1. Field of the Invention
The present invention relates to an ultrasound unit having a plurality of capacitive ultrasound transducer cells, and an ultrasound endoscope including the ultrasound unit.
2. Description of the Related Art
An ultrasound diagnostic method for performing diagnosis by applying ultrasound to a subject, and visualizing an internal state of a body from an echo signal has been popular. An ultrasound endoscope is one of ultrasound diagnostic apparatuses used for the ultrasound diagnostic method. In the ultrasound endoscope, an ultrasound unit is disposed at a distal end portion of an insertion section that is to be inserted into a body. The ultrasound unit has a function to convert an electrical signal to ultrasound and transmit the ultrasound into a body, and also to receive ultrasound reflected in the body and convert the ultrasound to an electrical signal.
In the ultrasound unit, a piezoelectric ultrasound transducer using a piezoelectric ceramic material (e.g., PZT: lead zirconate titanate), or a capacitive ultrasound transducer produced by using an MEMS technology (capacitive micro-machined ultrasonic transducer: c-MUT) is used as an ultrasound transducer.
In a c-MUT type cell, a bottom electrode and a top electrode that constitutes a membrane are arranged facing each other with a cavity therebetween. When a voltage is applied between the electrodes of the cell, the membrane is deformed by an electrostatic force to generate ultrasound. On the other hand, when reflected ultrasound (echoes) reflected from an object enters the cell, the membrane is deformed. Thus, ultrasound is received by measuring capacitance between the electrodes.
Here, increasing transmission sensitivity and increasing reception sensitivity of the cell contradict. Therefore, for example, Japanese Patent Application Laid-Open Publication No. 2005-510264 discloses an ultrasound unit having a transmit-only cell having a structure emphasizing transmission sensitivity, and a receive-only cell having a structure emphasizing reception sensitivity.
An ultrasound unit of an embodiment of the present invention includes a plurality of ultrasound transducer elements each including N ultrasound transducer cells, in each of which a bottom electrode and a top electrode that constitutes a membrane are arranged facing each other with a cavity therebetween, wherein the ultrasound transducer element has N1 first ultrasound transducer cells, and N2 (where N1≠N2, N1+N2=N) second ultrasound transducer cells having higher reception sensitivity and lower transmission sensitivity than the first ultrasound transducer cells.
Also, an ultrasound endoscope of another embodiment of the present invention includes an ultrasound unit including a plurality of ultrasound transducer elements each including N ultrasound transducer cells, in each of which a bottom electrode and a top electrode that constitutes a membrane are arranged facing each other with a cavity therebetween, wherein the ultrasound transducer element has N1 first ultrasound transducer cells, and N2 (where N1≠N2, N1+N2=N) second ultrasound transducer cells having higher reception sensitivity and lower transmission sensitivity than the first ultrasound transducer cells.
Hereinafter, an ultrasound unit 30 and an ultrasound endoscope 2 having the ultrasound unit 30 of a first embodiment are described by reference to the drawings. Note that all the drawings are schematic views for explanation, and the number of constituent elements, sizes thereof, and a ratio of the sizes etc. are different from actual values.
<Configuration of an Ultrasound Endoscope System>
As shown in
A connector 44A that is connected to a light source apparatus (not shown) is disposed at a proximal end portion of the universal cord 43. A cable 45 that is detachably connected to a camera control unit (not shown) via a connector 45A, and a cable 46 that is detachably connected to the ultrasound observation apparatus 3 via a connector 46A extend out from the connector 44A. The monitor 4 is connected to the ultrasound observation apparatus 3.
The insertion section 41 is configured by continuously providing a distal end portion 47, a bending portion 48 that is located at a rear end of the distal end portion 47, and a small-diameter and long flexible tube portion 49 having flexibility that is located at a rear end of the bending portion 48 and leads to the operation section 42, sequentially from a distal end side. The ultrasound unit 30 is disposed at the distal end portion 47 (see
In the operation section 42, an angle knob 42A that performs bending control of the bending portion 48 in a desired direction, an air/water feeding button 42B that performs air feeding and water feeding operations, a suction button 42C that performs a suction operation, a treatment instrument insertion port 42D that serves as an inlet for a treatment instrument having a puncture needle or the like to be introduced into a body as described below, or the like are disposed.
As shown in
As shown in
As shown in
As shown in
The bottom electrode layer 11 has a plurality of bottom electrodes 11A, and a plurality of bottom electrode interconnections (not shown) that extend from edge portions of the bottom electrodes 11A. The bottom electrode layer 11 is connected to the bottom electrodes 11A of another cell 9 of the same element 60. The top electrode layer 16 has a plurality of top electrodes 16A, and a plurality of top electrode interconnections (not shown) that extend from the top electrodes 16A. The top electrode layer 16 is connected to the top electrodes 16A of another cell 9 of the same element 60. Each of the cells 9 has the bottom electrodes 11A and the top electrodes 16A that are arranged facing each other with the cavity 13 therebetween.
As described above, all of the bottom electrodes 11A of the plurality of cells 9 arranged in the same element 60 are connected to each other, and all of the top electrodes 16A are also connected to each other. A drive voltage is applied to the bottom electrode layer 11, and the top electrode layer 16 is at ground potential.
When a pulse voltage is applied between the bottom electrode layer 11 and the top electrode layer 16 of the element 60, a membrane (vibration section) 18 including the top electrodes 16A is vibrated by an electrostatic force to generate ultrasound. Also, when ultrasound enters from outside, the membrane 18 is deformed to change an interval between the bottom electrode layer 11 and the top electrode layer 16. Thus, the ultrasound is converted to an electrical signal based on a change in capacitance.
As shown in
Hereinafter, transmission/reception sensitivity S of the ultrasound unit 30 (the element 60) is defined as a product of transmission sensitivity ST (unit: Pa/V) and reception sensitivity SR (unit: V/Pa), and a condition under which maximum transmission/reception sensitivity S is obtained is theoretically derived.
A total number Na of the cells 9 of the element 60, a number N1a of the cells 9A, and a number N2a of the cells 9B are shown in following (Equation 11).
Na=N1a+N2a (Equation 11)
Transmission sensitivity STa of the element 60 is shown in (Equation 12).
STa=ST1a·N1a+ST2a·N2a=ST1a·N1a+ST2a·(Na−N1a) (Equation 12)
On the other hand, reception sensitivity SRa of the element 60 is shown in (Equation 13).
SRa=SR1a·N1a+SR2a·N2a=SR2a·N1a+SR2a·(Na−N1a) (Equation 13)
That is, in the ultrasound unit 30 (the element 60), the first cells 9A having high transmission sensitivity and low reception sensitivity, and the second cells 9B having low transmission sensitivity and high reception sensitivity are both used for transmission and reception.
As already described above, transmission/reception sensitivity Sa of the element 60 is defined in (Equation 14).
The number N1a of the first cells 9A where maximum transmission/reception sensitivity Sa is obtained is shown in (Equation 15) based on (Equation 14).
Note that the number N2a of the second cells 9B where the maximum transmission/reception sensitivity Sa is obtained is shown in (Equation 16).
That is, the element 60 where the number N1a of the first cells 9A is configured as shown in (Equation 15) and the number N2a of the second cells 9B is configured as shown in (Equation 16) has the maximum transmission/reception sensitivity Sa.
As described above, the ultrasound unit 30 performs transmission and reception by using both the first cells 9A suitable for transmission and the second cells 9B suitable for reception. Therefore, the ultrasound unit 30 has higher transmission sensitivity than a conventional ultrasound unit that performs transmission by using only the first cells 9A suitable for transmission. Similarly, the ultrasound unit 30 has higher reception sensitivity than a conventional ultrasound unit that performs reception by using only the second cells 9B suitable for reception.
Furthermore, the ultrasound unit 30 having the first cells 9A in the number shown in (Equation 15) and the second cells 9B in the number shown in (Equation 16) has high transmission/reception sensitivity. The ultrasound endoscope 2 including the ultrasound unit 30 has high transmission/reception sensitivity.
Note that the number (a ratio) of the cells 9 is not strictly limited to the number shown in (Equation 15) or the like, and the number only needs to be within a range of ±10% from the number shown in (Equation 15) or the like according to a relationship of arrangement or the like within the element.
That is, the number N1a of the first cells 9A only needs to satisfy following (Expression 15A) with respect to the number (X) shown in (Equation 15).
0.91X≤N1a≤1.1X (Expression 15A)
Hereinafter, a case of ST2a=½ST1a and SR2a=3SR1a is described as a specific example.
The number N1a of the first cells 9A and the number N2a of the second cells 9B are given by (Equation 17) and (Equation 18) based on (Equation 15) and (Equation 16).
That is, by setting the number of the plurality of cells 9 of the element 60 such that the first cells 9A account for 25%, and the second cells 9B account for 75%, the maximum transmission/reception efficiency is obtained.
Note that the effect is obtained when the number N1a of the first cells 9A is 22.5% (25×0.9) or more to 27.5% (25×1.1) or less of the number Na of the plurality of cells 9 as already described above.
Next, an ultrasound unit 30b and an ultrasound endoscope 2b of a second embodiment are described. Since the ultrasound unit 30b and the like are similar to the ultrasound unit 30 and the like, the same constituent elements are assigned the same reference numerals, and description is omitted.
In an element 60b of the ultrasound unit 30b, first cells 9Ab in a number N1b are transmit-only cells each having an occupancy area A1b, and second cells 9Bb in a number N2b are receive-only cells each having an occupancy area A2b (where A1b≠A2b).
That is, in the ultrasound unit 30b, a bottom electrode of the first cell 9Ab and a bottom electrode of the second cell 9Bb, which are drive potential electrodes arranged in the element 60b, are not connected together. Note that a top electrode of the first cell 9Ab and a top electrode of the second cell 9Bb, which are ground potential electrodes, may be connected together.
When an area of the transmitting/receiving section 61 where the first cells 9Ab and the second cells 9Bb are arranged in the element 60b is A, and a total of the number of the ultrasound cells constituting the element 60b is Nb, a relationship of (Equation 21) and (Equation 22) holds.
Nb=N1b+N2b (Equation 21)
A=A1b·N1b+A2b·N2b (Equation 22)
That is, the occupancy area of a cell 9b does not mean, for example; a diameter of each cavity, but is an area of a portion enclosed by a line connecting intermediate points between a center when the cell 9b is arranged in the element 60, and a center of another cell 9b around the cell 9b as shown in
(Equation 23) is obtained by transforming (Equation 22).
When transmission sensitivity of the first cells 9Ab is STb and reception sensitivity of the second cells 9Bb is SRb, transmission/reception sensitivity Sb of the element 60b is shown in (Equation 24).
It is obvious from (Equation 24) that maximum transmission/reception sensitivity Sb is obtained when the number N1b of the first cells 9Ab satisfies (Equation 25).
Note that the number N2b of the second cells 9Bb in the above case is shown in (Equation 26).
Therefore, (Equation 27) is obtained from a ratio of the numbers of the ultrasound cells 9Ab and 9Bb.
A relationship of the numbers of the ultrasound cells 9Ab and 9Bb is obtained as in (Equation 28) based on (Equation 22) and (Equation 27).
Accordingly, the maximum transmission/reception sensitivity Sb is obtained in the ultrasound unit 30b when (Equation 29) is satisfied.
Note that the number N2b of the second cells 9Bb where the maximum transmission/reception sensitivity Sb is obtained is shown in (Equation 30).
Also, the number (the ratio) of the cells 9 is not strictly limited to the number shown in (Equation 29) or the like, and the number only needs to be within a range of ±10% from the number shown in (Equation 29) or the like according to a relationship of arrangement or the like within the element.
That is, the number N1b of the first cells 9Ab only needs to satisfy following (Expression 29A) with respect to the number (Y) shown in (Equation 29).
0.9Y≤N1b≤1.1Y (Expression 29A)
Hereinafter, a case in which the area A2b of the second cell 9Bb is twice the area A1b of the first cell 9Ab, namely, A2b=2A1b is described as a specific example. The number N1b of the first cells 9Ab and the number N2b of the second cells 9Bb where the maximum transmission/reception sensitivity Sb is obtained are shown in (Equation 31) and (Equation 32) based on (Equation 29) and (Equation 30).
That is, by setting the number or the plurality of cells 9b of the element 60b such that the first cells 9Ab account for ⅓ of the number of cells, and the second cells 9Bb account for ⅔ of the number of cells, the maximum transmission/reception efficiency is obtained.
Note that the effect is obtained when the number N1b of the first cells 9Ab is 60% ((⅔)×0.9) or more to 73.3% ((⅔)×1.1) or less of the number Nb of the plurality of cells 9 as already described above.
As described above, the ultrasound unit 30b performs transmission by using only the transmit-only first cells 9Ab, and performs reception by using only the receive-only second cells 9Bb. However, the occupancy area A1b of the first cell 9Ab and the occupancy area A1b of the second cell 9Bb differ from each other unlike in the conventional ultrasound unit.
As described above, in the element 60b having the transmit-only cells and the receive-only cells, the number (the ratio) of the cells where the transmission/reception sensitivity has a maximum value is not related to the transmission sensitivity or the reception sensitivity.
The ultrasound unit 30b where each of the elements 60b has the cells 9Ab and 9Bb in the numbers shown in (Equation 31) and (Equation 32) has high transmission/reception sensitivity. The ultrasound endoscope 2b including the ultrasound unit 30b has high transmission/reception sensitivity.
Next, an ultrasound unit 30c and an ultrasound endoscope 2c of a third embodiment are described with reference to
In an element 60c of the ultrasound unit 30c, an area where ultrasound cells can be arranged is Ac, first cells 9Ac has transmission sensitivity ST1c, reception sensitivity SR1c, and an area A1c, and second cells 9Bc has transmission sensitivity ST2c (where ST1c>ST2c), reception sensitivity SR2c (where SR1c<SR2c), and an area A2c (where A1c≠A2c).
That is, (Equation 41) holds.
Ac=A1c·N1c+A2c·N2c (Equation 41)
(Equation 42) is obtained by transforming (Equation 41).
Transmission sensitivity STc of the element 60c is shown in (Equation 43).
STc=ST1c·N1c+ST2c·N2c (Equation 43)
On the other hand, reception sensitivity SRc of the element 60c is shown in (Equation 44).
SRc=SR1c·N1c+SR2·N2c (Equation 44)
Transmission/reception sensitivity Sc of the element 60c is shown in (Equation 45).
Here, α, γ, and γ are defined as follows.
α=ST1cSR1cA2c2−(ST1cSR2c+ST2cSR1c)A1cA2c+ST2cSR2cA1c2
β={(ST1cSR2c+ST2cSR1c)A2c−2ST2cSR2cA1c}Ac
γ=ST2cSR2cAc2
Accordingly, the transmission/reception sensitivity Sc is expressed in (Equation 46).
It is obvious from (Equation 46) that maximum transmission/reception sensitivity Sc is obtained when a number N1c of the first cells 9Ac satisfies (Equation 47).
On the other hand, a number N2c of the second cells 9Bc where the maximum transmission/reception sensitivity Sc is obtained is shown in (Equation 48).
Therefore, (Equation 49) is obtained based on a ratio of the respective cell numbers.
When a total of the number of the cells constituting the element 60c is Nc, (Equation 50) and (Equation 51) hold.
The maximum transmission/reception sensitivity Sc is obtained in the element 60c (the ultrasound unit 30c) in which the number N1c of the first cells 9Ac and the number N2c of the second cells 9Bc satisfy (Equation 50) and (Equation 51).
Also, the number (the ratio) of the cells 9 is not strictly limited to the number shown in (Equation 50) or the like, and the number only needs to be within a range of ±10% from the number shown in (Equation 50) or the like according to a relationship of arrangement or the like within the element.
That is, the number N1c of the first cells 9Ac only needs to satisfy following (Expression 50A) with respect to the number (Z) shown in (Equation 50).
Z·0.9≤N1c≤Z·1.1 (Expression 50A)
For example, N1c=800 and N2c=200 when Nc=1000, the transmission sensitivity ST1c=100 Pa/V, the transmission sensitivity ST2c=20 Pa/V, the reception sensitivity SR1c=300 pV/Pa, the reception sensitivity SR2c=900 pV/Pa, the area Ac=4.2 mm2, the area A1c=4000 μm2, and A2c=5000 μm2.
Note that the effect is obtained when the number N1c of the first cells 9Ac is 720 (800×0.9) or more to 880 (800×1.1) or less as already described above.
Since the ultrasound unit 30c has both of the effects of the ultrasound units 30 and 30b, the ultrasound unit 30c has higher transmission/reception sensitivity. The ultrasound endoscope 2c including the ultrasound unit 30c has higher transmission/reception sensitivity.
The present invention is not limited to the aforementioned embodiments or the like, and various changes, modifications, etc. can be made therein without departing from the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2012-132026 | Jun 2012 | JP | national |
This application is a continuation application of PCT/JP2013/063173 filed on May 10, 2013 and claims benefit of Japanese Application No. 2012-132026 filed in Japan on Jun. 11, 2012, the entire contents of which are incorporated herein by this reference.
Number | Name | Date | Kind |
---|---|---|---|
6314057 | Solomon | Nov 2001 | B1 |
20030028109 | Miller | Feb 2003 | A1 |
Number | Date | Country |
---|---|---|
1 764 162 | Jul 2007 | EP |
03-165749 | Jul 1991 | JP |
2002-336248 | Nov 2002 | JP |
2005-510264 | Apr 2005 | JP |
2009-050560 | Mar 2009 | JP |
2011-025055 | Feb 2011 | JP |
2013-034665 | Feb 2013 | JP |
2011021358 | Feb 2011 | WO |
Entry |
---|
Extended Supplementary European Search Report dated Feb. 1, 2016 from related European Application No. 13 80 4607.3. |
International Search Report dated Jul. 23, 2013 issued in PCT/JP2013/063173. |
Number | Date | Country | |
---|---|---|---|
20150087993 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2013/063173 | May 2013 | US |
Child | 14565952 | US |