This application claims the benefit of Taiwan application Serial No. 101142057, filed Nov. 12, 2012, the disclosure of which is incorporated by reference herein in its entirety.
The disclosed embodiments relate to an ultrasound transmission circuit and time delay calibration method thereof.
An ultrasonic wave (ultrasound) is a mechanic wave generated by a piezoelectric crystal under an effect of an electric field. A sonic wave having a frequency over 20 kHz is regarded as an ultrasound. The ultrasound prevails in applications of examination, measurement and control purposes. For example, the ultrasound is applied for thickness measurement, distance measurement, medical treatments, medical diagnosis and ultrasound imaging (ultrasonography). Alternatively, by processing a material with the ultrasound, certain physical, chemical or biological properties or statuses of the material may be accelerated or changed.
An ultrasound imaging system is extensively implemented for biomedical detections. In ultrasonography, imaging is mainly achieved by pulse-echo. A principle of ultrasonography is summarized as below. A short pulse is transmitted by each array element of a transmitter. With beamforming, a time delay and a gain size of the pulses of each channel are adjusted to focus all the array signals at a position of a fixed depth on a scan line.
However, at signal transmission paths, RC delay errors resulted by hardware elements or at paths of printed circuit boards frequently demote beamforming effects from expected values. For example, complications such as lower side-lobe energy prior and subsequent to a focal point are incurred if the focal point has an excessively large radius, in a way that quality of an image converted from echo signals at a receiver is degraded.
The disclosure is directed to an ultrasound transmission circuit and time delay calibration method thereof.
According to one embodiment, an ultrasound transmission circuit is provided. The ultrasound transmission circuit comprises a pulse generating circuit, a feedback circuit and a processing circuit. The feedback circuit outputs a trigger signal according to a first pulse signal arriving at an ultrasound transducer. The processing circuit records a first time point at which the first pulse signal is generated, and records a second time point at which the first pulse signal arrives the ultrasound transducer according to the trigger signal. The processing circuit adjusts a first delay value according to a variance between the first time point and the second time point to generate a second delay value, and drives the pulse generating circuit according to the second delay value to generate a second pulse signal.
According to another embodiment, a time delay calibration method is provided. The time delay calibration method comprises steps of: generating a first pulse signal according to a first delay value, and recording a first time point at which the first pulse signal is generated; outputting a trigger signal according to the first pulse signal arriving at an ultrasound transducer; recording a second time point at which the first pulse signal arrives the ultrasound transducer; adjusting a first delay value according to a variance between the first time point and the second time point to generate a second delay value; and generating a second pulse signal according to the second delay value.
In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It will be apparent, however, that one or more embodiments may be practiced without these specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.
The time delay calibration method comprises the following steps. In step S1, the processing circuit 33 generates a pulse signal P1 according to the delay value T1, and records a time point C1 at which the pulse signal P1 is generated. For example, the pulse signal P1 is a high-voltage pulse signal. More specifically, the processing circuit 33 drives the pulse generating circuit 31 according to the delay value T1 in the delay table to generate the pulse signal P1, and the time point C1 is, for example, obtained by counting the number of pulses. In step S2, the feedback circuit 32 outputs a trigger signal V according to the pulse signal P1 arriving at the ultrasound transducer 2. In step S3, the processing circuit 33 records a time point C2 at which the pulse signal P1 arrives the ultrasound transducer 2 according to the trigger signal V. In step S4, the processing circuit 33 adjusts the delay value T1 according to a variance Δt between the time point C1 and the time point C2 to generate a delay value T2. In step S5, the processing circuit 33 drives the pulse generating circuit 31 according to the delay value T2 to generate a pulse signal P2. For example, the pulse signal P2 is a high-voltage pulse signal.
As the processing circuit 33 has already adjusted the delay value according to a non-expected error resulted by a transmission path before the ultrasound is transmitted, transmission energy provided by the ultrasound transducer 2 is allowed to render more concentrated beamforming. Thus, an ultrasound receiver is facilitated to process more accurate echo signals to further increase a signal-to-noise ratio (SNR). Moreover, the ultrasound transmission circuit 3 having uncomplicated hardware designs not only favors a manufacturing process but can also be readily integrated with an ultrasound system.
The trigger circuit 332 triggers the counter 333 according to the trigger signal V, and records the time point C2 at which the pulse signal P1 arrives the ultrasound transducer 2 to the register 335. For example, the time point C2 at which the pulse signal P1 arrives the ultrasound transducer 2 is obtained by the counter 333 counting the number of pulses. The subtractor 336 subtracts the time point C1 from the time point C2 to obtain a variance Δt, which represents a non-expected delay error resulted by a transmission path. The subtractor 337 subtracts the variance Δt from the delay value T1 to generate a delay value T2, and the register 338 records the delay value T2. The driver circuit 331 drives the pulse generating circuit 31 according to the delay value T2 to generate the pulse signal P2.
Refer to
Referring to
After generating the pulse signal P1 according to the corresponding delay T1 indicated by the curve 62, the variance Δt between the time point C1 at which the pulse signal P1 is generated and the time point C2 at which the pulse signal P1 arrives the ultrasound transducer 2 represents the non-expected delay error resulted by a transmission path. The processing circuit 33a adjusts the delay value T1 according to the variance Δt to generate the delay value T2. The delay value T2 corresponding to different channels is as indicated by the curve 61. The variance between the curve 62 and the curve 62 is represented by the time delay error depicted in
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed embodiments. It is intended that the specification and examples be considered as exemplary only, with a true scope of the disclosure being indicated by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
101142057 A | Nov 2012 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4127034 | Lederman et al. | Nov 1978 | A |
4234940 | Iinuma | Nov 1980 | A |
4285011 | Sato | Aug 1981 | A |
4611494 | Uchiyama | Sep 1986 | A |
4628738 | Burckhardt et al. | Dec 1986 | A |
4700573 | Savord | Oct 1987 | A |
5388461 | Rigby | Feb 1995 | A |
5795297 | Daigle | Aug 1998 | A |
6363033 | Cole et al. | Mar 2002 | B1 |
6368279 | Liu | Apr 2002 | B1 |
20040004905 | Lyon et al. | Jan 2004 | A1 |
20070239013 | Alexandru | Oct 2007 | A1 |
20110012662 | Ma et al. | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
101023376 | Aug 2007 | CN |
381226 | Feb 2000 | TW |
537885 | Jun 2003 | TW |
565694 | Dec 2003 | TW |
200932300 | Aug 2009 | TW |
201114411 | May 2011 | TW |
Entry |
---|
Z. Zhao et al., “Pipeiined High Precision Beamforming Delay Calculator for Ultrasound Imaging,” IEEE, 978-1-4577-1740, Jun. 2011. |
A. Kassem et al., “Pipelined Sampled-Delay Focusing CMOS Implementation for Ultrasonic Digital Beamforming,” IEEE, 0-7695-1929, Jun. 2003. |
E. Brunner, “Ultrasound System Considerations and their Impact on Front-End Components,” © Analog Devices, Inc. 2002. |
J.J. Huang, “Beamformer Design for a Digital Ultrasonic Imaging System,” National Taiwan University, Graduate Institute of Electric Engineering, 2001 (Thesis)—w/Abstract. |
I. Kim et al., “CMOS Ultrasound Transceiver Chip for High-Resolution Ultrasonic Imaging Systems,” IEEE Transactions on Biomedical Circuits and Systems, vol. 3, No. 5, Oct. 2009, 1932-4545. |
Number | Date | Country | |
---|---|---|---|
20140133270 A1 | May 2014 | US |