The present invention relates to a mercury-less ultraviolet generating device, which utilizes a novel electric discharge technology of efficiently and stably generating a high-density weakly-ionized low-temperature plasma, and also relates to a lighting device, which applies the generated ultraviolet rays to a lighting.
Ultraviolet and vacuum ultraviolet rays obtained from a discharge gas of hydrogen, xenon, or krypton are widely used in various fields such as photochemical engineering, semiconductor manufacturing process, food and medical sterilization, and lighting devices when the rays are converted into visible light by exciting fluorescent material. However, mercury is a harmful substance to global environment and is refrained from being used, while xenon and krypton gases are rare materials, and their use is limited. Therefore, it is necessary to develop an ultraviolet and vacuum ultraviolet generating device and a lighting device using a usual molecular gas, other than mercury and rare gasses, as a discharge gas.
Generally, in low-pressure glow discharge using monatomic mercury and xenon gases, the each emitted light spectrum is discontinuous and has a line spectrum with a wavelength unique to a discharge gas. This is because, when atoms excited with electrons are relaxed, a transition between in specific energy state levels occurs, and according to this, lights are emitted.
On the other hand, in low-pressure glow discharge using a molecular gas formed of two or more atoms, each emitted light spectrum is continuous. This is because vibrational and rotational excitation states are added to an electronic excitation energy state to make a transition between energy levels continuous. Therefore, to efficiently obtain ultraviolet radiation from a molecular gas, it is required to select a gas with an appropriate energy transition state from various molecular gases.
Also, in glow discharge plasma, to effectively excite the molecular gas with a sufficient strength, a high-output, highly-efficient plasma generating device is required.
The Applicant previously filed an application, Japanese Unexamined Patent Application Publication No. 8-330079, in which a phase controlled multi-output-type alternating-current power supply device constituted of a plurality of alternating-current outputs with the phases arranged (controlled/adjusted) is disclosed as a low-frequency alternating-current power supply capable of stably generating a large amount of discharge (weakly-ionized low-temperature plasma) at low cost. By using the aforesaid power supply, the applicant further discloses an electrode assembly to efficiently generate electric discharge in Japanese Patent No. 3772192, and a method of configuring a magnetic field in Japanese Patent No. 3742866. The method of constituting said electrode assembly is to closely attach and fix a plurality of electrode pieces to a cooled inner wall of the device via an thermally conductive insulating sheet, and the method of constituting a magnetic field is to establish a magnetic field in the vicinity of each electrode surface to suppress outflow of plasma by attaching a plurality of magnets onto the outer wall of the device.
The Applicant further discloses a high-output, highly-efficient discharge-type lighting device with a high energy-saving effect by using the wall-fixed electrode pieces to efficiently generate electric discharge with a phase-controlled polyphase alternating-current power supply and the multi-poled magnetic field in Japanese Patent No. 3472229.
It is an object of the present invention to apply polyphase alternating-current discharge plasma in a multi-poled magnetic field to an ultraviolet generating light source without using mercury, which is harmful to global environment, but using a molecular gas to generate high-luminance, highly-efficient ultraviolet rays.
To attain this object, the primary feature of the present invention is generating a plurality of ultraviolet rays by exciting a discharge gas with a weakly-ionized low-temperature plasma, wherein the discharge gas is a mixed gas of a nitric oxide and a diluent gas.
Related documents are as follows:
4) Research Reports of the Postgraduate Electronic Science and Technology Research course, Shizuoka University (29)
Note that, although no reference is made to in these related documents, it has been conventionally known that nitric oxide gas NO has an absorption spectrum or an emission spectrum (molecular potential curve) called a γ spectrum in an ultraviolet region from 150 nm to 230 nm.
Related Document 1) describes the case in which ultraviolet rays are emitted with discharge by using only NO gas. Since the filling NO gas dissociates with discharge to change composition, a method of preventing this is suggested. Also, to prevent the depletion of the metal electrode pieces by reacting with oxygen dissociated from NO due to the exposed metal electrode pieces, the metal electrode pieces are coated with metal oxide before being inserted inside the discharge tube.
Related Document 4) describes a method of using discharge in a mixed gas of nitrogen N2 and oxygen O2 without using nitric oxide NO itself, that is, dissociating nitrogen molecules and oxygen molecules into nitrogen atoms N and oxygen atoms O respectively to synthesize nitric oxide NO.
On the other hand, Related Document 2) and Document 3) are an application and a presentation by the inventors and others regarding a power supply for use in the present invention, but nothing concerning the present invention is disclosed.
A feature of the present invention is that effective ultraviolet rays can be emitted from NO with an intensity at a practical level for the first time ever by mixing nitrogen with nitric oxide NO. Thus, the present invention is totally different from the above Related Documents 1) to 4).
In the present invention, since a mixed gas of nitric oxide and a diluent gas is used as a discharge gas, strong ultraviolet rays can be obtained even with low electric power. By applying these rays to a fluorescent material, a high-luminance, highly-efficient, mercury-less lighting device can be achieved.
In the following, an embodiment of the present invention is described.
In the lighting device, twelve sheet-shaped divisional electrodes 1 are buried into a barrier layer 2 with slight spaces a therebetween, and are closely attached and fixed with a substrate 31 on a bottom surface of a flat container 3.
An opposite surface facing the substrate 31 is covered with a light extraction window 32 with its inside coated with a fluorescent material b (not shown in
The divisional electrodes 1 are disposed so as to have as large area as possible to cover the entire substrate 31.
As the barrier layer 2, a material with an excellent electric insulation and thermal conductivity is used, for example, quartz glass or boron nitride, to form an insulator layer.
On the outside of the substrate 31, twelve+one rod magnets 4 arranged with adjacent polarities opposite to each other are closely attached and fixed each along the spaces a. The arrows depicted on the magnets 4 indicate directions of magnetic poles, and with these, a multi-poled magnetic field is formed so that the magnetic lines of force cover the surface of the divisional electrodes 1.
The outside of the substrate 31 having the magnets 4 mounted thereon is covered with a magnetic shield plate 5, thereby not diverging the magnetic lines of force to the outside but concentrating them onto the inside.
As the magnets 4 for a multi-poled magnetic field, electromagnetic coils may be used in place of permanent magnets.
Alternatively, sheet magnets 4, such as rubber magnets, may be interposed between the barrier layer 2 and the substrate 31 or be pasted on the outside of the substrate 31 to form a multi-poled magnetic field. Thus, the thickness of each of the magnets 4 is decreased, and accordingly the shape of the lighting device can be made thinner and compact.
Here, although the positional relation between the magnets 4 and the divisional electrodes 1 is arbitrary,
To the twelve sheets of divisional electrodes 1, as depicted in
The twelve-phase alternating-current power supply 6 is configured by making a star connection of low-frequency alternating-current power supplies with their frequencies, amplitudes, and phases (including waveform) controlled. The entire power supply has a floating potential remained as it is by an isolation transformer, then discharge is caused only between the divisional electrodes 1.
As for the number of phases of the power supply, in the case of four phases or more, as the number of phases increases, a uniform region in a potential distribution, that is, a uniform region in an electric field, increases. However, in the case of twelve phases or more, the increasing tendency is saturated. Therefore, twelve phases are within a practical category.
The lighting device in which the present invention is implemented is configured as described above. The inside of the flat container 3 is vacuum evacuated with an exhaust device (not shown), and 1 Torr or less of a molecular gas for use in discharge light emission fills therein or is flowed thereinto.
This molecular gas is namely a discharge gas and, in the present invention, a mixed gas of nitric oxide and a diluent gas is used. As a diluent gas, a chemically stable gas having a metastable level slightly higher than an excitation level of nitric oxide of about 6 eV is used. Specifically, nitrogen gas is optimum. The reason is that the nitrogen gas has a metastable state at an energy level slightly higher than excitation energy of nitric oxide emitting ultraviolet rays of 300 nm or shorter.
When dilution is made with Ar gas having a similar metastable level in place of the nitrogen gas, as depicted in a lower diagram in
Other than nitrogen gas and Ar gas, xenon gas can be used. Xenon Xe has a metastable level at an energy level of 8.32 eV, which is slightly higher than the excitation level of about 6 eV of nitric oxide, and therefore an effect approximately equivalent to that of the nitrogen gas can be expected. However, Xe has an atomic mass of 131, and is much heavier than nitric oxide having a molecular mass of 30. Therefore, when they are compared with each other, the nitrogen molecular gas (with a molecular weight of 28) is lighter than the xenon gas, and thus can be suitable as a diluent gas.
Note that an upper diagram in
The reason for nitrogen being effective as a diluent gas for nitric oxide is as follows. The nitrogen molecules, which form a main filling gas, are immediately recombined with oxygen dissociated from nitric oxide molecules due to discharge, and therefore changing the composition of the nitric oxide gas due to discharge is avoided and, as a result, stable, strong ultraviolet rays can be obtained.
As a molecular gas, various compounds have been studied and tested so far. In particular, compounds that become a gas state at room temperature or when slightly heated, such as carbon C, nitrogen N, oxygen O, sulfur S, selenium Se, and tellurium Te, have been tested. A major problem is that, in a discharge state, a compound is dissociated to form another solid compound in a device and the composition of the molecular gas is changed from an initial state, or a light extraction window is fogged.
And, the phase-controlled twelve-output alternating-current power supply of 1 kW or lower is connected to the twelve divisional electrodes 1 to supply discharge electrical energy.
With this, as depicted in
When twelve-phase alternating voltages are applied to the twelve divisional electrodes 1, discharge circulates once among the divisional electrodes 1 during one cycle, and therefore discharge rotates as many as applied frequencies during a second. Therefore, discharge occurs between any divisional electrodes 1 at any time, and continuous discharge occurs like high-frequency lighting, even with low-frequency alternating discharge. Plasma P occurring as a result of discharge is confined in a narrow, thin region by the multi-poled magnetic field, collision excitation with plasma of electrically-neutral molecular gas (neutral gas) becomes active, thereby increasing luminous density and luminous efficiency from the excited neutral gas.
As a result of such continuous discharge, light having a wavelength unique to the molecular gas containing ultraviolet rays are stably emitted in a spatially-uniform manner over the entire electrodes. These ultraviolet rays are converted into visible light by the fluorescent material b coating the inside of the light extraction window 32. Since the plasma region and the light-emitting layer are thin, light is not reabsorbed and has a high luminance.
The dimension and arrangement of the divisional electrodes are not restricted to those depicted in
The generated ultraviolet rays are applied to a fluorescent material for conversion into visible light for a lighting device, also can be used for sterilization of foods and pharmaceuticals avoiding degeneration by heating and, furthermore, can be applied to photochemical reaction.
In the following, an embodiment of the present invention (experimental result) is described.
An experiment was performed by connecting the inverter-type twelve-phase alternating-current power supply 6 of 30 W or lower and 40 kHz to the lighting device of the present invention and putting 0.17 to 0.3 Torr of the following three types of molecular gas into the vacuum evacuated device.
Discharge emission spectrums were measured by an optical-fiber-type multi-channel spectroscope.
a), (b), and (c) depict spectrums when nitrogen, nitric oxide, and a nitrogen-diluted (90%) nitric oxide (10%) gas were used, respectively. Here, the vertical axis represents spectral radiant flux densities [μW/cm2/nm] calibrated with a standard light source.
In the case of the nitrogen gas in
In the case of the nitric oxide gas in
Furthermore, as depicted in
Here, the vertical axis in
From this
Without a magnetic field, little change was observed even when the pressure decreased.
By contrast, in a multi-poled magnetic field, as the pressure decreased, the ultraviolet luminous intensity increased.
This is because, when the pressure decreases, plasma-neutral gas collisions decrease and the plasma confining effect by the magnetic field increases. Here, the multi-poled magnetic field in any of
The magnitude of the ultraviolet radiation density with a pressure of the nitrogen-diluted nitric oxygen mixed gas of 0.3 Torr was 1.5 times as large as a value observed when mercury was used in the same device.
Although argon gas was tried as a diluent gas of nitric oxide, ultraviolet radiation was smaller than that in the case of dilution with nitrogen.
a) and 6(b) depict spectrums when hydrogen and hydrogen-diluted (90%) carbon oxide (10%) gas are used, respectively, as molecular gas. Here, the gas pressure is 0.3 Torr, and the vertical axis represents spectral radiant flux densities [μW/cm2/nm] calibrated with a standard light source.
In both of the hydrogen gas in
As depicted in
Here in
From
In the case of carbon oxide gas, a brown carbon film occurred at the light extraction window 32. By using hydrogen-diluted carbon oxide gas as a molecular gas, formation of a carbon film occurring due to dissociation of carbon oxide was suppressed.
Furthermore, by changing the configuration of the multi-poled magnetic field, a comparative experiment was performed between a multi-race-type magnetic field as depicted in
As depicted in
Number | Date | Country | Kind |
---|---|---|---|
2008-096554 | Apr 2008 | JP | national |
2008-217557 | Aug 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/056800 | 4/1/2009 | WO | 00 | 10/1/2010 |