The invention relates to the control of ultrasound systems, in particular the modulation of electrical power for driving an ultrasound transducer.
Advances in cancer treatment include localized chemotherapy that can reduce systemic side effects to the patient compared to free drug administration. One such method is liposomal encapsulation of cytotoxic drugs such as doxorubicin. Recent research has led to the development of liposomes that are targeted to pathologies and are temperature sensitive. Temperature sensitive liposomes (TSL) can be traditional that are triggered in the range 42° C. to 45° C., or low temperature sensitive liposomes (LTSL) that release their payload in the range 39.5 to 42° C. A variety of methods are available to provide temperature increase to activate the TSLs. These include radio frequency, microwave and ultrasound.
Ultrasound is quickly becoming a desired approach for specific therapeutic interventions. In particular, the use of high intensity focused ultrasound is currently being used as an approach for thermal therapeutic intervention for uterine fibroids and has been examined for possible uses in the treatment of liver, brain, prostate, and other cancerous lesions. Ultrasound therapy for tissue ablation works by insonifying a tissue of interest with high intensity ultrasound that is absorbed and converted into heat, raising the temperature of the tissues. As the temperature rises above 55° C., coagulative necrosis of the tissues occurs resulting in immediate cell death. The transducers used in therapy can be outside the body or be inserted into the body e.g. through blood vessels, urethra, rectum etc. The same transducer could be used for producing non-ablative temperature rises of only a few degrees through suitable adjustment of the power and duration of the sonication, which enables delivery of drugs using TSLs.
U.S. Pat. No. 5,323,779 discloses a pulsed heat-producing device that selectively heats a region in a specific tissue within a patient destroying the tissue. In one embodiment the pulsed heat producing device is a focused ultrasound transducer which concentrates ultrasonic energy at a focal point within the specific tissue.
The invention provides for an ultrasound power supply, an ultrasound system, a computer program product and a method of operating an ultrasound power supply in the independent claims. Embodiments are given in the dependent claims.
Embodiments of this invention may be useful for cancer therapy for prostate cancer treatment using an applicator with an array of ultrasound transducer elements placed in the urethra but is applicable to cancers in other part of the body as well, e.g., breast, liver, brain, and bone. Prostate cancer is frequently found near the periphery of the capsule towards the posterior region. Critical structures such as neurovascular bundles are often located close to the tumor region and need to be preserved.
It is advantageous to activate LTSL in the regions that contain tumors while preserving tissues that are nearby e.g., the nerve bundles in the case of prostate therapy. The therapeutic temperature at the tumor region (39.5° C. to 42° C.) may need to be maintained for a substantial amount of time e.g., 30 minutes, in order for liposomes with a drug payload to be replenished due to circulation. If a continuous sonication scheme is used during this period, it would lead to unwanted therapeutic temperature rises in the critical structures that are located outside and in close proximity to the treatment region. The problem exists for both focused and unfocused transducers wherein critical structures are in close proximity to the treatment spot, e.g., in the case of prostate treatment, the nerve bundles are in close proximity to the tumor.
Previously, treatment of prostate using transurethral ultrasound applicators have been described in prior art wherein the single element transducers are inserted into the urethra to insonify the region in front of it, and sometimes rotated to cover the full cross-section. These transducers are advantageous over focused transducers due to the simplicity and low cost of the design. A transurethral design is advantageous since it provides direct acoustic access to the prostate gland without the effects of intervening tissues. In practice, several transducer elements are placed along the urethral axis in order to cover the 3D volume. The entire treatment process can be performed with the aid of image guidance using Magnetic Resonance Imaging (MRI), ultrasound or other techniques. MRI in particular has the capability to provide information on the temperature rise in the tissues in a spatial region. Such applicators can also be employed to deliver drugs using heat sensitive liposomes.
Embodiments of the invention may enable maintaining the treatment region at temperatures needed for drug delivery through LTSLs while maintaining regions that are outside but in close proximity to temperature levels that are below this threshold. The therapy thus is truly local and may reduce unwanted side effects.
The invention provides for an ultrasound power supply adapted for supplying electrical power for driving an ultrasound transducer in contact with a subject. It is understood that in contact with a subject may mean that the ultrasound transducer is directly in contact with a subject or the ultrasound transducer may be in contact with the subject via an ultrasound conducting medium. An unfocused ultrasound transducer as used herein is defined as an ultrasound transducer which emits ultrasound capable of heating a volume of a subject but is not focused to a specific point. Unfocused ultrasound transducers may have multiple ultrasound transducer elements, but they are not focused. By controlling the phase and amplitude of individual ultrasound transducer elements the volume of ultrasound energy deposited by the unfocused ultrasound transducer may be adjusted to a small degree. The use of multiple ultrasound transducers may also allow the ultrasound to be distributed over a more uniform volume. Unfocused ultrasound transducers may be in the form of a linear array of ultrasound transducer elements, and also may be packaged so that they can be inserted into an orifice of the subject. A focused ultrasound transducer as used herein is an ultrasound transducer which focuses ultrasonic energy to a focal region.
The ultrasound power supply comprises a communications interface adapted for receiving a first temperature measurement of a first volume of the subject and a second temperature measurement of a second volume of the subject. The computer communications interface may be implemented in a variety of ways and may depend upon the method which is used for making the temperature measurement of the first volume and of the second volume. The communications interface may therefore take a variety of forms. For instance the communications interface could be a digital interface, it could be a network connection, it could be an internal bus or interface within a single instrument, or it may even be an analogue interface. For instance thermocouples which supply a voltage or current may be used to send the first temperature measurement and a second temperature measurement to the communications interface. There may be a separate communications interface for receiving the first temperature measurement and a separate communications interface for receiving the second temperature measurement. Alternatively, the communications interface for the first and second temperature measurements may also be combined.
The ultrasound power supply further comprises a controller adapted for modulating the output of electrical power for driving the ultrasound transducer such that the first temperature measurement is maintained, via ultrasonic heating by the ultrasound transducer, above a first predetermined threshold and below a second predetermined threshold. The second temperature measurement is maintained below a third predetermined threshold. The first predetermined threshold is above or equal to the third predetermined threshold. The first volume may be between the ultrasound transducer and the second volume. This embodiment is beneficial, because the first volume can be heated to a temperature which may have a specific effect on the subject. For instance the first predetermined threshold could be a temperature at which drug release occurs. The third predetermined threshold could be a temperature below which there is no effect or lasting effect on the second volume of the subject. This embodiment is beneficial because some temperature activated drugs have a highest chemical reactivity within a predetermined temperature range.
In another embodiment, the ultrasound transducer is an unfocused ultrasound transducer. The first volume is between the ultrasound transducer and the second volume.
In another embodiment, the ultrasound transducer is a focused ultrasound transducer. In another embodiment the controller is adapted for modulating the output of electrical power by gating the output of the electrical power. This modulation of the electrical power may be achieved by modulating the output of electrical power to all of the ultrasound transducer elements which make up an ultrasound transducer. Alternatively the electrical power could be gated for a sub-selection of the ultrasound transducer elements which make up an ultrasound transducer. Another variation of this approach is to vary the duty cycle as a function of time. For instance to increase power, the duty cycle can be increased, and to decrease the power the duty cycle can be reduced.
In another embodiment the controller is adapted for modulating the output of electrical power by continually bearing the power supplied to the ultrasound transducer. This is advantageous, because instead of simply gating the power the power supplied to the ultrasound transducer may be increased or decreased. The electrical power supplied to the ultrasonic transducer may be ramped over time. This embodiment is advantageous because the temperature in the first and second volumes may be more stable than if the power to the ultrasound transducer is simply turned on and off. The amplitude between individual ultrasound transducer elements of an ultrasound transducer may be varied relative to each other to alter the distribution of ultrasound power over time.
In another embodiment the first volume and the second volume are separated by a linear distance of between 0.25 mm and 5 mm. This is advantageous, because the first volume of the subject can be heated above the first predetermined threshold without damaging the second volume of the subject.
In another embodiment, the first temperature measurement is maintained between the first predetermined threshold and second predetermined threshold and the second temperature measurement is maintained below the third predetermined threshold for a period of time between 10 seconds and 1 hour.
In another embodiment, the first predetermined threshold is 39.5 degrees Celsius the second predetermined threshold is 42 degrees Celsius. This embodiment is advantageous, because there are temperature sensitive liposomes that can be used to release a drug payload at these temperatures.
In another embodiment, the first predetermined threshold is 42 degrees Celsius the second predetermined threshold is 45 degrees Celsius. This embodiment is advantageous, because there are temperature sensitive liposomes that can be used to release a drug payload at these temperatures.
In another aspect the invention provides for an ultrasound system. The ultrasound system comprises an ultrasound power supply according to an embodiment of the invention. The ultrasound system further comprises a temperature measurement system adapted for measuring the temperature of the first volume and the second volume. The ultrasound system further comprises an ultrasound transducer. The temperature measurement system may be implemented in a variety of different ways. An invasive technique may be used or a medical imaging method may be used. An example of an invasive technique would be to use thermocouples which are inserted by needles into the first volume and the second volume. The temperature will be measured in the first volume and the second volume using ultrasound techniques. Alternatively, the temperature in the first volume and the second volume may be measured using magnetic resonance thermometry.
In another embodiment the ultrasound system further comprises a magnetic resonance imaging system. The ultrasound power supply is adapted for receiving the first and second temperature measurements from the magnetic resonance imaging system. The magnetic resonance imaging system comprises a magnet adapted for generating a magnetic field for orienting the magnetic spins of nuclei of a subject located within the imaging volume. The imaging comprises the first volume and the second volume. The first volume and the second volume are within the imaging volume. The magnetic resonance imaging system further comprises a radio frequency system comprising a coil adapted for acquiring magnetic resonance imaging data. The coil may be a separate transmission and receive coil or the coil may have an integrated function and be used for both transmission and receiving of signals from the radio frequency system. Magnetic resonance imaging data as used herein is data which is acquired by a magnetic resonance imaging system and which may be used to reconstruct images or other information such as temperature maps that is acquired when a magnetic resonance imaging system is in operation. The magnetic resonance imaging system further comprises a magnetic field gradient coil adapted for spatial encoding of the magnetic spins of nuclei within an imaging volume. The magnetic resonance imaging system further comprises a magnetic field gradient coil power supply adapted for supplying current to the magnetic field gradient coil. The magnetic resonance imaging system further comprises a computer system adapted for constructing images from the magnetic resonance imaging data and for controlling the operation of the magnetic resonance imaging system.
The computer system is adapted for calculating the temperature in the first volume and the second volume using the magnetic resonance imaging data. The computer system may also be used to guide the ultrasound system. The controller of the ultrasound power supply may be the computer system also. The functionality of the computer system is not limited to the magnetic resonance imaging system in some embodiments. A computer system as used herein is a machine adapted for executing machine executable instructions. Examples of a computer system may be a single computer system, an embedded controller, a microcontroller, a network of computers, or a controller. This embodiment is particularly advantageous, because the temperature measurements of the first and second volume are not invasive plus the imaging capability of the magnetic resonance imaging system may be used for guiding the ultrasound system. In another embodiment the temperature measurement system uses thermocouples to measure the temperature of the first volume and the second volume. As was mentioned before the thermocouples may be inserted into the first volume and the second volume of the subject.
In another embodiment the temperature measurement system uses ultrasound to measure the temperature of the first volume and the second volume. This embodiment is advantageous, because it is non-invasive.
In another embodiment the ultrasound system further comprises an injector adapted for injecting a temperature sensitive liposome into the subject. This embodiment is advantageous, because temperature sensitive liposomes can be used to control the delivery of drugs based on the temperature of a region. By controlling the temperature of the first volume, temperature sensitive liposomes can be preferentially delivered to the first volume and not to the second volume.
In another embodiment the ultrasound system further comprises an ultrasound transducer actuator adapted for moving and/or rotating the ultrasound transducer. The ultrasound transducer is adapted for receiving control signals from the ultrasound power supply. The ultrasound power supply is adapted for controlling the temperature of a first volume and a second volume by rotating and/or moving the ultrasound transducer.
The invention provides for a computer program product comprising machine executable instructions for execution by a controller for an ultrasound power supply adapted for supplying electrical power for driving an ultrasound transducer in contact with a subject. The computer program product comprises instructions for performing the step of receiving a first temperature measurement of a first volume of the subject and a second temperature measurement of a second volume of the subject. The computer program product further comprises the step of modulating the output of electrical power, driving the ultrasound transducer such that the first temperature measurement is maintained above a first predetermined threshold and below a second predetermined threshold. The second temperature measurement is maintained below a third predetermined threshold. The first predetermined threshold is above the third predetermined threshold. The first volume may be between the ultrasound transducer and the second volume.
In another embodiment the first temperature measurement and the second temperature measurement are received from a magnetic resonance imaging system. The computer program product may also be executable on a computer system depending upon the embodiment. The computer program product may also be distributed across multiple controllers or computers.
In another aspect the invention provides for a method of operating an ultrasound power supply adapted for supplying electrical power for driving an ultrasound transducer in contact with a subject. The method comprises receiving a first temperature measurement from a first volume of the subject and a second temperature measurement from a second volume of the subject. The method further comprises modulating the output of electrical power driving the ultrasound transducer such that the first temperature measurement is maintained above a first predetermined threshold and below a second predetermined threshold. The second temperature measurement is maintained below a third predetermined threshold. The first predetermined threshold is above or equal to the third predetermined threshold. The first volume may be between the ultrasound transducer and the second volume.
An ultrasound system according to an embodiment of the invention may be used for performing a method for ultrasound mediated drug delivery of a subject. The method comprises the step of accessing treatment planning data of the subject. The treatment planning data is descriptive of the subject's anatomy and may include images such as magnetic resonance images of a treatment zone of the subject. The method further comprises placing an ultrasound transducer adjacent to the treatment zone. The method further comprises monitoring the temperature of a first volume and a second volume. The first and second volumes may be identified in the treatment planning data. The temperature may be monitored in a variety of ways: ultrasound, magnetic resonance imaging, or thermocouples may be used. In the case of magnetic resonance imaging, magnetic resonance imaging thermometry may be used. The first volume may be between the ultrasound transducer and the second volume. The method further comprises injecting temperature sensitive liposomes either intravenously or directly into the treatment zone. The method further comprises maintaining the temperature of the first volume above a first predetermined threshold and below a second predetermined threshold using the ultrasonic transducer. The method further comprises maintaining the temperature of the second volume below a third predetermined threshold. The temperature of the second volume is kept below the third predetermined threshold by controlling the electrical power driving to the ultrasonic transducer. The electrical power driving the ultrasonic transducer may be modulated by gating the power. Alternatively the electrical power to the ultrasonic transducer may be varied continuously to regulate the temperature of the first and second volumes.
In the following preferred embodiments of the invention will be described, by way of example only, and with reference to the drawings in which:
Like numbered elements in these figures are either equivalent elements or perform the same function. Elements which have been discussed previously will not necessarily be discussed in later figures if the function is equivalent.
The pattern of ultrasound generated by the unfocused ultrasound transducer 202 can be adjusted by controlling the phase and/or amplitude of electrical power applied to each of the ultrasound transducer elements 204. The unfocused ultrasound transducer 202 is inserted into an orifice 210 of a subject 208. Illustrated in this figure is a first volume 211 which is heated by the ultrasound produced by the unfocused ultrasound transducer 202. lines 212 shows the path of ultrasound from the transducer 202 to the first volume 211. Adjacent to the first volume 211 is a second volume 214. The second volume is separated by a distance 216. To measure the temperature within the first volume 211 and the temperature within the second volume 214 thermocouples 218 have been inserted into the subject 208. In this embodiment the communications interface 102 also functions as the electronics for measuring the temperature using the thermocouples 218.
There is an ultrasound transducer actuator 316 which is adapted for rotating or moving the unfocused ultrasound transducer 202. Within the imaging volume 314 is the first volume 318 and the second volume 320. The first volume 318 is between the unfocused ultrasound transducer 202 and the second volume 320. There is also an injector 322 connected to the subject 208 which is adapted for injecting a temperature sensitive liposome into the subject. The ultrasound power supply 100 is connected to a hardware interface 326 of a computer system 324. Similarly the magnetic field gradient power supply 310, the injector 322 and the transceiver 304 are also all connected to the hardware interface 326. The computer system 324 also comprises a microprocessor 328 which is connected to a user interface 330, the hardware interface 326, computer storage 332 and computer memory 334. The computer memory 334 contains a computer program product 336.
The computer program product 336 contains modules for operating various functions of the ultrasound system or the magnetic resonance imaging system 300. The computer program product in this embodiment contains a magnetic resonance temperature calculation module 338 which contains machine executable instructions for using magnetic resonance imaging data for calculating temperature maps using magnetic resonance thermometry. The computer program product 336 also comprises code in the form of an ultrasound system control module 340. The ultrasound system control module 340 comprises instructions which allow the microprocessor 328 to send instructions for controlling the ultrasound power supply 100. The computer program product also contains a magnetic resonance system control module 342 which contains instructions which allow the microprocessor 328 for controlling the function and operation of the magnetic resonance imaging system. The computer program product 336 also comprises an image reconstruction module 344. The image reconstruction module 344 contains machine executable instructions which allow the microprocessor 328 to compute images or visualizations of the subject 208 using acquired magnetic resonance imaging data.
The computer storage 332 contains storage for data or for machine executable instructions. For instance the storage may contain an archive of magnetic resonance imaging data 346. The storage 332 may also contain a copy of the computer program product 348.
In operation the apparatus shown in
In the above scheme it can also be seen that locations close to the urethra e.g., at 5 mm (line 610) and 7 mm (line 608) away do not reach therapeutic temperatures and are well below 39.5° C. This is due to the presence of cooling in the urethra. Locations between 7 mm (line 608) and 10 mm (not shown) away can also be preserved by appropriately timing the injection of the drug into the patient, due to the overall decreasing nature of the temperature profile.
As an alternative to modulating the power by switching the power to the unfocused ultrasound transducer on and off, there are several other embodiments:
During the cooling phase the applicator is rotated or moved in order to apply therapy to different locations.
Instead of turning the power ON and OFF, the scheme will gradually increase or decrease the power levels in order to obtain smoother temperature profiles, which reduce the temporal update rate required for thermometry, thereby increasing spatial accuracy of the temperature maps.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2010/054318 | 9/24/2010 | WO | 00 | 4/12/2012 |
Number | Date | Country | |
---|---|---|---|
61251774 | Oct 2009 | US |