducer and a controller. The controller powers the transducer to deliver ultrasound and determines the power and/or timing requirements for a situation using previously-determined experimental results and a simplified bio-heat model.
The ultrasound medical treatment system embodiments and methods of the invention, in one illustration, have the benefit of an a priori estimation of the required source conditions to ensure that a desired tissue effect can be reliably achieved. A technique includes, but is not limited to, programming the controller to have databases/datasets related to the appropriate source conditions for a specific set of tissue effects during treatment. This data is used to modify the output of the controller and implement a certain treatment regime once the user keys-in a particular therapy-related information set. This is achieved, in one example, in an open or a closed feedback loop, by user-modification of source conditions during the treatment cycle, or through operation of the controller in an automated manner.
Several benefits and advantages are obtained from one or more of the examples of the embodiment and/or methods of the invention. Determining an in vivo treatment time from an experimentally-determined in vitro treatment time for the same ultrasound acoustic power, and/or calculating an in vivo ultrasound acoustic power from an experimentally-determined in vitro ultrasound acoustic power for the same treatment time, allows experimental in vitro treatments to be applied to in vivo treatments despite initial temperature differences of in vivo and in vitro tissue and despite the presence of blood perfusion for in vivo tissue which is not present for in vitro tissue. Calculating an ultrasound acoustic power threshold allows the user to determine if a particular ultrasound medical treatment system has the power required to ablate patient tissue.
While the present invention has been illustrated by a description of several methods and several expressions of an embodiment, it is not the intention of the applicants to restrict or limit the spirit and scope of the appended claims to such detail. Numerous other variations, changes, and substitutions will occur to those skilled in the art without departing from the scope of the invention. For instance, the ultrasound methods and system embodiment of the invention have application in robotic assisted surgery taking into account the obvious modifications of such methods, system embodiment and components to be compatible with such a robotic system. It will be understood that the foregoing description is provided by way of example, and that other modifications may occur to those skilled in the art without departing from the scope and spirit of the appended Claims.