The disclosure relates generally to ultraviolet radiation, and more particularly, to a device including one or more ultraviolet emitters mounted thereto for disinfecting a flowable product, such as a liquid, a suspension, a cream, a colloid, an emulsion, a powder, and/or the like, as well as flowable products relating thereto, such as containers, caps, brushes, applicators, and/or the like.
Ultraviolet (UV) radiation has been utilized to sanitize different devices. For example, there is an approach for sanitizing toothbrushes using UV light. In this approach, an apparatus includes a UV lamp of low intensity for emitting UV radiation in the 200 to 300 nanometer wavelength range, as well as some radiation in the visible range above 300 nanometers and in the ozone producing range below 200 nanometers.
Other sanitizing devices are also known in the art. For example, one approach proposes a mailbox enclosure to sanitize mail articles with UV light and other means. Another approach proposes a surgical tool sterilizing enclosure that utilizes UV light as well as chemical and other sanitizing agents.
Other approaches include a computer input device sterilization apparatus including UV sterilization in an enclosed container to kill bacteria and other disease carrying organisms. One approach includes a horizontal or vertical container dimensioned to fit over computer input devices such as keyboards, mice, trackballs, touchpads and the like. A UV source located within the container irradiates the computer input device with UV light which generates ozone gas, thereby killing any microorganisms that might reside on the computer input device. UV radiation below 200 nm can also be used to create ozone gas having germicidal characteristics. The ozone gas is circulated in and around the input device(s) to provide further sterilization with the UV radiation. A sterilization switch turns the UV source off when the container is opened. A timer/power circuit provides a timed application of power to the UV lamps to provide UV illumination consistent with the substantial sterilization of the input device in question.
There are currently also UV devices available to sterilize mobile phones, such as the UV Sterilizer for the iPhone® from Sinco-Electronic Gifts Co., which is a desktop unit. In this case, a user places his/her phone into the sterilizer for approximately five minutes. The device turns a blue light emitting diode (LED) on to indicate the start of the sterilization process. Once the blue LED turns of, the sterilization process is complete. Such devices typically utilize mercury lamps to generate the ultraviolet light.
In view of the prior art, the inventors have identified many challenges and limitations of current approaches for disinfecting various commonly used flowable products using ultraviolet radiation. For example, the inventors have noted that current approaches are not designed to disinfect some types of commonly used flowable products, such as liquids, suspensions, creams, colloids, emulsions, powders, and/or the like, as well as accessories and products relating thereto, such as containers (e.g., cases), covers (e.g., caps), brushes, applicators, and/or the like.
Aspects of the invention provide a solution including ultraviolet disinfection of a flowable product. For example, an embodiment includes an ultraviolet radiation containing case configured to enclose a volume corresponding to a flowable product. In an illustrative embodiment, at least one ultraviolet radiation source is configured to generate ultraviolet radiation for disinfecting the enclosed volume. The ultraviolet radiation source can be configured to only generate ultraviolet radiation when the volume is enclosed by a cover so that there is no risk that the user of the flowable product could be harmed.
A first aspect of the invention provides an apparatus comprising: an ultraviolet radiation containing case configured to enclose a volume corresponding to a flowable product, wherein the flowable product can be accessed when the case is open; a cover configured to selectively close and open the case; at least one ultraviolet radiation source mounted on at least one of: the case or the cover, the at least one ultraviolet radiation source configured to generate ultraviolet radiation for disinfecting the volume corresponding to the flowable product; and a sensor configured to cause the at least one ultraviolet radiation source to turn off when the volume is not closed.
A second aspect of the invention provides a system comprising: a container comprising: a first compartment including a first portion of a flowable product; a second compartment including a second portion of the flowable product; and at least one one-way channel for transferring a portion of the flowable product from the first compartment to the second compartment; an ultraviolet impermeable cover configured to enclose a volume of the container, wherein the volume includes the second compartment; at least one ultraviolet radiation source, the at least one ultraviolet radiation source configured to generate ultraviolet radiation for disinfecting the volume of the container; and a sensor located between the cover and the container, the sensor configured to cause the at least one ultraviolet radiation source to turn off when the volume is not enclosed.
A third aspect of the invention provides a system comprising: an ultraviolet radiation containing case including a flowable product stored therein; means for generating ultraviolet radiation to disinfect the flowable product; and means for controlling the generating of the ultraviolet radiation.
The illustrative aspects of the invention are designed to solve one or more of the problems herein described and/or one or more other problems not discussed.
These and other features of the disclosure will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings that depict various aspects of the invention.
It is noted that the drawings may not be to scale. The drawings are intended to depict only typical aspects of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbering represents like elements between the drawings.
As indicated above, aspects of the invention provide a solution for disinfecting flowable products using ultraviolet radiation. As used herein, a flowable product is any product that includes liquids, suspensions, creams, colloids, emulsions, powders, and/or the like. In addition, a flowable product includes any accessories or ancillary products used in conjunction with the liquids, suspensions, creams, colloids, emulsions, powders, and/or the like, including containers (e.g., cases), covers (e.g., caps), brushes, applicators, and/or the like. In an embodiment, an ultraviolet impermeable cover (also referred to as a cap) is configured to enclose a volume corresponding to a flowable product (e.g., where the flowable product is stored, an area formed by the flowable product, and/or the like). In an illustrative embodiment, at least one ultraviolet radiation source is configured to generate ultraviolet radiation for disinfecting the enclosed area, and can be mounted on the case and/or cover. A sensor can be located between the case and the cover and be configured to cause the at least one ultraviolet radiation source to turn off (or equivalently not turn on) when the area is not enclosed.
As used herein, unless otherwise noted, the term “set” means one or more (i.e., at least one) and the phrase “any solution” means any now known or later developed solution. Furthermore, as used herein, ultraviolet radiation/light means electromagnetic radiation having a wavelength ranging from approximately ten nanometers (nm) to approximately four hundred nm, while ultraviolet-C (UV-C) means electromagnetic radiation having a wavelength ranging from approximately one hundred nm to approximately two hundred eighty nm, ultraviolet-B (UV-B) means electromagnetic radiation having a wavelength ranging from approximately two hundred eighty to approximately three hundred fifteen nanometers, and ultraviolet-A (UV-A) means electromagnetic radiation having a wavelength ranging from approximately three hundred fifteen to approximately four hundred nanometers. As also used herein, a material/structure is considered to be “reflective” to ultraviolet light of a particular wavelength when the material/structure has an ultraviolet reflection coefficient of at least thirty percent for the ultraviolet light of the particular wavelength. In a more particular embodiment, a highly ultraviolet reflective material/structure has an ultraviolet reflection coefficient of at least eighty percent. Furthermore, a material/structure is considered to be “transparent” to ultraviolet light of a particular wavelength when the material/structure allows a significant amount of the ultraviolet radiation to pass there through (e.g., at least ten percent of the ultraviolet light radiated at a normal incidence to an interface of the material/structure).
As used herein, the term “disinfection” and its related terms means treating an area, which can include interior surfaces forming the area, a portion of a flowable product present in the area, and/or the like, so that the area includes a sufficiently low number of contaminants (e.g., chemical) and microorganisms (e.g., virus, bacteria, and/or the like) to allow the flowable product to be handled as part of a desired human interaction with no or no reasonable risk for the transmission of a disease or other harm to the human. For example, disinfection of an area means that the area (including some portion of the flowable product) has a sufficiently low level of active microorganisms and/or concentration of other contaminants that a typical human can handle the flowable product without suffering adverse effects from the microorganisms and/or contaminants present on the flowable product and/or within the area. In addition, disinfection can include sterilization. As used herein, the term “sterilization” and its related terms means neutralizing an ability of a microorganism to reproduce, which may be accomplished without physically destroying the microorganism. In this example, a level of microorganisms present on and/or in the area cannot increase to a dangerous level and will eventually be reduced, since the replication ability has been neutralized. A target level of microorganisms and/or contaminants can be defined, for example, by a standards setting organization, such as a governmental organization.
Turning to the drawings,
The ultraviolet impermeable cap 2 can be configured to disinfect the enclosed volume 8 corresponding to the flowable product. As mentioned herein, in an embodiment, flowable products can include liquids, suspensions, creams, colloids, emulsions, powders, and/or the like, as well as items relating thereto, such as containers (e.g., cases), covers (e.g., caps), brushes, applicators, and/or the like. For example, the flowable product can include a tube of toothpaste, a lipstick, a cosmetic powder case, a container of cream, an eyeliner pencil, and/or the like. As such, the volume corresponding to the flowable product can be the opening of such products used by a user to access the flowable product. Additionally, the flowable product can also include an eyelash brush, a cosmetic brush, and/or the like. The volume corresponding to such flowable products can a portion of the item on which the flowable product is applied to facilitate use by a user (e.g., the bristles of the eyelash brush or the cosmetic brush).
The ultraviolet impermeable cap 2 can include a sensor 6 configured to sense when the volume 8 corresponding to the flowable product is enclosed by the ultraviolet impermeable cap 2. The sensor 6 can be located between the ultraviolet impermeable cap 2 and the flowable product (within the volume 8). The sensor 6 can be connected, e.g., by a wireless or wired communication channel, to a control system 12 that manages the ultraviolet radiation generated by the ultraviolet radiation source(s) 4. The control system 12 can include an ultraviolet radiation indicator 14 that indicates to a user when ultraviolet radiation is being generated.
The ultraviolet impermeable cap 2 can also include an external interface 16A. The external interface 16A can include an interface device, such as a display, which provides a plurality of statistical information regarding the flowable product to a user. The statistical information can be used by the user to, for example, estimate a lifetime for the flowable product. For example, the statistical information can include a number of times the flowable product was disinfected, a number of times the flowable product was used, a frequency of usage, and/or the like. The external interface 16A can include a touch screen display that would allow the user to control one or more aspects of the operation of the ultraviolet radiation source(s) 4.
The ultraviolet impermeable cap can be thermally managed through a plurality of wings 18. The wings 18 are designed to dispose of excess heat generated by the ultraviolet radiation source(s) 4, e.g., using air convective cooling. The wings 18 can be made out of, for example, conductive metals such as aluminum or aluminum alloy in order to facilitate the heat transfer from the cap 2 to the surrounding ambient. In addition, the ultraviolet impermeable cap 2 can comprise at least one reflector 20 mounted to an interior surface of the ultraviolet impermeable cap 2. The reflector 20 can include a reflective material, such as highly polished aluminum, a polytetrafluoroethylene (PTFE, such as Teflon), a highly ultraviolet reflective expanding polytetrafluoroethylene (ePTFE) membrane (e.g., GORE® Diffuse Reflector Material), and/or the like, that reflects at least fifty percent of the ultraviolet radiation.
The ultraviolet impermeable cap 2 can also include a sensor 22 for obtaining attribute information regarding the flowable product and/or the volume 8 for feedback to the control system 12. The control system 12 can use the attribute information to manage the ultraviolet radiation generated by the ultraviolet radiation source(s) 4 using any solution.
In an embodiment shown in
The second compartment 26 can have a cover 27 at least partially fabricated of an ultraviolet transparent material. Suitable illustrative ultraviolet transparent materials for the cover 27 include fluoropolymers, such as: fluorinated ethylene propylene (FEP), ethylene FEP (EFEP), polytetrafluoroethylene (PTFE), ethylene chlorotrifluoroethylene (ECTFE), polychlorotrifluoroethene (PCTFE), perfluoroalkoxy alkane (PFA), polyvinylidene fluoride (PVDF), ethylene tetrafluoroethylene (ETFE), tetrahydrocannabivarin (THV), THE, polylactic acid (PLA), low-density polyethylene (LDPE), MFA, and/or the like. The cover 27 can include a set of openings, which allow the flowable product 29 to be extracted from the second compartment 26, e.g., by applying pressure to the second compartment 26. The set of openings can include a number of openings of a particular size, which can be selected based on the flowable product 29 using any solution. While the cover 27 is shown located on the top of the second compartment 26, it is understood that any portion of the second compartment can be fabricated using an ultraviolet transparent material.
The cap 2 can be attached to the container 40 using any solution, e.g., a screw thread. The cap 2 can include a set of ultraviolet radiation sources 4, which, when the cap 2 is securely attached to the container 40, are positioned in a manner that ultraviolet radiation is directed at the ultraviolet transparent cover 27 and the opening(s) and/or flowable product 29 present thereon. As a result, at least some of the ultraviolet radiation will pass through the ultraviolet material forming the cover 27 and into the second compartment 26 and/or flowable product 29 present in the second compartment 26. In this manner, the ultraviolet radiation source(s) 4 can be operated as described herein to disinfect the portions of the flowable product 29 and/or the container 40 most susceptible to contamination.
In an alternative embodiment, as seen in
The ultraviolet impermeable cap 2 can be manufactured to be any size to fit any type of container corresponding to a flowable product for disinfection. The ultraviolet impermeable cap 2 can connect to the flowable product using any means. For example, the ultraviolet impermeable cap 2 can include threading that fastens to threading on the container corresponding to the flowable product. In an embodiment, the ultraviolet impermeable cap 2 can be hingedly connected via a hinge 11 to a flowable product (e.g., container 40 as shown in
In an embodiment, the flowable product may not include a container having an opening with threading, and/or the like, for attaching an ultraviolet impermeable cap. In this situation, a case can form substantially all of an enclosure corresponding to the flowable product within which a volume corresponding to the flowable product can be disinfected. For example, in
In an embodiment, as shown in
In an embodiment, the flowable product stored within the first compartment 24 of a container 40 can also be disinfected. As seen in
Turning now to
Turning now to
Turning now to
In a more specific embodiment, the computer system 54 can control the ultraviolet radiation source(s) 4 such that the ultraviolet radiation sources operate at one or more wavelengths such that the power distribution over wavelength and illumination pattern/sequence are selected so that the properties of the flowable product exposed to the ultraviolet radiation are modified. The properties of the flowable product that are modified cannot be readily detectable without specialized equipment when illuminated by less than approximately two hours of continuous illumination. In an embodiment, the intrinsic properties with numerical values (e.g., color and viscosity) are modified by no more than approximately ten percent of their original value. The properties of the exposed product can include intrinsic properties (e.g., color, smell appearance, viscosity, and/or the like) or functional properties. The color property is measured by an RGB vector and the approximately ten percent threshold is attested by looking at the vector norm between two colors.
In an embodiment, during an initial period of operation (e.g., after the ultraviolet impermeable cap 2 is attached to a flowable product 40), the computer system 54 can acquire data from the feedback component 60 regarding one or more attributes of the flowable product 40 and generate data 58 for further processing. The data 58 can include a presence of biological activity (e.g., microorganisms, viruses, bacteria, and/or the like) within an enclosed area of the flowable product 40, a disinfection schedule history for the flowable product 40, a determination of whether the ultraviolet impermeable cap 2 is closed or open, and/or the like. The flowable product 40 can include any product that a user 1 desires to be disinfected. For example, the flowable product 40 can comprise a liquid, a colloid, a cream, a suspension, an emulsion, a powder and/or the like, and any accessories used in conjunction with the flowable product 40, including containers, caps, brushes, applicators, and/or the like. For example, illustrative flowable products 40 can include toothpaste, creams, lotions, cosmetics (e.g., lipstick, eyeliner, powder compacts, and/or the like), brushes, and/or the like. The computer system 54 can use the data 58 to control one or more aspects of the ultraviolet radiation generated by the ultraviolet radiation source(s) 4.
Furthermore, one or more aspects of the operation of the ultraviolet radiation source 4 can be controlled by a user 1 via an external interface component 16A. The external interface component 16A can be located on an exterior portion of the ultraviolet impermeable cap 2 and allow the user 1 to choose when to turn on the ultraviolet radiation source 4. However, it is understood that the monitoring and/or control system 12 (e.g., via a sensor and/or switch 6 shown in
The computer system 54 is shown including a processing component 61 (e.g., one or more processors), a storage component 62 (e.g., a storage hierarchy), an input/output (I/O) component 16B (e.g., one or more I/O interfaces and/or devices), and a communications pathway 64. In general, the processing component 61 executes program code, such as the analysis program 56, which is at least partially fixed in the storage component 62. While executing program code, the processing component 61 can process data, which can result in reading and/or writing transformed data from/to the storage component 62 and/or the I/O component 16B for further processing. The pathway 64 provides a communications link between each of the components in the computer system 54. The I/O component 16B and/or the external interface component 16A can comprise one or more human I/O devices, which enable a human user 1 to interact with the computer system 54 and/or one or more communications devices to enable a system user 1 to communicate with the computer system 54 using any type of communications link. To this extent, during execution by the computer system 54, the analysis program 56 can manage a set of interfaces (e.g., graphical user interface(s), application program interface, and/or the like) that enable human and/or system users 1 to interact with the analysis program 56. Furthermore, the analysis program 56 can manage (e.g., store, retrieve, create, manipulate, organize, present, etc.) the data, such as data 36, using any solution.
In any event, the computer system 54 can comprise one or more general purpose computing articles of manufacture (e.g., computing devices) capable of executing program code, such as the analysis program 56, installed thereon. As used herein, it is understood that “program code” means any collection of instructions, in any language, code or notation, that cause a computing device having an information processing capability to perform a particular function either directly or after any combination of the following: (a) conversion to another language, code or notation; (b) reproduction in a different material form; and/or (c) decompression. To this extent, the analysis program 56 can be embodied as any combination of system software and/or application software.
Furthermore, the analysis program 56 can be implemented using a set of modules 66. In this case, a module 66 can enable the computer system 54 to perform a set of tasks used by the analysis program 56, and can be separately developed and/or implemented apart from other portions of the analysis program 56. When the computer system 54 comprises multiple computing devices, each computing device can have only a portion of the analysis program 56 fixed thereon (e.g., one or more modules 66). However, it is understood that the computer system 54 and the analysis program 56 are only representative of various possible equivalent monitoring and/or control systems 12 that may perform a process described herein. To this extent, in other embodiments, the functionality provided by the computer system 54 and the analysis program 56 can be at least partially implemented by one or more computing devices that include any combination of general and/or specific purpose hardware with or without program code. In each embodiment, the hardware and program code, if included, can be created using standard engineering and programming techniques, respectively. In another embodiment, the monitoring and/or control system 12 can be implemented without any computing device, e.g., using a closed loop circuit implementing a feedback control loop in which the outputs of one or more sensing devices are used as inputs to control the operation of one or more other devices (e.g., LEDs). Illustrative aspects of the invention are further described in conjunction with the computer system 54. However, it is understood that the functionality described in conjunction therewith can be implemented by any type of monitoring and/or control system 12.
Regardless, when the computer system 54 includes multiple computing devices, the computing devices can communicate over any type of communications link. Furthermore, while performing a process described herein, the computer system 54 can communicate with one or more other computer systems, such as the user 1, using any type of communications link. In either case, the communications link can comprise any combination of various types of wired and/or wireless links; comprise any combination of one or more types of networks; and/or utilize any combination of various types of transmission techniques and protocols.
The system 100 also can include an ultraviolet radiation indicator 14 (e.g., an LED), which can be operated by the computer system 54 to indicate when ultraviolet radiation 13 is being generated and directed at the flowable product 40. The ultraviolet radiation indicator 14 can include one or more LEDs for emitting a visual light for the user 1. In another embodiment, the ultraviolet radiation indicator 14 can include a sound or a vibration for a predetermined amount of time to indicate that ultraviolet radiation 13 is being and/or is no longer being generated at the flowable product 40.
Turning now to
The attribute data acquired by the feedback component 60 can include any combination of a plurality of attributes of the flowable product 40 located therein. Illustrative attributes for the flowable product 4 can include: a presence of biological activity in an enclosed area of the flowable product 40, a determination of whether the ultraviolet impermeable cap 2 is open or closed, a change in the physical appearance of the flowable product 40 subjected to ultraviolet radiation 13, and/or the like. A sensing device can include a sensor and/or a switch 6 (
In the case of determining a presence of biological activity within the enclosed volume corresponding to the flowable product 40, the sensing devices (e.g., sensor 22) can also determine a location of the biological activity, a type of biological activity (e.g., type of organism), a concentration of the biological activity, an estimated amount of time an organism has been in a growth phase (e.g., exponential growth and/or stationary), and/or the like. Furthermore, the sensor 22 can determine information on the variation of the biological activity over time, such as a growth rate, a rate with which an area including the biological activity is spreading, and/or the like. In an embodiment, a set of biological activity dynamics are related to various attributes of bacteria and/or virus activity within the enclosed volume corresponding to the flowable product 40, including, for example, the presence of detectable bacteria and/or virus activity, measured bacteria and/or virus population/concentration time dynamics, growth phase, and/or the like.
In an embodiment, to determine the presence of biological activity within the enclosed volume corresponding to the flowable product 40, the sensor 22 can include at least one of a visual camera or a chemical sensor. The visual camera can acquire visual data (e.g., visual, electronic, and/or the like) used to monitor the enclosed volume corresponding to the flowable product 40, while the chemical sensor can acquire chemical data (e.g., chemical, electronic, and/or the like) used to monitor the enclosed area of the flowable product 40. For example, when the monitoring and/or control system 12 is operating the ultraviolet radiation source 4, a visual camera and/or a chemical sensor 22 monitoring the enclosed volume corresponding to the flowable product 40 may be operated to detect the presence of microorganisms. In a specific embodiment, the visual camera 22 comprises a fluorescent optical camera that can detect bacteria and/or viruses that become fluorescent under ultraviolet radiation. However, it is understood that a visual camera and a chemical sensor are only illustrative of various types of sensors that can be implemented. For example, the sensor 22 can include one or more mechanical sensors (including piezoelectric sensors, various membranes, cantilevers, a micro-electromechanical sensor or MEMS, a nanomechanical sensor, and/or the like), which can be configured to acquire any of various types of data regarding the enclosed volume corresponding to the flowable product 40.
The monitoring and/or control system 12 can be configured to control and adjust a direction, an intensity, a pattern, and/or a spectral power (e.g., wavelength) of the at least one ultraviolet radiation source 4, based on attribute data acquired by the feedback component 60. The monitoring and/or control system 12 can control and adjust each property of the ultraviolet radiation source 4 independently. For example, the monitoring and/or control system 12 can adjust the intensity, time duration, and/or time scheduling (e.g., including duration (e.g., exposure/illumination time)), duty cycle, time between exposures/illuminations, and/or the like) of the ultraviolet radiation source 4 for a given wavelength. Each of the properties of the ultraviolet radiation source 4 can be adjustable and controlled by the monitoring and/or control system 12 according to data provided by the feedback component 60.
The monitoring and/or control system 12 can also be configured to adjust the direction of the ultraviolet radiation 13 according to a location of the biological activity detected on the flowable product 40 within the enclosed area by the sensor 22 using any solution. The monitoring and/or control system 12 can be configured to utilize a target timing, intensity, and/or spectral power of the ultraviolet radiation according to a type of biological activity. That is, the sensor 22 can sense locations of higher levels of biological activity on specific areas on the flowable product 40, and the ultraviolet radiation source 4 can be configured by the monitoring and/or control system 12 to direct higher doses (by increasing intensity or exposure) of ultraviolet radiation at those particular areas on flowable product 40 with higher levels of biological activity (e.g., non-uniform ultraviolet radiation).
The sensing devices can also include a sensor 6 that can sense that the ultraviolet impermeable cap 2 is physically open or closed (e.g., unattached or attached to the flowable product 40). In response to detecting that the ultraviolet impermeable cap 2 is closed (e.g., attached to the flowable product 40), the monitoring and/or control system 12 can be configured to automatically turn on the ultraviolet radiation 13. In one embodiment, the monitoring and/or control system 12 can be configured to set a periodic or an aperiodic schedule for the ultraviolet radiation when the ultraviolet impermeable cap 2 is closed. This (periodic or aperiodic) schedule can be interrupted when the sensor 6 senses that the ultraviolet impermeable cap 2 is opened (e.g., unattached to the flowable product 40) and the monitoring and/or control system 2 can be configured to turn off the ultraviolet radiation. In this case, the schedule (periodic or aperiodic) can be resumed once the sensor 6 senses the ultraviolet impermeable cap 2 is closed again.
The feedback component 60 can also include a sensing device (e.g., sensor 22) that can sense a change in the color, smell, conductive properties, and/or the like of the flowable product 40 within the enclosed area. In response to a change that exceeds a threshold, the monitoring and/or control system 12 can be configured to adjust the ultraviolet radiation 13 accordingly. For example, an intrinsic property (e.g., color and/or viscosity) of the flowable product 40 can be modified by no more than approximately ten percent of the original value for the flowable product 40.
It is understood that the system 100 may include a power component 10 to supply power to one or more of the various components of system 100, such as ultraviolet radiation sources 4, feedback component 60, monitoring and/or control system 12, and/or the like. The power component 10 can be separate from the ultraviolet impermeable cap 2 (e.g., an electrical cord enabling power to be obtained via an electric grid (e.g., a household outlet), as seen in
For each embodiment of the ultraviolet impermeable cap 2 including the ultraviolet radiation source(s) 4, the ultraviolet impermeable cap 2 can be configured to provide at least a target amount of mechanical protection for the flowable product 40 attached to the ultraviolet impermeable cap 2. For example, the target amount of mechanical protection can provide at least ten feet drop protection for the flowable product 40 attached to the ultraviolet impermeable cap 2, which can be measured by a drop test. The drop test can include dropping the ultraviolet impermeable cap 2 attached to the flowable product 40 from a height of approximately ten feet. This drop test can be performed multiple times, while capturing images of the landing each time. The flowable product 40 attached to the ultraviolet impermeable cap 2 can be examined after each drop to ensure the no significant damage has occurred. In an embodiment, portions of an exterior of the ultraviolet impermeable cap 2 can include a material that absorbs the impact from the drop. For instance, portions of the exterior of the ultraviolet impermeable cap 2 can be made of rubber or plastic. Additionally, the material can rubberized polycarbonate, polycarbonate, an acrylonitrile butadiene styrene (ABS) composite, polyurethane composites, and/or the like.
As described herein, embodiments of the ultraviolet impermeable cap 2 can be implemented to be a part of any type of flowable product 40.
While shown and described herein as a method and system for disinfecting an volume corresponding to a flowable product, it is understood that aspects of the invention further provide various alternative embodiments. For example, in one embodiment, the invention provides a computer program fixed in at least one computer-readable medium, which when executed, enables a computer system to disinfect a flowable product using a process described herein. To this extent, the computer-readable medium includes program code, such as the analysis program 56 (
In another embodiment, the invention provides a method of providing a copy of program code, such as the analysis program 56 (
In still another embodiment, the invention provides a method of generating a system for disinfecting a volume corresponding to a flowable product. In this case, the generating can include configuring a computer system, such as the computer system 54 (
The foregoing description of various aspects of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously, many modifications and variations are possible. Such modifications and variations that may be apparent to an individual in the art are included within the scope of the invention as defined by the accompanying claims.
The current application is a continuation of U.S. application Ser. No. 14/686,004, entitled “Ultraviolet Disinfection Case,” filed on 14 Apr. 2015, which is a continuation-in-part of U.S. application Ser. No. 14/217,694, filed on 18 Mar. 2014, now U.S. Pat. No. 9,006,680, which claims the benefit of U.S. Provisional Application No. 61/802,839, filed on 18 Mar. 2013, and U.S. Provisional Application No. 61/939,243, filed on 12 Feb. 2014, each of which is hereby incorporated by reference in its entirety to provide continuity of disclosure.
Number | Name | Date | Kind |
---|---|---|---|
4806770 | Hylton et al. | Feb 1989 | A |
6278122 | Gagnon | Aug 2001 | B1 |
6458331 | Roberts | Oct 2002 | B1 |
6483119 | Baus | Nov 2002 | B1 |
6544727 | Hei | Apr 2003 | B1 |
6605260 | Busted | Aug 2003 | B1 |
6923367 | Grossman et al. | Aug 2005 | B1 |
7372044 | Ross | May 2008 | B2 |
7553456 | Gaska et al. | Jun 2009 | B2 |
7634996 | Gaska et al. | Dec 2009 | B2 |
8277734 | Koudymov et al. | Oct 2012 | B2 |
8318089 | Brown-Skrobot et al. | Nov 2012 | B2 |
8330121 | Douglas | Dec 2012 | B2 |
8334521 | Deshays | Dec 2012 | B2 |
8481970 | Cooper et al. | Jul 2013 | B2 |
8980178 | Gaska et al. | Mar 2015 | B2 |
9006680 | Bettles et al. | Apr 2015 | B2 |
9034271 | Shur et al. | May 2015 | B2 |
9061082 | Gaska et al. | Jun 2015 | B2 |
9138499 | Bettles et al. | Sep 2015 | B2 |
9179703 | Shur et al. | Nov 2015 | B2 |
9724441 | Shur et al. | Aug 2017 | B2 |
9750830 | Shur et al. | Sep 2017 | B2 |
9795699 | Shur et al. | Oct 2017 | B2 |
9802840 | Shturm et al. | Oct 2017 | B2 |
9919068 | Shur et al. | Mar 2018 | B2 |
9981051 | Shur et al. | May 2018 | B2 |
20060178600 | Kennedy et al. | Aug 2006 | A1 |
20070255301 | Freeman et al. | Nov 2007 | A1 |
20100061887 | Harper et al. | Mar 2010 | A1 |
20130048545 | Shatalov et al. | Feb 2013 | A1 |
20130239803 | Palmer | Sep 2013 | A1 |
20140202962 | Bilenko et al. | Jul 2014 | A1 |
20150217011 | Bettles et al. | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
201046243 | Apr 2008 | CN |
1360932 | Nov 2003 | EP |
1897898 | Mar 2008 | EP |
20080023244 | Mar 2008 | KR |
100951612 | Apr 2010 | KR |
20110003101 | Jan 2011 | KR |
10-2011-0054730 | May 2011 | KR |
101237462 | Feb 2013 | KR |
20130135675 | Dec 2013 | KR |
2010070432 | Jun 2010 | WO |
Entry |
---|
Chinese Application No. 201480016435.3, Office Action3 (with English translation), Feb. 13, 2018, 6 pages. |
CamelBak, “All Clear UV Purifier,” 2012, 8 pages. |
Spectroline CB-4000A CellBlaster Operator's Manual, Sep. 2013, 26 pages. |
UV Sterilizer for iPhone, printed from http://www.sinco-elec.com/e_products/Portable-UV-Sterilizer-for-iPhoneiPod-p126.html on Dec. 17, 2013. |
UV Light Sterilizer Cell Phone iPode iPhone ear bud Sanitizer—Keeps Electronic Devices Germ Free!, printed from http://www.ankaka.com/uv-light-sterilizer-cell-phone-ipod-iphone-ear-bud-sanitizer-keeps-electronic-devices-germ-free_p48896.html on Dec. 17, 2013. |
Chang, H., U.S. Appl. No. 14/686,004, Notice of Allowance, dated Jun. 27, 2017, 11 pages. |
Chang, H., U.S. Appl. No. 14/686,004, Non-Final Rejection, dated Jan. 27, 2017, 5 pages. |
Chang, H., U.S. Appl. No. 14/686,004, Final Reject, dated Aug. 9, 2016, 9 pages. |
Chang, H., U.S. Appl. No. 14/686,004, dated Feb. 26, 2016, 11 pages. |
Wells, N., U.S. Appl. No. 14/217,694, Notice of Allowance, dated Nov. 28, 2014, 21 pages. |
Chinese Application No. 201480016435.3, Office Action2 (with English translation), Jul. 31, 2017, 11 pages. |
Chinese Application No. 201480016435.3, Office Action1 (with English translation), dated Jan. 25, 2017, 19 pages. |
German Application No. 11 2014 001 503.2, Office Action1 (English translation is not available), dated Apr. 3, 2017, dated May 16, 2017, 12 pages. |
Han, I., International Application No. PCT/US2014/030962, International Search Report and Written Opinion, dated Oct. 10, 2014, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20180036444 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
61802839 | Mar 2013 | US | |
61939243 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14686004 | Apr 2015 | US |
Child | 15785687 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14217694 | Mar 2014 | US |
Child | 14686004 | US |