The present invention relates generally to ultraviolet disinfection systems, and more specifically, to in-line ultraviolet light disinfection systems for use in applications to reduce or eliminate biofilms and/or to disinfect pathogens within a fluid system.
Biofilms are an association of micro-organisms in which microbial cells adhere to each other on a living or non-living surfaces. Bacterial biofilms are infectious in nature and as such, they represent a considerable hygiene risk in the air, water, food, and health industry. Biofilms may also cause economic losses where an accumulated biomass restricts flow in water piping systems, for example.
Exposure to ultraviolet (UV) light, particularly corresponding to electromagnetic radiation with wavelengths between about 100 nm and about 400 nm, is known to induce degradation to many materials, including biological materials. Exposure to UV light can break down DNA so that a cell cannot reproduce. In addition, UV light can degrade toxins, which makes UV light useful for disinfection or purification purposes. As such, the use of UV light has found applications in disinfecting air, water, food, beverages, and blood components.
Further, UV light can be used in conventional water pipes and pipe systems. However, conventional UV treatment does not provide residual disinfection throughout the plumbing. The UV light will only disinfect where it impinges on the pathogens. Therefore, infection of faucets, showerheads, drains, and pipes may occur in places where UV light exposure does not occur. In the water industry, conventional, well-designed treatment systems locate the UV light source as close to the point of use as possible. However, due to size constraints, conventional UV light disinfection systems typically cannot t be installed directly at the point of use exit. As one example, in a water faucet, a UV disinfection system is typically installed under the counter. Although such a disinfection system may be effective at disinfecting the water flowing through the UV disinfection system, the last few feet of piping after the UV light emitting region (e.g. the faucet tap itself) will not be disinfected. Thus, there is a risk of biofilm accumulation on the pipe and faucet surfaces prior to the water leaving the faucet.
U.S. Pat. No. 9,586,838 discloses an LED-based system for purifying a fluid flowing through a pipe, comprising means for mounting the system on the pipe, a housing, a pliant carrier structure comprising a plurality of LEDs arranged flush with a first surface of the structure and configured to emit radiation in the UV range, wherein when the system is pipe-mounted, the structure is detachably arranged within the housing, and the structure adopts a substantially tubular shape within the housing with the first surface delimiting a purifying chamber, wherein the purifying chamber is in fluid communication with the pipe so that the fluid flowing through the pipe passes, prior to being dispensed, through the purifying chamber where it is exposed to UV radiation of the energized LEDs.
U.S. Publication 2017/0281812 describes approaches for treating a fluid transport conduit with ultraviolet radiation. A light guiding unit, operatively coupled to a set of ultraviolet radiation sources, encloses the fluid transport conduit. The light guiding unit directs ultraviolet radiation emitted from the ultraviolet radiation sources to ultraviolet transparent sections on an outer surface of the fluid transport conduit. The emitted ultraviolet radiation passes through the ultraviolet transparent sections, penetrates the fluid transport conduit and irradiates the internal walls. A control unit adjusts a set of operating parameters of the ultraviolet radiation sources as a function of the removal of contaminants from the internal walls of the fluid transport conduit.
Therefore, there continues to be a need for improved UV treatment systems, particularly for removing biofilms from surfaces.
It is an objective of the present invention to mitigate or eliminate the presence of biofilms which may cause infection of faucets, showerheads, drains, and pipes in water systems. It is also an objective to provide a UV light disinfecting system that is flexible and shaped (e.g., tubular) such that it can fit inside tight spaces such as a gooseneck faucet. It is a further objective to provide a UV light disinfecting system that can be operated in two modes: a high power mode to disinfect pathogens while media is flowing through the tubes; and a low power mode to mitigate the growth of biofilms on the wall of the tube.
The accompanying drawings are included to provide a further understanding of the disclosure and are incorporated in and constitute a part of this specification, illustrate embodiments, and together with the description serve to explain the principles of the disclosure.
Persons skilled in the art will readily appreciate that various aspects of the present disclosure can be realized by any number of methods and apparatus configured to perform the intended functions. It should also be noted that the accompanying figures referred to herein are not necessarily drawn to scale, and may be exaggerated to illustrate various aspects of the present disclosure, and in that regard, the figures should not be construed as limiting. Directional references such as “up,” “down,” “top,” “left,” “right,” “front,” and “back,” among others are intended to refer to the orientation as illustrated and described in the figure (or figures) to which the components and directions are referencing.
The present invention provides a UV light disinfecting system where UV light is distributed along the walls of a highly reflective tube to disinfect pathogens in the media flowing through the tube and to mitigate the growth of biofilms on the walls of the tube. Alternately, the UV light disinfecting system is flexible. In at least one embodiment, the UV light disinfecting system includes at least one UV-LED positioned external to a highly reflective tube. In some exemplary embodiments, the reflective tube includes a plurality of openings that are arranged so as to position each opening adjacent to a corresponding UV-LED such that UV light generated by the corresponding UV-LED is able to pass through the opening and into the reflective tube. In other exemplary embodiments, the reflective tube includes a plurality of transparent windows that are arranged so as to position each window adjacent to a corresponding UV-LED such that the UV light generated by the corresponding UV-LED is able to pass through the window and into the reflective tube. The UV light is scattered along the length of the reflective tube to prevent or eliminate the presence of biofilms as well as to disinfect, sterilize, and purify and pathogens within the tube. Methods to mitigate the growth of biofilms in a water conduit is also provided.
Exemplary flexible UV light generation systems include those having a flexible circuit with multiple UV-LEDs. The flexible circuit may include a plurality of conductors, with each UV-LED positioned in independent electrical communication with at least one of the plurality of conductors. It is to be appreciated that the multiple UV-LEDs may be arranged as an array and that the term array, as used herein, may correspond to a spatial distribution of a plurality of objects, such as UV-LEDs and conductors, with one or more of the objects connected to and/or attached to other objects in the array, such as by electrical connections. A UV-LED array may be regular or non-regular, meaning the objects may be uniformly distributed or non-uniformly distributed. An example array may correspond to a ribbon cable, flexible circuit, or flat flexible cable having UV-LEDs attached along various positions of the ribbon cable, flexible circuit, or flat flexible cable.
At least one UV-LED 5 is mounted on an external surface of the reflective tube 2 such that UV light emitted from the UV-LED 5 traverses through an opening 6 in the outer wall of the reflective tube 2 and impinges on the inner wall 18 of the reflective tube 2. The UV light then reflects and scatters along the highly reflective tube walls 10, as described in detail below. A cross-section of the UV disinfecting system 1 is shown in
Conventionally, in order to disinfect pathogens flowing through water, a fluency rate on the order of 40 mJ/cm2 or 40 mW/sec·cm2 is required. It has been determined that by using the UV light disinfecting systems described herein, lower irradiance levels, such as on the order of about 100 nW/cm2 and greater, can mitigate or eliminate the growth of biofilms on surfaces, such as the inner surface 10 of the reflective tube 2. It has also been determined that biofilms can be prevented or eliminated by using reflective tubes 2 that contain UV-LEDs that can be left on at all times. For instance, in one embodiment, a high power mode turns on when water flows. When the water is shut off, the UV-LEDs stay on, but at a lower power level. Thus, the UV light is scattered along the inner wall 18 if the highly reflective tube 2 at all times. Switching between the two modes of operation (i.e., high power and low power) can be achieved by adjusting the current flowing through UV LEDs. This could be accomplished manually or through an automated circuit.
The light distribution of the UV light disinfecting system 1 was modeled using TracePro, a commercially available optical ray tracing software package.
It is one objective of the present invention to mitigate the growth of biofilms on the inner walls 10 of the highly reflective tube 2. How far the UV-light must extend along the inner walls 10 of the reflective tube 2 depends on the intensity or irradiance required to prevent a biofilm from growing. This depends on the type of bacteria as well as the wavelength of the UV source. Salters and Piola, in their article “UVC Light for Antifouling”, cite very low power levels at the surface are required, on the order of 1 mW/m2 which equates to 100 nW/cm2.
In order to prevent the growth of biofilms on surfaces through the use of UV light, the design of the UV light disinfecting system must ensure that the light emitted from the UV-LED sources reach all surfaces desired to be disinfected. The most efficient method to achieve this objective is through highly diffuse reflector materials. A material with specular reflection will not disperse the UV light rays enough to uniformly distribute the UV light power to all desired surfaces. Thus, the use of a material with specular reflection may create zones of high light intensity and zones of lower light intensity (e.g., “hot” and “cold” spots). Regions of lower light intensity are areas where biofilms may grow.
The optics design approach of the present invention is similar to optical integrating spheres which use a highly diffuse reflecting material. The schematic illustration shown in
In at least one embodiment, the UV light disinfecting system uses highly reflecting materials. For example, the UV light disinfecting system may use a material that has greater than 80% reflectance or greater than 90% reflectance, where the diffuse component of the total reflection is greater than 90% and the specular component is less than 10%. For example, if the total reflection is 90%, the reflection consists of a minimum 81% diffuse reflectance or maximum 9% specular reflectance.
Reflective tubes of diffuse UV reflectivity 80% or greater can be produced through a number of different methods. One exemplary method is to wrap a film having a high diffuse reflectivity in a helical or longitudinal manner to form a helically wrapped tube as discussed in PCT patent application number PCT/US2017/065590 to Donhowe, et al. Another exemplary method of forming a reflective tube is through extrusion. An exemplary embodiment of a polytetrafluoroethylene (PTFE) tube formed via extrusion is described in U.S. Pat. No. 5,620,763 to House, et al.
A third exemplary method of forming optical tubes is through electrospinning. Electrospinning refers to a process for forming mats, tubes, or other shapes by depositing small strings of a polymer on a surface. The production process uses charged electric forces to melt polymer solutions to produce sub-nanometer or nanometer sized fibers. A specific arrangement of the fibers produced can be used to manufacture a highly diffuse reflective material, e.g., 90% or greater. This highly diffuse reflective material can be subsequently wrapped into a tubular shape as described in PCT patent application number PCT/US2017/065590 to Donhowe, et al. Alternatively, the electrospinning process can be used to form tubes directly without subsequent wrapping. U.S. Pat. No. 8,178,030 to Anneaux, et al. describes a process for electrostatic spinning of PTFE to form tubes.
Materials that may be used in the UV light disinfecting system have high reflection coefficients, such as greater than about 80% reflectivity, greater than 90% reflectivity, or greater than about 98% reflectivity. In exemplary embodiments, the material also does not exhibit degradation under UV light radiation. Many polymers degrade under UV light and exhibit yellowing and an increase in absorption. It is also desirable for the highly diffuse reflective material to exhibit low water absorption and hydrophobicity.
A variety of materials are candidates for construction of the UV light disinfecting system. Suitable polymers for use in the reflective tube include, but are not limited to, a fluoropolymer, a polyimide, a polyolefin, a polyester, a polyurethane, a polyvinyl, polymethyl methacrylate, or variations or combinations thereof. Exemplary polymers include, but are not limited to, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), poly ether ether ketone (PEEK), cyclic olefin copolymer (COC), polycarbonate (PC), polyphenylene sulfide (PPS), polyetherimide (PEI), polyamideimide (PAI), polychloroprene, polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), vinylidene chloride-vinyl chloride copolymers, vinyl chloride copolymers, vinylidene fluoride polymers, polyvinylidene fluoride (PVDF), fluorinated ethylene propylene (FEP), perfluoroalkoxy alkane (PFA), or polytetrafluoroethylene (PTFE).
In some embodiments, the polymer is an expanded polytetrafluoroethylene (ePTFE). Expanded polytetrafluoroethylene (ePTFE) is advantageous in that it is hydrophobic, has low water absorption, low optical absorption in the UV light spectrum (such as light having wavelengths between 200 nm and 400 nm), and can be made to have a high diffuse optical reflection coefficient.
In some embodiments, the reflective tube may include or be formed of an expanded polytetrafluoroethylene (ePTFE) material. In some embodiments, the reflective tube includes a thin metal film. In some embodiments, the reflective tube is aluminum. Aluminum is an exemplary metal that shows higher reflectivity in the UV spectrum compared to other metals.
In some embodiments, the reflective tube is aluminum filled fluoropolymer. In some embodiments, the reflective tube is aluminum filled PET. In some embodiments, the reflective tube is aluminum filled PVC. In some embodiments, the reflective tube is aluminum filled PVDC. In some embodiments, the reflective tube is aluminum filled PC.
In some embodiments, the reflective tube is aluminum filled ePTFE.
In some embodiments, the reflective tube wall includes a dielectric stack. In some embodiments, the reflective tube includes a porous layer. In some embodiments, the reflective tube may be a combination of different layers. In one exemplary embodiment, the reflective tube is an ePTFE inner layer surrounded by an aluminum foil layer.
In some embodiments of the present disclosure, construction of a UV light disinfecting system includes mounting UV sources such as UV-LEDs (light emitting diodes) on the external surface of the reflective tube. A schematic illustration of an exemplary UV light disinfecting system is depicted in
The UV-LEDs used in the UV light disinfecting system may be mounted on a strip which can include the circuitry necessary to power the UV-LEDs. The strip may be a flexible printed circuit board or, alternative, the strip may be rigid. In addition, the strip may include a heat sink to enable the UV-LEDs to cool off. The UV-LED strip may include one or multiple LEDs, such as in the form of an array. The distance (ΔX) between the UV-LEDs can vary anywhere from centimeters to a meter. The UV-LED strip may be mounted to the reflective tube with adhesives or other securing methods such as wrapping another material around the reflective tube and UV-LED strip or array.
The pitch or spacing between the UV-LEDs on the UV-LED strip or array, and the corresponding openings in the wall of the reflective tube to which the UV-LEDs align thereto, are pre-determined and are based on the optics design required to maintain a minimum irradiance level throughout the highly reflective tube, an example shown in
An alternative embodiment of a UV light disinfecting system is shown in
In practice, the reflective tube 2 with openings 6 is placed over a temporary mandrel, then the button film 8 and the encapsulant 7 are added into the opening. The UV-LED strip or array is then aligned and placed over the openings 6. In exemplary embodiments, the encapsulant 7 fills the opening 6 such that no air pockets are present. In other embodiments, the encapsulant 7 adheres to the transparent button film 8, the opening 6 in the surface of the tube 2, and the UV-LED 5. The button film 8 covers the opening in the reflective tube 2 and is positioned on the interior surface 18 of the tube 2.
An alternative method to prevent water leaks is to wrap a film around the highly reflective tube, including the openings therein. In some embodiments, the film is optically transparent. The UV-LED strip is then aligned with the openings in the surface of the reflective tube 2 and pressed against the surface of the reflective tube 2 such that the UV-LEDs 5 push against the transparent film. In some embodiments, the transparent film is elastic or has some elasticity in order to conform to the UV-LED structure. Exemplary films include polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), perfluoroalkoxy alkane (PFA), a terpolymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride (THV), a copolymer of FEP and polyethylene (EFEP).
A further embodiment of a UV light disinfecting system is depicted in
Surrounding the transparent inner tube 9 is the reflective tube 2 which contains the pre-determined openings 6 in which the spacing between the openings 6 matches the spacing between the UV-LEDs 5. The reflective tube 2 with openings 6 may be constructed using methods described previously. The reflective tube 2 can be attached to the inner transparent tube 9 with adhesives such as fluorinated ethylene propylene (FEP), perfluoroalkoxy alkane (PFA), a terpolymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride (THV), a copolymer of FEP and polyethylene (EFEP), and silicone. An alternative method is to join the two tubes 2, 9 via a heat set process. In such a process, the two tubes 2, 9 are aligned over a mandrel which is then heated to the temperature at which the outer reflective tube 2 shrinks to make a tight fit to the inner tube 9, or to the temperature at which at least one of the tubes 2, 9 begins to soften. An alternative method is to slide the outer reflective tube 2 over the inner transmissive tube 9 but not use an adhesive between the two tubes 2, 9. A UV-LED array 15 can then be attached to the outer reflective tube 2 using any of the attachment methods described previously.
A further embodiment of the UV light disinfecting is shown in
In an alternative embodiment, the UV-LED array 15 may be mounted inside either a reflective tube 2 or inside the combination of a transparent inner tube 9 plus outer reflective tube 2. In this embodiment, the UV-LEDs 5 and UV-LED array 15 are in contact with the water or air flowing through the tube 2. The UV-LED array 15 can be attached to the inner wall 18 of the reflective tube 2 with an adhesive. The UV-LED strip can be free floating (e.g., not attached to the inner wall of the tube 2), but may need to be secured upstream or downstream from the fluid flow to prevent the UV-LED array 15 from moving. For example, the UV-LED array 15 may be temporarily inserted inside a wall of a pipe to remove biofilms that have started to grow.
Another alternative embodiment of a UV light disinfecting system is shown in
The transparent windows 28 eliminate the cutting of openings into the reflective tube 2 during the construction process of the system 50, thus preventing pathogens or substances within the reflective tube 2 from escaping. The transparent windows 28 may be formed within the walls of the existing reflective tube 2. For example, in an exemplary embodiment, the translucency of the transparent window 28 is obtained by a process in which regions of the polymer material—i.e., ePTFE—of the reflective tube 2 are selectively compressed to eliminate air therein. Such a process, in some embodiments, comprises applying pressure and heat to the reflective tube 2 using a heating/forming tool 34, depicted in
In some embodiments, the heating/forming tool 34 is used in conjunction with a support member 38 on the inside of the reflective tube 2 to simultaneously heat and compress the material of the reflective tube 2 at selected locations where transparent windows 28 are to be located, as depicted in
In some embodiments, pressure applied to the selected location of the reflective tube 2 is in the range of 1000 psi to 22500 psi. In other embodiments, pressure applied to the selected location of the reflective tube 2 is in the range of 1000 psi to 18000 psi. In other embodiments, pressure applied to the selected location of the reflective tube 2 is in the range of 1000 psi to 15000 psi. In other embodiments, pressure applied to the selected location of the reflective tube 2 is in the range of 1000 psi to 10000 psi. In other embodiments, pressure applied to the selected location of the reflective tube 2 is in the range of 1000 psi to 7500 psi. In other embodiments, pressure applied to the selected location of the reflective tube 2 is in the range of 1000 psi to 5000 psi. In other embodiments, pressure applied to the selected location of the reflective tube 2 is in the range of 1000 psi to 2500 psi.
In some embodiments, the pressure applied to the selected location of the reflective tube 2 is in the range of 6000 psi to 12500 psi. In other embodiments, pressure applied to the selected location of the reflective tube 2 is in the range of 7000 psi to 9000 psi. In other embodiments, pressure applied to the selected location of the reflective tube 2 is in the range of 8500 psi to 13000 psi. In other embodiments, pressure applied to the selected location of the reflective tube 2 is in the range of 12500 psi to 14000 psi. In other embodiments, pressure applied to the selected location of the reflective tube 2 is in the range of 18000 psi to 22000 psi. In other embodiments, pressure applied to the selected location of the reflective tube 2 is in the range of 5000 psi to 15000 psi.
In some embodiments, the forming tool 34 applies heat to the reflective tube 2 in the range of 100° C. to 300° C. In other embodiments, the forming tool 34 applies heat to the reflective tube 2 in the range of 100° C. to 250° C. In other embodiments, the forming tool 34 applies heat to the reflective tube 2 in the range of 100° C. to 200° C. In other embodiments, the forming tool 34 applies heat to the reflective tube 2 in the range of 100° C. to 150° C.
In some embodiments, the forming tool 34 applies heat to the reflective tube 2 in the range of 150° C. to 300° C. In other embodiments, the forming tool 34 applies heat to the reflective tube 2 in the range of 200° C. to 300° C. In other embodiments, the forming tool 34 applies heat to the reflective tube 2 in the range of 250° C. to 300° C.
In some embodiments, the forming tool 34 applies heat to the reflective tube 2 in the range of 150° C. to 250° C. In other embodiments, the forming tool 34 applies heat to the reflective tube 2 in the range of 200° C. to 250° C. In other embodiments, the forming tool 34 applies heat to the reflective tube 2 in the range of 150° C. to 200° C.
This heated compression of the selected locations of the reflective tube 2 collapses the air within the material of the reflective tube 2, forming areas of high transparency for UV light, i.e., the transparent windows 28. Table 1 below describes exemplary heating and pressure conditions used to achieve different UV transparencies within an ePTFE reflective tube 2.
In some embodiments, filling resins can also be applied to the material of the reflective tube 2, along with heat and pressure to form the transparent windows 28. In an exemplary embodiment, the material of the reflective tube 2 to be filled comprises ePTFE. Exemplary filling resins include, but are not limited to, any thermoplastic or polymer based solution that is used to fill voids within the material of the reflective tube to provide transparency to the material. Filling resins, in some embodiments, include fluorinated ethylene (FEP), perfluoroalkoxy alkane (PFA), THV, EFEP, a copolymer of ethylene, PATT, PZM4, silicones, fluorosilicones, other UV non-light scattering stable filling resins, or combinations thereof.
In some embodiments, the filling resin comprises polytetrafluoroethylene (PTFE).
Table 2 below describes typical heating and pressure conditions which are used with an FEP resin to achieve different UV transparencies within an ePTFE reflective tube 2.
Alternately, in some embodiments, polymer-based filling resins can be applied to the material of the reflective tube 2 without heat and pressure to form the transparent windows 28. In these embodiments, filling resin content and the material of the reflective tube 2 are optimized to achieve transparent windows by processes described in U.S. Pat. Nos. 6,451,396 and 6,737,158 to W. L. Gore.
In exemplary embodiments, the transparent windows 28 have a very low optical absorption (e.g., less than 10%, less than 5%, or less than 1%) so that a very high percentage of the light is transmitted through the transparent windows 28. In some embodiments, the transparent windows 28 exhibit a transparency of 70% or greater, 75% or greater, 80% or greater, 90% or greater or 95% or greater for UV light having wavelengths between 100 nm and 400 nm. In other embodiments, the transparent windows 28 exhibit a transparency of 70% to 100% for UV light wavelengths between 100 nm and 400 nm. In other embodiments, the transparent windows 28 exhibit a transparency of 80% to 100% for UV light wavelengths between 100 nm and 400 nm. In other embodiments, the transparent windows 28 exhibit a transparency of 90% to 100% for UV light wavelengths between 100 nm and 400 nm. In other embodiments, the transparent windows 28 exhibit a transparency of 95% to 100% for UV light wavelengths between 100 nm and 400 nm.
In some embodiments, applying pressure and heat to the reflective tube 2 condenses the highly reflective material of the reflective tube 2 such that a chamber 32 is created within the reflective tube 2 adjacent to the transparent window 28, as depicted in
In some embodiments, the transparent windows 28 have a thickness of 20 microns to 250 microns. In other embodiments, the transparent windows 28 have a thickness of 75 microns to 250 microns. In other embodiments, the transparent windows 28 have a thickness of 100 microns to 250 microns. In other embodiments, the transparent windows 28 have a thickness of 150 microns to 250 microns. In other embodiments, the transparent windows 28 have a thickness of 175 microns to 250 microns. In other embodiments, the transparent windows 28 have a thickness of 200 microns to 250 microns.
In other embodiments, the transparent windows 28 have a thickness of 50 microns to 200 microns. In other embodiments, the transparent windows 28 have a thickness of 80 microns to 160 microns. In other embodiments, the transparent windows 28 have a thickness of 100 microns to 200 microns. In other embodiments, the transparent windows 28 have a thickness of 150 microns to 175 microns.
In some embodiments, the UV-LED 5 may then be positioned within the chamber 32 or mounted on the external surface of the reflective tube 2 such that the light emitted by the UV-LED 5 passes through the transparent window 28 and into the reflective tube 2 to impinge on a wall opposing the UV-LED 5.
In one embodiment of a UV light disinfecting system 50 depicted generally in
The pattern of the transparent windows 28 can be any pattern desired to achieve optimal power requirements within the reflective tube 2. For example, in some embodiments, the transparent windows 28 are spaced at regular or irregular intervals and uniformly or non-uniformly distributed along a length of the reflective tube 2. In other embodiments, the transparent windows 28 are arranged in a parallel configuration of in a staggered configuration, depicted in
In some aspects of the present disclosure, multiple UV-LEDs are arranged as an array of UV-LEDs and conductors, with one or more of the UV-LEDs and conductors connected to and/or attached to others in the array by, for example, electrical connections. The UV-LED array may be regular or non-regular, meaning the UV-LEDs and conductors may be uniformly distributed or non-uniformly distributed. An example array may correspond to a ribbon cable, flexible circuit, or flat flexible cable having UV-LEDs attached along various positions of the ribbon cable, flexible circuit, or flat flexible cable. In embodiments where a UV-LED array is used, the transparent windows 28 may be positioned to correspond to the UV-LED array so as to optimize the transmittal of the UV light to the interior of the reflective tube 2.
It is an objective to provide a UV light disinfecting system that includes at least a reflective tube 2 and at least one UV-LED that emits UV light into the interior volume of the tube 2 and which disinfects pathogens and prevents biofilm growth by uniformly illuminating the inner volume of the tube 2 with constant UV light. To test that objective, a 97% diffuse reflective tube was constructed, an opening was cut in the surface of the tube 2, and a UV-LED was inserted in the opening, as shown in
It is also an objective to provide an article that is tubular and flexible such that it can fit inside plumbing fixtures. A non-limiting example is shown in
In operation, the UV-LEDs may be constantly turned on to prevent the growth of biofilms on the surface walls. Alternatively, the UV-LEDs may be pulsed on periodically. The UV-LEDs used in the construction of the UV light disinfecting system may be low power UV-LEDs, for example on the order of 1 mW output power, and only used to prevent biofilm growth. Alternatively, the UV-LEDs used may be high power UV-LEDs, for example 10 or 100 mW output power, and driven at these high powers to disinfect pathogens in the fluid when the fluid is flowing; then driven at lower current levels to prevent biofilm growth when the fluid is not flowing. Driving the UV-LEDs at lower current levels will conserve energy and UV-LED lifetime. The fluid is typically water but may be other fluids where it is desired to disinfect pathogens. The UV-LEDs emit a wavelength in the UV light range which is less than 400 nm, or in the 250 nm to 280 nm range.
The invention of this application has been described above both generically and with regard to specific embodiments. It will be apparent to those skilled in the art that various modifications and variations can be made in the embodiments without departing from the scope of the disclosure. Thus, it is intended that the embodiments cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/017238 | 2/7/2020 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62802889 | Feb 2019 | US | |
62860599 | Jun 2019 | US |