Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water

Information

  • Patent Grant
  • 10550020
  • Patent Number
    10,550,020
  • Date Filed
    Monday, July 8, 2019
    4 years ago
  • Date Issued
    Tuesday, February 4, 2020
    4 years ago
Abstract
In a system for decomposing organic compounds in water for use in semiconductor manufacturing, a chemical reactor vessel having a fluid inlet and a fluid outlet, a persulfate anion addition system upstream of the reactor vessel, and a light emitting device contained within the reactor vessel. The light emitting device provides light capable of decomposing persulfate anions.
Description
FIELD OF THE DISCLOSURE

The present disclosure generally relates to a process for the purification of water used in semiconductor manufacturing. More specifically, the present disclosure relates to a process that uses ultraviolet activated persulfate to decompose organic compounds in both pure and spent process water streams in semiconductor manufacturing facilities.


BACKGROUND

Reducing TOC in water using ultraviolet light activated aqueous persulfate is known. It is an established method of decomposing organic compounds in water and is discussed in, for instance, U.S. Pat. No. 4,277,438, to Ejzak, which teaches a batch process of preparing water samples for the measurement of TOC by: (1) persulfate addition, (2) irradiation with an extreme dose of UV (which also heats the sample) to activate the persulfate to oxidize any TOC to carbon dioxide and water. U.S. Pat. No. 5,443,991, by Godec et al, teaches a similar method.


U.S. Pat. No. 5,571,419, to Obata et al, discloses a method of producing Ultra Pure Water (UPW) having a low concentration of organic matter. The purification method requires the following process for the water to be treated: (1) pH adjustment to less than 4.5, (2) addition of an oxidizing agent (such as a persulfate salt), (3) heating of the water to preferably a minimum of 110° C. and more preferably to 120° to 170° C., and (4) cooling the water to the temperature required for use.


The prior art also includes references showing an advanced oxidation process to destroy organic compounds in wastewater, including U.S. Pat. No. 5,762,808, to Peyton, and U.S. Pat. No. 6,096,283 to Cooper et al.


However, despite improvements in this technology, there remains a need for an improved method of producing a reliable, continuous source of low TOC UPW for the semiconductor industry and other industries that require ultrapure water with controlled total organic carbon. The present disclosure describes UV activation of persulfate salt to produce high oxidation potential radicals at ambient temperature, in non-pH adjusted water to purify UPW prior to discharge from the Point of Distribution (POD), prior to the Point of Connection (POC) (typically labeled as the Point of Use or POU), and to purify spent UPW for reuse on a continuous basis.


SUMMARY

This disclosure is a process used for the decomposition of carbon-containing compounds in water. This process reduces total organic carbon (TOC) in water through the addition of a persulfate salt upstream of an ultraviolet light source. The ultraviolet light is absorbed by the persulfate—converting the persulfate into sulfate radicals. The sulfate radicals oxidize TOC, converting the contributing compounds into CO2 and mineral salts.


This disclosure describes the use of the UV/persulfate oxidation process for the purification of water used in semiconductor manufacturing and the production of UPW in general.


The process uses a standard photochemical reactor either a plug flow (PFR) or a stirred tank (CSTR) or a combination of both. The most cost-effective design is expected to be a CSTR with immersed UV lamps. Multiple reactors can be used in series to improve reagent utilization.


A method of reducing TOC in semiconductor process water is disclosed.


Other features of the disclosure, regarding organization and method of operation, together with further objects and advantages thereof will be better understood from the following description considered in connection with the accompanying drawings, in which embodiments of the disclosure are illustrated by way of example. It is to be expressly understood, however, that the drawings are for illustration and description only and are not intended as a definition of the limits of the disclosure. The various features of the disclosure are pointed out with particularity in the claims annexed to and forming part of this disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be better understood and objects other than those set forth above will become apparent when consideration is given to the following detailed description thereof. Such description makes reference to the annexed drawings wherein:



FIG. 1A is a schematic view of an advanced oxidation system in accordance with one or more embodiments;



FIG. 1B is a block schematic diagram of a semiconductor industry UPW system showing possible locations in which the advanced oxidation system could be employed in accordance with one or more embodiments;



FIG. 2 is a graph showing the absorption spectrum for aqueous persulfate;



FIG. 3 is a graph showing the effect of urea concentration on decomposition performance for plug flow reactor, with persulfate at 0.5 ppm and a 0.9 minute residence time; and



FIG. 4 is a graph showing the results of a simulated pilot test of the system to treat spent rinse water in accordance with one or more embodiments.





DETAILED DESCRIPTION

Referring to FIGS. 1 through 4, wherein like reference numerals refer to like components in the various views, FIG. 1A is a schematic view showing the elements comprising the UV activated oxidation process for reducing organic carbon in semiconductor process water, generally denominated AOP 100 herein. TOC decomposition performance is controlled by the size of the reaction vessel, the intensity and amount of UV light used, and the amount of persulfate injected. The system configuration includes a source of untreated water 110, which is fed into a chemical reactor vessel 120 through one or more fluid inlets 130. Persulfate from a persulfate anion addition system 140 is also fed into the reactor vessel, the system including a persulfate feed tank 150, a fluid inlet 160, and a feed pump 170. One or more UV lights 180, 190 are disposed within the vessel enclosure, as is a chemical solution mixer 200.


The reactor vessel may be a continuous-stirred tank reactor (CSTR). This keeps down cost and increases system simplicity. However, a plug flow reactor (PFR) may be preferred in situations where space (system footprint) is at a premium. Alternatively, a CSTR can be used in series with a PFR 210 having UV lights 220 to increase system efficacy.


The treated water is discharged either directly (in the case of a single reactor system) through one or more discharge outlets 230 for further use, or into the PFR for further treatment and subsequent discharge from a terminal discharge outlet 240. The treated water 250 is sampled at discharge by a TOC analyzer 260, which adjusts and controls the persulfate feed pump 170 according to the needs of the system.



FIG. 1B shows AOP 100 implementation in a typical semiconductor UPW production system 470 when employed in the production of UPW prior to the POD 360 and also prior to the POC 380 to produce ultra low level TOC (i.e. <POD level) for critical POU usage 390. FIG. 1B also shows AOP 100 implementation when employed in the purification of spent UPW 440 from semiconductor fabrication.


Treated reuse UPW 460 can be blended with raw feed water 270 to produce the required blended feed flow 280 to the UPW production system 470. Alternatively, the treated reuse UPW 460 can be blended with UPW at any point within the UPW production system 470. The Pretreatment System treats the blended feed flow by combining various technologies, as required, for suspended solids reduction, initial organic compound reduction, chlorine removal and pH adjustment to produce feed water 300 with the proper characteristics for efficient production of UPW in the Make-Up System 310. The Make-Up System process typically includes Heat Exchange (HX), Ultra-Filtration (UF), Membrane Filtration (MF), 1st Pass Reverse Osmosis (RO), 2nd Pass RO, Electro-deionization (EDI), Ion Exchange (IX), Membrane De-Aeration (MD-A) or Vacuum De-Aeration (VD-A), and UV Sterilization (UV) to produce the required Make-Up water quality 320 with a flow equal or greater than the total average usage at the POU (370 plus 390). Make-Up water stored in DI Storage 330 provides limited backup when the Make-Up System is out of service or when the average POU UPW usage exceeds the capacity of the Make-Up System. UPW from DI Storage is pumped 340 through the Polish System 350 at a flow rate greater than UPW peak usage at the combined POU. UPW in the Polish System is purified using HX, EDI, IX, UV, MF, and UF to produce UPW per POD 360 quality specifications as required at the non-critical POU 370. Certain critical fab processes 390, such as photolithography, require UPW with an impurity level less than produced at the POD 360. To meet this requirement, POU System(s) 410 are installed at the POC(s) to the critical fab process(es). The POU System can include HX, RO, EDI, IX, MD-A, pressure control, UV, MF, and UF, as required to meet fab-specific UPW specifications at the POC(s). The sum of non-critical and critical fab UPW usage equals the combined fab UPW usage. UPW not used at the combined POU is returned 400 to DI Storage. Certain fab UPW usage produces spent UPW water not economically suitable for reuse 420 (due to high levels of suspended solids, chemicals, etc.) that is sent to waste treatment. Most spent UPW 430 is primarily contaminated with TOC that can be purified in a Reuse System 440 and forwarded 460 for blending with raw feedwater 270. Water not meeting specifications for blending 450 is sent to waste treatment.


The AOP 100 can be employed at any point in the UPW production system 470, consisting of the Pretreatment System, the Make-Up System, the DI Storage, and the Polish System.


The AOP 100 in the UPW production system 470 may be located on the product stream of the 1st Pass RO. At this point the feedwater to the AOP 100 has significantly reduced levels of suspended solids, ionized solids, microorganisms, and TOC, all of which enhance the performance of the AOP 100. The TOC in the AOP 100 product should be controlled so that the TOC at the POD 360 and non-critical POU 370 is less than specification. Product water from AOP 100 is directed to following unit processes in the UPW production system 470, where oxidation products from the AOP process are removed.


The AOP 100 can be employed at any point between the POD 360 and the POC 380 to critical POU 390 to reduce TOC to the specification required by POU 390. Additional unit processes, similar to those found in the UPW production system 470 may be employed to remove oxidation products produced in the AOP 100, or to meet other specifications for the POU 390 not achieved with UPW delivered from the POD 360.


The AOP 100 can be employed in the Reuse System 440 to reduce TOC in segregated, spent UPW 430 to produce Reuse UPW 460 suitable for reuse in the UPW System or for other uses. Suspended solids reduction in the reuse feedwater 430 using MF or UF may be employed to improve the efficiency of the AOP 100. Ionized solids reduction using RO, EDI, or IX in part of, or all of the Reuse UPW 460 may be employed to meet use specifications of the Reuse UPW.


As an alternative or addition to a feed back signal from a TOC/TDS analyzer disposed on the effluent discharge, a feed forward signal to the persulfate addition system may be supplied by a TOC analyzer disposed on the inlet end of the water to be treated. The performance of the reactor is a function of the following design parameters: (1) residence time; (2) reactor radius (light path length); (3) lamp linear energy density; (4) energy wavelength; (5) persulfate concentration; and, (6) TOC composition and concentration.


The reactor design is selected after determining the amount of persulfate that needs to decompose to effect the required TOC decomposition. The persulfate decomposition fraction and addition rate is established by optimizing the design parameters for capital cost, operating cost and available footprint.


The decomposition of persulfate to sulfate radicals and the subsequent reaction of the radicals with organic compounds is a homogeneous set of reactions. The longer the fluid retention time in the reactor, the greater the amount of activating UV light absorbed. Thus, residence time affects the fraction of the feed persulfate that will be decomposed and, consequently, the amount of organic material that will be oxidized.


Increasing the reactor radius increases the residence time and increases the distance between the lamps and the reactor walls. The incremental reactor volume further from the lamps is less effective for persulfate decomposition due to lower photon flux. However, because the light must pass through more water, more photons are absorbed, resulting in better use of the input UV. The effect of increased reactor radius is then a function of the effective absorption of the water. If the water absorbs little of the light, then increasing the reactor radius has a larger impact on performance. The residence time varies as a square of the radius, but because the view factor scales inversely with the distance from the lamp, photon flux varies as 1/r. Accordingly, if UV power is relatively more expensive than tank size, the tank radius should be set so that little UV light reaches the tank walls.


The effect of light energy input, or linear energy density of the lamp, is also straightforward. As more light is added to the reactor more persulfate will be decomposed. The amount of persulfate decomposed generally scales linearly with energy input. Energy input can be varied by changing the number of lamps used and the choice of lamp. For example, a standard low pressure mercury lamp, used for both photolysis and biological control, has a 254 nm output of about 0.2 W/cm. Amalgam lamps are available that give 0.4 and 0.6 W/cm. And medium pressure mercury lamps typically give 15 W/cm in the 200-260 nm range.


The wavelength of light employed is also a critical design variable. FIG. 2 graphically shows the absorption spectrum 500 for aqueous persulfate. As shown in FIG. 2, persulfate absorbs a larger fraction of light as the wavelength is reduced. At 254 nm very little of the light is absorbed. Using 220 nm light would result in much more light absorption for a given path-length. Adjusting the UV to a wavelength where persulfate absorbs stronger improves performance in situations where some fraction of the light is not absorbed before reaching the reactor vessel wall. The extra absorbed light translates directly to more persulfate decomposed and improved performance. A lower limit on wavelength is set by the water absorption of photons which occurs strongly below ˜190 nm.


For a given reactor design, the TOC decomposition performance depends on the feed rate of persulfate. The amount of persulfate required for a given performance depends on: (a) specific chemicals contributing to TOC; (b) concentration of these chemicals; and (c) TOC decomposition performance required.


The amount of persulfate needed is also affected if there are other chemicals in the water that absorb UV (lowering the effective quantum efficiency of persulfate degradation) or that are oxidized by sulfate radicals (thus competing with TOC for sulfate radicals.) Generally, cleaner water allows for more efficient TOC control.


The method may be demonstrated by the following examples, which are provided for purposes of illustration only, and do not limit the scope of the disclosure described herein.


Example 1

Tests indicate that for a given target chemical the absolute reaction rate is low order in the target chemical concentration. A given persulfate feed rate and UV power generates a number of radicals which, over a narrow target chemical concentration, decompose a fixed amount of the target compound independent of the concentration of the target compound.



FIG. 3 graphically shows the effect of urea concentration on performance for a fixed residence time and persulfate feed rate 600. The data were generated using a plug flow reactor with a 254 nm lamp. The data show that the absolute amount of urea decomposed at 10 ppb was only twice that decomposed at 2 ppb. As with other AOPs, some oxidant-to-target molar ratio will be required to achieve a required performance. This affect contrasts with many chemical processes where the reaction rate scales proportionally to the target chemical concentration.


These data are an example of using the process to remove a relatively difficult to oxidize compound from an ultra-pure water stream.


Example 2

A series of tests was conducted to test the stirred tank (CSTR) design concept with simulated spent rinse water. Isopropanol (IPA) was used as the target compound since it has been shown to be difficult to decompose and is a major component of spent rinse water. The objective of the study was to determine if 1-5 ppm TOC could be reduced to <5 ppb.


The results 700 of the pilot study are summarized as FIG. 4. The results can be organized by the three IPA concentrations examined. Note that there is a difference between IPA concentration and TOC concentration; IPA is only 60% carbon so 1.5 ppm IPA is equivalent to 915 ppb TOC.


Low IPA Tests—At the lowest IPA concentration tested (1.5 ppm), the persulfate addition required to achieve the target effluent TOC is reasonable. The effect of increased additive addition on performance is linear up to 100% IPA decomposition with a single 20 minute residence time CSTR. By adding a one minute residence time plug flow reactor (PFR) in series after the CSTR, the performance is improved by decomposing the residual persulfate. In other words, some of the additive is not decomposed in the CSTR and is passed on and decomposed in the PFR. Additive addition of 75 ppm is sufficient to destroy essentially all of the IPA with the two reactors in series.


Moderate IPA Tests—The relationship between persulfate addition and IPA decomposition is also linear at the moderate TA concentration (2.4 ppm) tested. Nearly 100% decomposition is achieved using 200 ppm persulfate using the 20 minute residence time CSTR. The additive requirements are increased somewhat when the residence time of the CSTR is decreased to 15 minutes.


High IPA Tests—At the highest IPA concentration (4.9 ppm) the amount of persulfate required to achieve the 99+% decomposition requirement is significant. The relationship between additive addition and decomposition performance is also not linear. The effect of higher persulfate concentrations on performance is diminished as 100% decomposition is approached. Although this IPA concentration is higher than is expected for the intended application, the ability to attain near complete decomposition for higher IPA concentrations in water gives a desirable flexibility to the process.


Collectively, these tests show that the technology is viable for spent rinse water treatment using a simple CSTR photochemical reactor of sufficient residence time and modest UV energy input.


The disclosure herein shows that a system directed to treating semiconductor process water to reduce total organic compounds in the water. The system includes a chemical reactor vessel and a persulfate anion addition system upstream of the chemical reactor vessel, and employs light energy to oxidize the aqueous persulfate. It may be used to treat pure water for semiconductor manufacturing, and to decompose TOC to less than 5 ppb, or to below 1 ppb. However, it may also be employed to treat semiconductor-manufacturing wastewater, and in such an implementation, it is used to decompose TOC to a concentration sufficiently low to allow reuse of the water. In each implementation, the persulfate feed rate is controlled by a TOC analyzer based on a feed back signal from effluent TOC analysis. Alternatively, it may be controlled by a feed forward signal from analysis of the TOC in the untreated feed water. In yet another alternative, it may be controlled by both.


Further, a method is provided for treating semiconductor process water to reduce total organic compounds, and this method comprises the steps of (1) providing a source of semiconductor manufacturing water with a TOC concentration higher than required for ultrapure uses; (2) mixing aqueous persulfate anions with the semiconductor manufacturing water in a chemical reactor vessel; (3) exposing the persulfate anion and water mixture to ultraviolet light for a predetermined residence time; and (4) discharging the treated water for further treatment required for ultrahigh purity uses. The method may be used when the semiconductor manufacturing water is pure water, and the process may be employed to decompose TOC to less than 5 ppb, or to less than 1 ppb. Furthermore, the method may be used in treating semiconductor manufacturing waste water, and the process is used to decompose TOC to a concentration sufficiently low to allow reuse of the water, and further processing may be effected to remove dissolved solids and dissolved gases.


In effecting the process, the introduction of persulfate into the reaction vessel may be controlled using either a feed back signal from effluent TOC analysis, or a feed forward signal from analysis of the TOC in the untreated feed water, or both. In the former case, the TOC analyzer would be disposed between the source of water to be treated and the chemical reactor vessel, and in the latter, the TOC analyzer would be disposed anywhere downstream of the chemical reactor vessel, including on the discharge outlet itself or anywhere prior to the point of use or re-use.


While the particular apparatus and method herein shown and disclosed in detail is fully capable of attaining the objects and providing the advantages stated herein, it is to be understood that it is merely illustrative of an embodiment and that no limitations are intended concerning the detail of construction or design shown other than as defined in the appended claims.


Accordingly, the proper scope of the present disclosure should be determined only by the broadest interpretation of the appended claims so as to encompass obvious modifications as well as all relationships equivalent to those illustrated in the drawings and described in the specification.

Claims
  • 1. A water treatment system, comprising: a source of semiconductor manufacturing water;a make-up system fluidly connected downstream of the source of semiconductor manufacturing water;a polish system fluidly connected downstream of the make-up system;a point of use fluidly connected downstream of the polish system; andan advanced oxidation process system fluidly connected between of the source of semiconductor manufacturing water and the point of use, the advanced oxidation comprising: a chemical reactor vessel;a persulfate addition system fluidly connected to the chemical reactor vessel;a light emitting device positioned within the chemical reactor vessel; anda total organic carbon analyzer configured to receive an input signal of a total organic carbon measurement and configured to provide an output signal to control the persulfate addition system in response to the input signal.
  • 2. The system of claim 1, wherein the persulfate addition system comprises a persulfate feed tank and a persulfate feed pump fluidly connected to the persulfate feed tank and configured to deliver persulfate to the chemical reactor vessel.
  • 3. The system of claim 1, wherein the make-up system comprises at least one of a heat exchanger, an ultra-filtration membrane, a membrane filtration unit, a first-pass reverse osmosis unit, a second-pass reverse osmosis unit, a electro-deionization unit, an ion exchange unit, a membrane de-aeration or vacuum de-aeration unit, and an ultraviolet sterilization system.
  • 4. The system of claim 1, wherein the polish system comprises at least one of a heat exchanger, an electro-deionization unit, an ion exchange unit, an ultraviolet sterilization system, a membrane filtration unit, and an ultra-filtration membrane.
  • 5. The system of claim 1, wherein the source of semiconductor manufacturing water comprises at least one of: a source of raw feed water;a source of spent ultrapure water; anda blended feed comprising a mixture of the raw feed water and the spent ultrapure water.
  • 6. The system of claim 1, further comprising a pretreatment system fluidly connected downstream of the source of semiconductor manufacturing water and upstream of the make-up system, wherein the pretreatment system comprises a system selected from the group consisting of a suspended solids removal system, an organic compound reduction system, a chlorine removal system, a pH adjustment system, and a carbon dioxide reduction system.
  • 7. The system of claim 1, further comprising a deionized water storage system fluidly connected downstream of the make-up system and upstream of the polish system.
  • 8. The system of claim 1, wherein the make-up system comprises a first-pass reverse osmosis unit and a second-pass reverse osmosis unit, and wherein the advanced oxidation process system is fluidly connected downstream of the first-pass reverse osmosis unit and upstream of the second-pass reverse osmosis unit.
  • 9. The system of claim 1, wherein the advanced oxidation process system is fluidly connected upstream of the polish system.
  • 10. The system of claim 1, wherein the advanced oxidation process system is positioned within the polish system.
  • 11. The system of claim 1, wherein the advanced oxidation process system is fluidly connected downstream of the polish system.
  • 12. The system of claim 1, wherein the light emitting device comprises an ultraviolet lamp configured to emit light at a frequency from about 190 nm to about 220 nm.
  • 13. The system of claim 1, wherein the total organic carbon analyzer is disposed upstream of the chemical reactor vessel.
  • 14. The system of claim 1, wherein the total organic carbon analyzer is disposed downstream of the chemical reactor vessel.
  • 15. The system of claim 14, wherein the total organic carbon analyzer is further configured to provide an output signal to increase persulfate delivered to the chemical reactor vessel in response to an input signal indicating that the total organic carbon measurement exceeds 5 ppb.
  • 16. The system of claim 14, wherein the total organic carbon analyzer is further configured to provide an output signal to increase persulfate delivered to the chemical reactor vessel in response to an input signal indicating that the total organic carbon measurement exceeds 1 ppb.
  • 17. A method of producing treated water from untreated water with an advance oxidation system, the advanced oxidation system having a continuous stirred tank reactor fluidly connected to a source of the untreated water, a persulfate addition system configured to introduce persulfate into the continuous stirred tank reactor, and a plug flow reactor fluidly connected downstream from the continuous stirred tank reactor and having an ultraviolet lamp therein, comprising providing persulfate into a persulfate feed tank of the persulfate addition system, wherein the persulfate addition is regulated in response to a total organic carbon (TOC) of at least one of untreated water and treated water.
  • 18. The method of claim 17, wherein the continuous stirred tank reactor has an ultraviolet lamp disposed therein.
  • 19. The method of claim 17, wherein the untreated water has a TOC value of less than 3 ppm.
  • 20. The method of claim 17, wherein the providing persulfate comprises regulating addition of the persulfate to reduce the TOC of the treated water to less than 5 ppb.
RELATED APPLICATIONS

This application is a continuation-in-part of pending U.S. patent application Ser. No. 12/303,596, filed Dec. 5, 2008, and titled ULTRAVIOLET LIGHT ACTIVATED OXIDATION PROCESS FOR THE REDUCTION OF ORGANIC CARBON IN SEMICONDUCTOR PROCESS WATER, which patent application is a national stage entry under 35 U.S.C. § 371 of PCT/US07/70416 filed Jun. 5, 2007, and titled ULTRAVIOLET LIGHT ACTIVATED OXIDATION PROCESS FOR THE REDUCTION OF ORGANIC CARBON IN SEMICONDUCTOR PROCESS WATER which claims priority to U.S. Provisional Application Ser. No. 60/811,220 filed Jun. 6, 2006, and titled ULTRAVIOLET LIGHT ACTIVATED OXIDATION PROCESS FOR THE REDUCTION OF TOTAL ORGANIC CARBON IN ULTRAPURE WATER, which patent applications are hereby incorporated herein by reference in their entireties for all purposes.

US Referenced Citations (241)
Number Name Date Kind
2008684 Craddock Jul 1935 A
2212260 Brothman Aug 1940 A
2249263 Wheelwright, Jr. Jul 1941 A
2268461 Nichols Dec 1941 A
2556014 Tolman Jun 1951 A
2651582 Courtney Sep 1953 A
2686110 Carver Aug 1954 A
2740696 Longwell Apr 1956 A
2833624 Sprauer May 1958 A
3252689 Blomgren, Sr. et al. May 1966 A
3319937 Wilson et al. May 1967 A
3389970 Scheibel Jun 1968 A
3536646 Hatch et al. Oct 1970 A
3559959 Davis et al. Feb 1971 A
T896051 Hamlin Mar 1972 I4
3702298 Zsoldos et al. Nov 1972 A
3742735 Verreyne et al. Jul 1973 A
3747899 Latinen et al. Jul 1973 A
3756570 Buhner Sep 1973 A
3794817 Shinskey Feb 1974 A
3852234 Venema Dec 1974 A
3870631 Fassell et al. Mar 1975 A
3965027 Boffardi et al. Jun 1976 A
4016078 Clark Apr 1977 A
4087360 Faust et al. May 1978 A
4113688 Pearson Sep 1978 A
4125574 Kastner et al. Nov 1978 A
4146676 Saeman et al. Mar 1979 A
4171166 Trowbridge et al. Oct 1979 A
4217145 Gaddis Aug 1980 A
4218147 Rosenberger Aug 1980 A
4233265 Gasper Nov 1980 A
4234440 Hirozawa et al. Nov 1980 A
4241016 Hirozawa et al. Dec 1980 A
4243636 Shiraki et al. Jan 1981 A
4277438 Ejzak Jul 1981 A
4280912 Berry, III et al. Jul 1981 A
4300909 Krumhansl Nov 1981 A
4340489 Adams et al. Jul 1982 A
4402836 Fochtman et al. Sep 1983 A
4433701 Cox et al. Feb 1984 A
4456512 Bieler et al. Jun 1984 A
4470907 Sencza Sep 1984 A
4522502 Brazelton Jun 1985 A
4550011 McCollum Oct 1985 A
4575678 Hladky Mar 1986 A
4581074 Mankina et al. Apr 1986 A
4648043 O'Leary Mar 1987 A
4664528 Rodgers et al. May 1987 A
4701055 Anderson Oct 1987 A
4719252 Dutton et al. Jan 1988 A
4747978 Loehr et al. May 1988 A
4752740 Steininger Jun 1988 A
4798702 Tucker Jan 1989 A
4830721 Bianchi et al. May 1989 A
4863608 Kawai et al. Sep 1989 A
4868127 Blades et al. Sep 1989 A
4913822 Chen et al. Apr 1990 A
4952376 Peterson Aug 1990 A
4965016 Saitoh et al. Oct 1990 A
4977292 Hwa et al. Dec 1990 A
4990260 Pisani Feb 1991 A
5000866 Woyciesjes Mar 1991 A
5004549 Wood et al. Apr 1991 A
5018871 Brazelton et al. May 1991 A
5024766 Mahmud Jun 1991 A
5030334 Hale Jul 1991 A
5032218 Dobson Jul 1991 A
5061456 Brazelton et al. Oct 1991 A
5069885 Ritchie Dec 1991 A
5073268 Saito et al. Dec 1991 A
5112521 Mullins et al. May 1992 A
5116509 White May 1992 A
5118422 Cooper et al. Jun 1992 A
5130033 Thornhill Jul 1992 A
5135968 Brazelton et al. Aug 1992 A
5139627 Eden et al. Aug 1992 A
5164429 Brazelton et al. Nov 1992 A
5213694 Craig May 1993 A
5230822 Kamel et al. Jul 1993 A
5236602 Jackson Aug 1993 A
5239257 Muller et al. Aug 1993 A
5256307 Bachhofer et al. Oct 1993 A
5262963 Stana et al. Nov 1993 A
5302356 Shadman et al. Apr 1994 A
5306355 Lagana Apr 1994 A
5306432 Puetz Apr 1994 A
5316031 Brazelton et al. May 1994 A
5320748 Dupuis Jun 1994 A
5332511 Gay et al. Jul 1994 A
5348665 Schulte et al. Sep 1994 A
5352359 Nagai et al. Oct 1994 A
5382367 Zinkan et al. Jan 1995 A
5422013 Hirofuji Jun 1995 A
5422014 Allen et al. Jun 1995 A
5424032 Christensen et al. Jun 1995 A
5443991 Godec et al. Aug 1995 A
5470480 Gray et al. Nov 1995 A
5489344 Martin et al. Feb 1996 A
5494588 LaZonby Feb 1996 A
5501801 Zhang et al. Mar 1996 A
5518629 Perez et al. May 1996 A
5571419 Obata Nov 1996 A
5573662 Abe et al. Nov 1996 A
5575920 Freese et al. Nov 1996 A
5587069 Downey, Jr. Dec 1996 A
5639476 Oshlack et al. Jun 1997 A
5658467 LaZonby et al. Aug 1997 A
5675153 Snowball Oct 1997 A
5683654 Dallmier et al. Nov 1997 A
5720869 Yamanaka et al. Feb 1998 A
5736097 Ono Apr 1998 A
5753106 Schenck May 1998 A
5770039 Rigney et al. Jun 1998 A
5779912 Gonzalez-Martin et al. Jul 1998 A
5783092 Brown et al. Jul 1998 A
5785845 Colaiano Jul 1998 A
5785867 LaZonby et al. Jul 1998 A
5790934 Say et al. Aug 1998 A
5798271 Godec et al. Aug 1998 A
5800732 Coughlin et al. Sep 1998 A
5814233 Starkey et al. Sep 1998 A
5814247 Derule et al. Sep 1998 A
5820256 Morrison Oct 1998 A
5849985 Tieckelmann et al. Dec 1998 A
5855791 Hays et al. Jan 1999 A
5858246 Rafter et al. Jan 1999 A
5858249 Higby Jan 1999 A
5866013 Kessler et al. Feb 1999 A
5873997 Kaplan Feb 1999 A
5882526 Brown et al. Mar 1999 A
5888374 Pope et al. Mar 1999 A
5895565 Steininger et al. Apr 1999 A
5902751 Godec et al. May 1999 A
5947596 Dowd Sep 1999 A
5972196 Murphy et al. Oct 1999 A
5980758 LaZonby et al. Nov 1999 A
5985155 Maitland Nov 1999 A
6015484 Martinchek et al. Jan 2000 A
6030842 Peachey-Stoner Feb 2000 A
6045706 Morrison et al. Apr 2000 A
6063638 Small et al. May 2000 A
6068012 Beardwood et al. May 2000 A
6083387 LeBlanc et al. Jul 2000 A
6090296 Oster Jul 2000 A
6096283 Cooper et al. Aug 2000 A
6106770 Ohki et al. Aug 2000 A
6120619 Goudiakas et al. Sep 2000 A
6120698 Rounds et al. Sep 2000 A
6132593 Tan Oct 2000 A
6143184 Martin et al. Nov 2000 A
6146538 Martin Nov 2000 A
6149819 Martin et al. Nov 2000 A
6159552 Riman et al. Dec 2000 A
6238555 Silveri et al. May 2001 B1
6284144 Itzhak Sep 2001 B1
6315950 Harp et al. Nov 2001 B1
6409926 Martin Jun 2002 B1
6419817 Martin Jul 2002 B1
6420715 Cormack et al. Jul 2002 B1
6423234 Martin Jul 2002 B1
6444474 Thomas et al. Sep 2002 B1
6461519 Weltzer Oct 2002 B1
6464867 Morita et al. Oct 2002 B1
6468433 Tribelski Oct 2002 B1
6503464 Miki et al. Jan 2003 B1
6596148 Belongia et al. Jul 2003 B1
6620315 Martin Sep 2003 B2
6623647 Martin Sep 2003 B2
6645400 Martin Nov 2003 B2
6716359 Dennis, II Apr 2004 B1
6773608 Hallett et al. Aug 2004 B1
6776926 Martin Aug 2004 B2
6780238 Park Aug 2004 B2
6780328 Zhang Aug 2004 B1
6884391 Khoe et al. Apr 2005 B1
6902653 Carmignani et al. Jun 2005 B2
6942779 Belongia et al. Sep 2005 B2
6991733 Kin et al. Jan 2006 B2
6991735 Martin Jan 2006 B2
7097764 Neofotistos Aug 2006 B2
7108781 Martin Sep 2006 B2
7285223 Martin Oct 2007 B2
7320756 Mukhopadhyay Jan 2008 B2
7507973 Bircher Mar 2009 B2
8357305 Theodore et al. Jan 2013 B2
8459861 Bircher Jun 2013 B2
8580091 Niksa et al. Nov 2013 B2
8652336 Sitkiewitz et al. Feb 2014 B2
8741155 Coulter Jun 2014 B2
20010007314 Sherman Jul 2001 A1
20020043650 Martin Apr 2002 A1
20020117631 Gadgil et al. Aug 2002 A1
20020152036 Martin Oct 2002 A1
20020153319 Mukhopadhyay Oct 2002 A1
20030010695 Kool et al. Jan 2003 A1
20030019803 Woodard et al. Jan 2003 A1
20040005242 Koulik et al. Jan 2004 A1
20040112838 Martin Jun 2004 A1
20040154965 Baum et al. Aug 2004 A1
20050029170 Urquhart et al. Feb 2005 A1
20050056597 Fries et al. Mar 2005 A1
20050103717 Jha et al. May 2005 A1
20050139530 Heiss Jun 2005 A1
20050173341 Salinaro Aug 2005 A1
20050199483 Kroll Sep 2005 A1
20050218082 Williamson et al. Oct 2005 A1
20050263716 From et al. Dec 2005 A1
20060124558 Kouame Jun 2006 A1
20060131245 Dennis et al. Jun 2006 A1
20060169646 Andree et al. Aug 2006 A1
20070090051 Minegishi et al. Apr 2007 A1
20070102359 Lombardi et al. May 2007 A1
20070119779 Muramoto et al. May 2007 A1
20080149485 Childers et al. Jun 2008 A1
20080152548 Clark et al. Jun 2008 A1
20080179242 Mukhopadhyay Jul 2008 A1
20080245738 Coulter Oct 2008 A1
20090084734 Yencho Apr 2009 A1
20090145855 Day et al. Jun 2009 A1
20090194486 Martin Aug 2009 A1
20100025337 Yencho Feb 2010 A1
20100078574 Cooper et al. Apr 2010 A1
20100118301 Vondras et al. May 2010 A1
20100292844 Wolf Nov 2010 A1
20110010835 McCague Jan 2011 A1
20110024361 Schwartzel et al. Feb 2011 A1
20110024365 Yong et al. Feb 2011 A1
20110171080 Lo Jul 2011 A1
20110180485 Sitkiewitz et al. Jul 2011 A1
20110209530 Coulter Sep 2011 A1
20110210048 Coulter Sep 2011 A1
20110210077 Coulter Sep 2011 A1
20110210266 Coulter Sep 2011 A1
20110210267 Coulter Sep 2011 A1
20110243665 Theodore et al. Oct 2011 A1
20110259832 Castillo Rivera et al. Oct 2011 A1
20110318237 Woodling et al. Dec 2011 A1
20120048744 Kim et al. Mar 2012 A1
20140144821 Sitkiewitz et al. May 2014 A1
20140263092 Sanchez Cano et al. Sep 2014 A1
Foreign Referenced Citations (42)
Number Date Country
10-79423 Jun 1980 CA
1098960 Feb 1995 CN
1539750 Oct 2004 CN
1625433 Jun 2005 CN
201473358 May 2010 CN
262139 Nov 1988 DE
4312417 Oct 1994 DE
19530086 Feb 1997 DE
19844179 Mar 2000 DE
19949434 Apr 2001 DE
0011776 Jun 1980 EP
0257740 Mar 1988 EP
0504621 Sep 1992 EP
0616975 Sep 1994 EP
1057784 Dec 2000 EP
1188473 Mar 2002 EP
1237820 Sep 2002 EP
1340719 Sep 2003 EP
2672058 Jul 1992 FR
2027004 Feb 1980 GB
2281742 Mar 1995 GB
2306463 May 1997 GB
2426513 Nov 2006 GB
59-150589 Aug 1984 JP
60-202792 Oct 1985 JP
11-28479 Feb 1999 JP
11-033542 Feb 1999 JP
11-057752 Mar 1999 JP
11-099395 Apr 1999 JP
11-290878 Oct 1999 JP
80951 Jun 1979 LU
419440 Jan 2001 TW
8908728 Sep 1989 WO
9515294 Jun 1995 WO
9630307 Oct 1996 WO
0034760 Jun 2000 WO
0198558 Dec 2001 WO
03031338 Apr 2003 WO
2004108607 Dec 2004 WO
2007146671 Dec 2007 WO
2008150541 Dec 2008 WO
2009096662 Aug 2009 WO
Non-Patent Literature Citations (97)
Entry
“Acu-Trol Programmable Controllers,” Product Literature from www.acu-trol.com, printed Nov. 19, 1999.
“AK100 Swimming Pool Control Systems,” Product Literature from www.acu-trol.com, printed Nov. 19, 1999.
“Chemtrol—PC3000 Controller,” Product Literature from www.sbcontrol.com, printed Nov. 19, 1999.
“Chemtrol—PC6000 Controller,” Product Literature from www.sbcontrol.com, printed Nov. 19, 1999.
“Louisiana Plant Uses New Technology for Dechlorination,” reprinted from American City & County, Feb. 1994.
Acu-Trol Programmable Controllers, “AT-8 Programmable Chemical Controller,” Product Literature, 2006.
Acu-Trol, “Acu-Trol Programmable Controllers: AK100 Series and AK200,” Product Literature (date unknown).
Acu-Trol, “AK100 Summary,” Product Literature from www.acu-trol.com, printed Nov. 19, 1999.
Anipsitakis, George P. et al., “Transition Meta/UV-based Advanced Oxidation Technologies for Water Decontamination,” Applied Catalysis B: Environmental 54 (2004), pp. 155-163.
Aquasol Controllers, Inc., “Aquasol SPC Specifications,” Product Literature from www.aquasol.com, printed Nov. 19, 1999.
Aquasol Controllers, Inc., “Aquasol WTC Specifications,” Product Literature from www.aquasol.com, printed Nov. 19, 1999.
Aquasol Controllers, Inc., “What is a Controller?” Product Literature from www.aquasol.com, printed Nov. 19, 1999.
Aquasol Controllers: Chemical Automation for Pools and Spas, Product Literature (date unknown).
Batt, T. et al., “The Water Down Under,” Parks & Recreation, Nov. 1999.
Bossard, G. et al., “Optimizing Chlorination/Dechlorination at a Wastewater Treatment Plant,” reprinted from Public Works, Jan. 1995.
Brusamarello et al., “Analysis of Different Methods to Calculate Electrochemical Noise Resistance Using a Three-Electrode Cell,” Corrosion, vol. 56, No. 3, Mar. 2000, pp. 273-282.
Carlson, S., “Fundamentals of water disinfection,” J Water SRT—Aqua, vol. 40, No. 6, (1991), pp. 346-356.
Carpenter, Colleen et al., “Chlorine Disinfection of Recreational Water for Cryptosporidium parvum,” Emerging Infectious Diseases, vol. 5, No. 4, Jul.-Aug. 1999, pp. 579-584.
CAT Controllers, “CAT 2000+ Programmable Water Chemistry Controller,” Product Literature (date unknown).
Chemtrol Automatic Pool Controllers, Product Literature from www.sbcontrol.com, printed Nov. 19, 1999.
Chinese First Office Action dated Mar. 11, 2013 for Application No. 201080034061.X.
Cooper, J.F. et al., Final Report: Fiscal Year 1997 Demonstration of Omnivorous Non-Thermal Mixed Waste Treatment Direct Chemical Oxidation of Organic Solids and Liquids using Peroxydisulfate, Lawrenec Livermore National Laboratory, Jan. 1998.
D'Adam, D. et al., “A Case Study of Wastewater Plant Disinfection,” reprinted from Public Works Magazine, Nov. 1994.
Dexter et al., “Use and Limitations of Electrochemical Techniques for Investigating Microbiological Corrosion”, Corrosion, 1991, vol. 47, No. 4, pp. 308-318.
Eddington, Gordon, “Successfully Managing Wastewater Chlorination,” Stranco Product Literature (date unknown).
Examination Report dated May 23, 2013 for Taiwanese Application No. 096145308.
Frazier, B., “Automation to the Rescue,” Aquatics International, May/Jun. 1998.
Gusmano et al., “Electrochemical Noise Resistance as a Tool for Corrosion Rate Prediction”, Corrosion, 1997, vol. 53, No. 11, pp. 860-868.
Hensley, R. et al., “Disinfection Metamorphosis: From Chemicals to Control,” Operations Forum, vol. 12, No. 4, Apr. 1995.
Hetzler, J.T. et al., “ORP: A Key to Nutrient Removal,” Operations Forum, vol. 12, No. 2, Feb. 1995.
Invitation to Respond to Written Opinion dated Jun. 20, 2013 for corresponding Singapore Application No. 201103322-2.
Kim, Yong H., “Evaluation of Redox Potential and Chlorine Residual as a Measure of Water Disinfection,” presented at the 54th International Water Conference, Pittsburgh, PA, Oct. 11-13, 1993.
Kim, Yong H., “On the Activation of Polymeric Flocculants,” AlChE Annual Spring Meeting, Houston, TX, Apr. 2-6, 1989.
Kiser, P. et al., “ORP or Residual: Which Measures Oxidation?” Sep. 10, 1992, pp. 1-7.
Kloberdanz, B., “The Air in There: Enhancing an Indoor Pool Environment,” Recreation Management, 2000.
Kowalsky, L., “Pool-Spa Operators Handbook,” National Swimming Pool Foundation, 1983-1990.
Krone, D., “Automated Water Chemistry Control at University of Virginia Pools,” Facilities Manager, vol. 13, No. 6, Nov./Dec. 1997.
Lund et al., “The Effect of Oxidation and Reduction on the Infectivity of Poliomyelitis Virus,” from the Virological Laboratory of the Department of Bacteriology, University of Gothenburg, and the Virological Department of the Municipal Laboratories, Gothenburg, Sweden, Springer-Verlag, (1961), pp. 100-110.
Lund, E., “Inactivation of Poliomyelitis Virus by Chlorination at Different Oxidation Potentials,” from the Virological Laboratory of the Department of Bacteriology, University of Gothenburg, and the Virological Department of the Municipal Laboratories, Gothenburg, Sweden, Springer-Verlag, (1961), pp. 330-342.
Lund, E., “Oxidative Inactivation of Poliovirus,” from the Virological Laboratory of the Department of Bacteriology, University of Gothenburg, and the Virological Department of the Municipal Laboratories, Gothenburg, Sweden, Springer-Verlag, (1963), pp. 1-49.
Lund, E., “The Rate of Oxidative Inactivation of Poliovirus and its Dependence on the Concentration of the Reactants,” from the Virological Laboratory of the Department of Bacteriology, University of Gothenburg, and the Virological Department of the Municipal Laboratories, Gothenburg, Sweden, Springer-Verlag, (1963), pp. 1-18.
Lund, E., “The Significance of Oxidation in Chemical Inactivation of Poliovirus,” from the Virological Laboratory of the Department of Bacteriology, University of Gothenburg, and the Virological Department of the Municipal Laboratories, Gothenburg, Sweden, Springer-Verlag, (1963), pp. 1-13.
Lynntech, Inc., “Electrochemical Ozone Generator,” Model 124 Product Literature (date unknown).
Mansfeld et al., “Electrochemical Noise Analysis of Iron Exposed to NaCl Solutions of Different Corrosivity,” J. Electrochem. Soc., vol. 141, No. 5, May 1994, pp. 1402-1404.
Mikkelson, Ken, et al., “Development of the AquaMB ProcessTM”, Aqua-Aerobic Systems, Inc., 2003.
Minton, E., “On the Waterpark,” Swimming Pool/Spa Age (date unknown).
Normenausschusse Wasserwesen, “Treatment and disinfection of water used in bathing facilities,” DIN 19643-1, Apr. 1997.
Normenausschusse Wasserwesen, “Treatment and disinfection of water used in bathing facilities,” DIN 19643-2, Apr. 1997.
Normenausschusse Wasserwesen, “Treatment and disinfection of water used in bathing facilities,” DIN 19643-3, Apr. 1997.
Normenausschusse Wasserwesen, “Treatment and disinfection of water used in bathing facilities,” DIN 19643-4, Feb. 1999.
Solarchem Environmental Systems, “The UV/Oxidation Handbook,” 1994.
FMC Environmental Solutions, “Activated Persulfate Chemistry: Combined Oxidation and Reduction Mechanisms,” Peroxygen Talk, Oct. 2010.
Partial Supplementary European Search Report, EP12736528, dated Jan. 4, 2017.
European Search Report for corresponding EP12736528.6, dated Apr. 11, 2017.
Liu, et al, “In Situ Chemical Oxidation of Contaminated Groundwater by Persulfate: Decomposition by Fe(III- and Mn(IV)-Containing Oxides and Aquifer Materials,” Environ. Sci. Technol., pp. 10330-10336, 2014.
Yu et al., Free Radical Reactions Involving Cl*, Cl2-*, and SO4-* in the 248 nm Photolysis of Aqueous Solutions Containing S2O82- and Cl-, J. Phys. Chem. A 2004, 108, 295-308.
Williams, K., “Aquatic Facility Operator Manual,” National Recreation and Park Association, Second Edition, 1995.
Nowell, Lisa H. et al., “Photolysis of Aqueous Chlorine at Sunlight and Ultraviolet Wavelengths-II. Hydroxyl Radical Production,” Water Research , vol. 26, No. 5, May 26, 1992, pp. 599-605, Marsh Barton, Exeter, Great Britain.
Pool and Spa Controller: Acu-200 Pool Management Software, Product Literature (date unknown).
Rola-Chem Corporation, “The New Wave in Water Management: Take Control with Rola-Chem,” Product Catalog, Apr. 1999.
Ryan, D. et al., “Waste Not, Want Not: Avoiding Chemical Excesses,” reprinted from Operations Forum, vol. 11, No. 4, Apr. 1994.
Sadik W/ & G. Shama, Uv-induced Decolourization ofan Azo Dye by Homogeneous Advanced Oxidation Process, pp. 310-313, 2002.
Santa Barbara Control Systems, “Chemtrol™ PC Programmable Controllers: Integrated Water Treatment with Remote Control,” Product Literature, (date unknown).
Scully et al., Disinfection Interference in Wastewaters by Natural Organic Nitrogen Compounds, Environ. Sci. Techn., vol. 30, No. 5, 1996, pp. 1465-1471.
Selvick, E., “Take Control of ‘Yo-Yo’ Treatment Cycles,” International Aquatics, National Trade Publications, Inc., Jul./Aug. 1997.
White, Geor. Clifford, Handbook of Chlorination and Alternative Disinfectants, Third Edition, (date unknown), pp. 801, 803-809, 922-924.
Victorin et al., “Redox potential measurements for determining the disinfecting power of chlorinated water,” J. Hyg., Camb., 70, 1972, pp. 313-323.
Stranco, “Solutions: Effluent Dechlorination”, Stranco Product Literature (date unknown).
Stranco, “The Best of Poolfax,” The Poolfax Newsletter, 1981-1984.
Strand, R. et al., “ORP As a Measure of Evaluating and Controlling Disinfection in Potable Water,” (Source and date unknown).
U.S. Filter/Stranco, “Abstracts of Strancol ECS Case Histories,” (date unknown).
U.S. Filter/Stranco, “Air & Water Quality Control for Indoor Aquatic Facilities,” U.S. Filter Corporation, 1998.
U.S. Filter/Stranco, “ECS-Pool (w/CHF-150) Engineering Packet,” Apr. 22, 1999.
U.S. Filter/Stranco, “Environmental Control at Indoor Pool Complex: New ECS System Optimizes Air & Water Quality at Colorado Recreation Center,” Stranco Products Capsule Case History #807, Nov. 1998.
U.S. Filter/Stranco, “Environmental Control at Indoor Pool: ECS System Eliminates Chronic Air Quality Problems at High School and Parks District Indoor Pool Facility,” Stranco Products Capsule Case History #813, Jul. 2000.
U.S. Filter/Stranco, “Environmental Control at Indoor Pool: ECS System Optimizes Air & Water Quality at Iowa Recreation Center,” Stranco Products Capsule Case History #814, May 2000.
U.S. Filter/Stranco, “Environmental Control at Indoor Pool: ECS System Optimizes Air & Water Quality at Texas School District Swim Center,” Stranco Products Capsule Case History #811, Nov. 1999.
U.S. Filter/Stranco, “Environmental Control at Indoor Pool: New ECS System Eliminates Chronic Air Quality Woes for New York School District Pool,” Stranco Products Capsule Case History #806, Jul. 1998.
U.S. Filter/Stranco, “Environmental Control at Indoor Pool: Parks District Uses New ECS System to Eliminate Chronic Air Quality Problems at High School Pool,” Stranco Products Capsule Case History #808, May 1999.
U.S. Filter/Stranco, “Environmental Control at Special Indoor Pool: New ECS System Eliminates Chronic Air Quality Woes in School District Pool & Spa Serving Special Needs Children,” Stranco Products Capsule Case History #812, Oct. 1999.
U.S. Filter/Stranco, “Environmental Control System Training Meeting, Mar. 15, 2000”.
U.S. Filter/Stranco, “Remote Monitoring for Unstaffed Pools,” Parks & Recreation, Nov. 1997.
U.S. Filter/Stranco, “Ryznar Stability Index the 3rd Dimension Needed for Proper ‘Water Balance,’” Aquatic Technology Newsletter, vol. 1, No. 1, pp. 1-3 (undated).
U.S. Filter/Stranco, “Strantrol Automated Water Chemistry Control for Commercial Pools,” 1998.
U.S. Filter/Stranco, “Strantrol ECS—Environmental Control System (For Pool),” 2000.
U.S. Filter/Stranco, “Strantrol System 3 Pool & Spa Chemistry Controller,” 2000.
U.S. Filter/Stranco, “Strantrol System 4 Pool & Spa Chemistry Controller,” 2000.
U.S. Filter/Stranco, “Strantrol System5F Pool & Spa Chemistry Controller,” 2000.
U.S. Filter/Stranco, “Strantrol System6 Pool Chemistry & Filter Backwash Controller,” 2000.
U.S. Filter/Stranco, “Strantrol System7 Mechanical Room Controller for Aquatic Facilities,” 2000.
U.S. Filter/Stranco, “The Chemistry and Control of Chloramines,” Aquatic Technology Newsletter, vol. 1, No. 4, 1999, pp. 1-5.
U.S. Filter/Stranco, “The Relationship of ORP to PPM and Its Automated Control,” Aquatic Technology Newsletter, vol. 1, No. 3, 1999, pp. 1-5.
U.S. Filter/Stranco, “Total Dissolved Solids, Friend or Foe?”, Aquatic Technology Newsletter, vol. 1, No. 2, 1988; pp. 1-7.
U.S. Filter/Stranco, “Why Do I Have Algae in My Pool?” Aquatic Technology Newsletter, vol. 1, No. 6, 1999, pp. 1-2.
U.S. Filter/Stranco, “Yes, Your Pool Needs Calcium Too,” Aquatic Technology Newsletter, vol. 1, No. 5, pp. 1-3 (undated).
Kim, Yong H., “On the Activation of Polymeric Flocculants,” AIChE Annual Spring Meeting, Houston, TX, Apr. 2-6, 1989.
Yu et al., Free Radical Reactions Involving C1*, C12-*, and SO4-* in the 248 nm Photolysis of Aqueous Solutions Containing S2O82- and C1-, J. Phys. Chem. A 2004, 108, 295-308.
Related Publications (1)
Number Date Country
20200002198 A1 Jan 2020 US
Provisional Applications (1)
Number Date Country
60811220 Jun 2006 US
Continuations (1)
Number Date Country
Parent 14169928 Jan 2014 US
Child 16504942 US
Continuation in Parts (1)
Number Date Country
Parent 12303596 US
Child 14169928 US