The present technology is intended for use in the field of treating air, water, and other fluids to reduce contaminant concentrations, deactivate organisms, disinfect and otherwise purify the fluid.
Almost all of the air we breathe and liquids we drink are processed through fluid exchangers that heat/cool, process, and/or distribute as required. Such fluid exchangers include the HVAC system for building air, water delivery systems, or fluid dispensing equipment used in food processing. Processing the fluids may include any number of modifications to the fluid, but of most relevance here, the removal of unwanted contaminants by filtration methods, chemical treatment, or irradiation.
Types of contaminants that can be removed or rendered inactive in these processing steps can include:
1. Live biological matter, such as bacteria, viruses, protozoa, molds, etc. which might cause disease or stimulate allergies,
2. Dead biological matter, such as hair, dust, dander, excrements, and germs previously deactivated, etc. which might aggravate allergies or cause respiratory or digestive problems.
3. Organic compounds, such as from building materials, plant exhausts, drying paints, pesticides, industrial chemicals, human and animal wastes, etc.
4. Inorganic compounds such as metals, minerals, nitrates, phosphates, sulfates, etc. which are byproducts of industrial processing or fluid handling.
5. Pharmaceutical byproducts that remain in the fluid stream after municipal water treatment, and
6. Treatment byproducts from ozonation and chlorination, residuals of which may remain in the fluid stream after fluid (e.g., water) treatment.
No purification technology is effective at removing all of the undesired contaminants. For instance, air filtering in HVAC systems, even HEPA filtering, cannot remove all viruses and bacteria from a fluid stream and often accelerate their reproduction. As a result, most buildings in the world do not have adequate systems for treating indoor air quality. Similarly, filtration and chlorination methods are commonly combined for municipal water quality at the source, but these often do not address heavy metals, pharmaceutical byproducts, dissolved organic compounds, a growing list of germs, and such that is collected in the downstream water distribution system. Furthermore, any failures in maintenance of the chemicals and filters can worsen the water quality.
Additionally, existing technologies can create toxic waste streams in addition to the fluids they purify. Reverse osmosis, for instance, typically produces an output stream of more pure water and a second efflux stream that is more contaminated than the input fluid stream. Filtration technologies accumulate toxins and provide accelerated breeding grounds for germs, creating a toxic waste that must be treated, stored or it will become an environmental pollutant. Chlorination, ozonation, and other chemical methods can add chemicals into the fluid stream and result in byproducts of the chemical additives.
Ultraviolet light, especially deep UV light at wavelengths less than 300 nm, has been shown to be effective in disrupting the DNA of some germs and other organisms, rendering them unable to reproduce (sterilization), which can halt the spread of disease. Such deep UV light treatment deposits no chemicals in a fluid stream and in fact can also break down some contaminants in the fluid stream as well, either directly, indirectly through the generation of ozone or, if intensities are high enough, through photo-disassociation or photolysis. However, UV light treatment does not completely kill germs, nor remove organic waste or most other contaminants from the fluid stream unless very high intensities or very low wavelengths are used, which is often practically prohibitive. Typically used downstream of filtering technology, UV Germicidal Irradiation (UVGI) at 253.7 nm using low pressure mercury lamps is the fastest growing and best documented UV technique with accepted standards in place by many governing bodies. Low pressure Hg lamps are also efficient at generating almost all of their light at 253.7 nm, with wall-plug energy conversion efficiency up to >35%. Medium and high pressure mercury lamps and Xenon lamps can also be used to create higher intensities, although typically at the cost of reduced efficiency and lamp life.
An additional known UV technology, semiconductor photocatalysis, results when a suitable semiconductor material is irradiated by a light source with photon energies greater than its band gap (wavelengths less than the band gap wavelength) in the presence of moisture. These photons excite the semiconductor material to facilitate production of hydroxyl ions and other active species in the fluid at the semiconductor surface that break down certain organic materials through powerful oxidation and reduction reactions while leaving the semiconductor unchanged in the process. Nearly 1000 materials have been reported as successfully photocatalyzed in this way, mostly using anatase crystals of TiO2, sometimes modified for increased photoreactivity.
However, there are many drawbacks that have restricted the use of semiconductor photocatalysis in purification applications, including relatively poor photon efficiency, long contact times, saturation of the surface with contaminants, and the practical issues of supplying a high surface area of photocatalyst into a fluid with uniform optical illumination at a suitable wavelength.
Therefore, a need exists for improvements in fluid purification technology.
The disclosure herein references a number of exemplary embodiments. The inventive features and method acts include all novel and non-obvious elements and method acts disclosed herein both alone and in novel and non-obvious sub-combinations with other elements and method acts. In this disclosure, it is to be understood that the terms “a”, “an” and “at least one” encompass one or more of the specified elements. That is, if two of a particular element are present, one of these elements is also present and thus “an” element is present.
What is needed is a fluid treatment technology that desirably has one or more of the following characteristics:
A new type of photoreactor is described herein that, in one desirable form, exhibits all of these characteristics. In order to at least partially disinfect and to detoxify a fluid, the photoreactor contains at least two light sources. One light source activates the catalytic function of a semiconductor material in the fluid to reduce the concentration of contaminants in the fluid, such as by breaking down organic contaminants into non-toxic compounds, and removing heavy metals from the fluid. A second light source acts directly on living biological entities to sterilize or kill them and thereby disinfect the fluid, and can also serve to activate a semiconductor photocatalyst that in turn causes further damage to biological contaminants. The semiconductor photocatalyst is desirably attached to a fixed, optically transmitting fiber substrate in the fluid. The second light source in one embodiment is external to the fluid and illuminates the photocatalyst through transmitting surfaces in a fluid containment vessel. The fluid containment portion of the apparatus is desirably fabricated using materials that are highly resistant to damage by the fluid, the activated photocatalyst or the light.
In one exemplary photoreactor, two or more wavelengths are chosen, at least one near the germicidal effectiveness curve peak, and one below the band gap of the photocatalyst. A desirable embodiment uses LED light sources with center wavelengths in the range of from 265-285 nm and 370-385 nm, such as shown in
The germicidal effect of light, optimally in the 250-300 nm range, is actually a photon effect, and the optimum germicidal efficiency has been shown to occur at wavelengths near ˜265 nm—above the 253.7 nm generated by the low-pressure mercury lamps used in prior art. Additionally, as a photon effect, there are more photons at longer wavelengths for the same intensity level, so it is actually more efficient photo-chemically to use longer wavelength sources at or above the germicidal efficiency peak, but still in the germicidal band. It is also expected that a broadband light source will sever a broader range of bonds in DNA molecules than a narrowband source such as a laser, a low-pressure Hg lamp or other narrow spectral emission source, thereby reducing the likelihood of natural cellular repair mechanisms restoring viability to a UV-sterilized organism, known as “dark repair”. Thus, a broadband source can overcome the dark repair phenomenon.
Although this can be varied, desirably light intensity for photocatalysts should be within a range of from 1 mW/cm2 to 50 mW/cm2, with a more desirable photocatalytic light intensity being from 3-15 mW/cm2. Light flux for germicidal treatment (from the first light source) is recommended to be sufficient to deliver a cumulative dose of at least 16 mJ/cm2, with treatment cumulative doses of 300 mJ/cm2 or more being required for 4-log reduction of some viruses. In accordance with this disclosure, the synergistic and complementary effects of the photocatalytic and germicidal process is believed to allow the same treatment results to be obtained at lower power intensities, lowering the germicidal cumulative dose requirement to at least 10 mJ/cm2.
Note that photocatalytic oxidation is also a photon activity, and again, that there are more photons for a given UV intensity for higher wavelengths, and that only wavelengths below the bandgap of a semiconductor catalyst have any useful effect. Additionally, higher wavelengths penetrate most fluids more deeply with less attenuation, furthering the efficient use of photons.
According to
In
Another embodiment is schematically shown in
The apparatus of
The housing 70 can comprise plural housing sections or portions, such as an upper housing section 94 and a lower housing section 96 that are joined together, such is at a joint 98. Desirably the lower housing section containing the photocatalytic material is detachable mounted to the upper housing portion 94. The upper housing portion can be mounted, such as by brackets not shown, to a fixed supporting structure. The detachable lower housing section 96 can be removed for replacement and/or refurbishing of the photocatalyst material. Thus, the reactor of
In the embodiment of
It should be noted that the flow rate through the apparatus can, for example, be reduced to zero to provide in effect a batch treatment of fluid with the fluid being treated and then removed from the chamber following treatment. In a less desirable embodiment, the same passage can be used for both the inlet and outlet, for example in a batch treatment approach.
Again the light can be coupled into the optical wave guide 90, such as into the edge of a sheet like optical waveguide. Optical coupling can be enhanced by using an optical coupler, such as by using a gel or optical fluid or an optical taper, such as those used for UV LED encapsulant or optical coupling of UV optics. The optical waveguide performs as an optical coupling media, coupling light from the light source effectively into the fluid. The optical waveguide can be of other configurations. However, in the
As mentioned above, the housing can comprise plural parts, in this example the upper housing section 94 and the lower housing section 96. Section 94 can be a fixed element containing connections to fluid inlet and outlet plumbing and to an electrical supply. This fixed element can also contain control electronics and light sources as appropriate. The second section 96 desirably contains fluid conduits with photocatalyst inside. These housing sections can be connected together in any suitable manner, such as using a threaded fitting or a bayonet-type connection. Electrical power and signal connections between the two parts can be made, for example, through annular contacts on each part. Fluid sealing between the two parts can be effected through use of gaskets, o-rings or other sealing mechanisms.
As another aspect of embodiments, the support matrix can, for example, be light-transmitting at both (or more if more than two bands of light are used for fluid treatment) wavelengths bands of light (bulk material internal transmission >50% through 1 centimeter thickness) mesh and/or fibrous filter, with glass wool as one specific example. The PCO (photocatalyst oxidant) can, for example, be a coating or adhered particles, such as nanoparticles. Photocatalytic semiconductor materials comprise, for example a number of metal oxides and chalcogenides known to be effective oxidants under UV illumination, including, but not limited to, TiO2, WO3, SrTiO3, BaTiO3, ZnO, ZnS, ZnSe and SnO2. For practical application, the specific surface area of the photocatalyst should be at least 10 times the area of the substrate, and a higher surface area contributes to faster photochemistry rates under illumination. A preferred embodiment is a coating of TiO2 on a loosely woven silica fiber substrate, prepared so that a majority (more than 50%) of the TiO2 is in its anatase form and so that the specific surface area of the coating is approximately 1000 times the surface area of the fiber substrate, and the coating thickness is less than one micron. Quartzel® is a commercially-available example of such a substrate with TiO2 adhered thereto and is available from Saint-Gobain.
Another embodiment of an exemplary photoreactor 200 is shown in
A first light source 260, which can comprise a low pressure mercury lamp, can be disposed in the interior of wall 230. Lamp 260 is illustrated as an elongated lamp and is operable to deliver UVC light to fluid flowing through the reactor. Wall 30 is light transmissive to this UV light. Alternatively, the mercury lamp 260 can be replaced by another light source such as plural LED light sources, for example disposed within chamber 230 or about a support positioned within inner chamber 230. A second light source can comprise, for example, a plurality of LED light sources represented schematically at 280 in
In the
The photoreactor housing components that contain the fluid and photocatalyst should not contaminate the fluid, should not impede or be damaged by the flux of light activating the photocatalyst, and should not be damaged by the photocatalytic processes. UV-transparent glasses generally meet these requirements. A desirable embodiment would use transparent or light transmissive plastic materials that are mold-able and are not susceptible to photocatalytic oxidant attack. Fluorinated ethylene propylene (FEP) is an exemplary desirable material that meets these requirements.
The filter media 220 shown on the outer ring of the photoreactor of this example can be optional depending on the particular configuration and fluid purification requirements. The filter can include, for example, active carbon or heavy metal removal materials, such as in a porous flow-through cylinder.
Another embodiment involves replacing the center mercury lamp 260 as shown in
An inlet 356 passes through wall 384 and wall 380 and communicates with a first manifold passageway 390 (which can, for example, be circular in cross-section). Fluid 400 entering inlet 356 passes through manifold 390 into the interior most chamber 348 and flows therethrough in the direction indicated by arrows, some of which are numbered as 410 in this figure. End wall 382 is provided with a manifold 420 in an interior surface that communicates with chamber 348. In this example, fluid passes from chamber 348, reverses direction in manifold 420 and flows in the direction of arrows, some of which are indicated at 424 in
The housing components can be secured together in any suitable manner. As a specific example, a plurality of through bolts, one being numbered at 476 in
With reference to
Thus, in an example represented by
In the
Additionally, the preparation and attachment of the photocatalyst to the optically transmissive substrate desirably is done in a manner that enhances the active surface area. In these embodiments, the photocatalytic specific surface area is desirably 10-1000 times the surface area of the supporting substrate, increasing adsorption, adsorptive capacity, and photon utilization, while also reducing the degradation time for a particular contaminant significantly in comparison to a slurry of photocatalyst.
Another embodiment desirably comprises a heat exchanger operable to thermally couple the input and output streams without actually mixing them together. Generally, cooler water is preferred for drinking, so the output of the photocatalytic reactor in a drinking water example is desirably as cool as possible. However, photochemical processes generally proceed more rapidly at higher temperatures. Because the light sources and electrical circuits in a photocatalytic reactor produce heat, the output fluid is generally warmer than the input. Thermally coupling the input and output streams assists in cooling the output while reciprocally warming the input.
As shown in
In the embodiment of
An optional filter indicated by dashed lines 620 is positioned upstream of light sources within the photocatalytic reactor, such as upstream of inlet 604 (although the filter 620 can be within the photocatalytic reactor). An additional filter 624, shown in dashed lines, is illustrated downstream of the light sources and at the outlet 606 of the photcatalytic reactor. Filter 624 can be included inside the reactor as well. One or both of these filters 620, 624 can be provided depending upon the particular treatment application. For example, filter 620 can be utilized to remove bulk contaminants. Filter 624 can be used to remove residual degraded components following the photocatalytic treatment.
During photocatalytic treatment, it is possible for the oxygen level within the photocatalytic reactor to drop to the point where the photocatalytic processes are slowed below desirable levels. The oxygen level can be sensed within the photoreactor, for example, by one or more oxygen sensors coupled to a controller responsive thereto. The controller can operate a valve to deliver air, or another oxygen source along a line 630 to, for example, an oxygen or air dispersion mechanism 32, such as a bubbler, within the photoreactor. Air or oxygen is shown entering line 630 by arrow 634. A controller can control a valve and/or a pump to pump air into the bubbler or otherwise open an air or oxygen source such as a pressurized source.
Various sensors can be used in connection with the photocatalytic reactor of
One or more light sensors can be provided, one of which is indicated at 660 in
In addition, one or more performance sensors, one of which is indicated at 680 in
It should be noted that the controller 700 desirably is a digital controller with suitable drivers, although an analog controller or analog/digital controller can be used. Input power to the controller is provided along a line 700. Power conversion circuitry, such as AC to DC or DC to DC conversion circuitry can be provided, as indicated at 702, with the desired power being delivered along the line 704 to the controller. In
In yet another embodiment, air may be bubbled through or otherwise introduced into the fluid flow within or upstream from the photocatalytic reactor. Insufficient oxygen present in the water can result in a slowing of photocatalytic processes.
In yet another embodiment where air is the fluid, an air filter in a HVAC system can be replaced with or coupled with a photocatalytic filter, illuminated from one side with a germicidal light and one side with LED light sources to activate the photocatalyst, or with LED light sources of both wavelength bands illuminating one or both sides.
Specifically, the system can use one or more of the following technologies alone and in combinations and sub-combinations with one another. A desirable embodiment combines all of these technologies. In a portable unit, upstream or downstream filtration can be eliminated or be of a reduced weight.
A. Upstream or downstream standard or activated filtration for bulk contaminants to avoid soiling the photoreactor, or to catch any residuals after the photoreactor
B. Deep UV light optimally matched to the germicidal effectiveness curve with broadband emission for maximum photon efficiency.
C. A second wavelength light source for efficiently generating photons nearer to the bandgap of the photocatalyst up to the maximum sustainable level on all surfaces with a photocatalyst.
D. A photocatalyst layer prepared with large specific surface area and well attached to a semi-rigid, transparent mesh within a reflective reactor housing to efficiently use all photons at both wavelengths.
E. An optical subsystem that couples light into the fluid stream in a uniform way with minimal losses and without having light sources in direct contact with the fluid stream.
F. Solid state light sources for optimum coupling of light, minimal heating of the irradiated surfaces, and efficient coupling and control. The ability to have on/off, intensity and pulse width control further extends the light source's capabilities.
G. Performance sensor(s), such as a CO2 sensor or a Total Organic Carbon sensor for monitoring organic contaminant concentrations, or a sensor for a particular inorganic contaminant such as Pb, at the output of the reactor, or at both the input and output of the reactor, to allow performance monitoring of the system.
Further examples of embodiments of a fluid treatment apparatus in accordance with this disclosure are disclosed by the following groupings of elements.
A. An apparatus for treating fluid comprising:
B. An apparatus according to A wherein the at least one first light source comprises a low pressure mercury lamp operable to deliver light to fluid in the housing to be treated, the light comprising a first band of light having a center wavelength of 253.7 nanometers.
C. An apparatus according to A wherein the at least one first light source comprises a plurality of first LED light sources.
D. An apparatus according to A wherein the at least one second light source comprises a plurality of second LED light sources.
E. An apparatus according to A wherein said at least one first light source comprises a first set comprising a plurality of LED light sources operable to emit light at a wavelength in a first band centered at a first wavelength and having a full width half maximum band that is at least ten nanometers wide.
F. An apparatus according to A wherein all of the light sources included in the at least one first light source are operable to deliver energy to the fluid in the housing at a level of no less than 10 millijoules per square centimeter.
G. An apparatus according to A wherein the photocatalyst comprises TiO2, the majority of which is of an anatase crystalline form and wherein the at least one second light source comprises a plurality of LED light sources operable to emit at least one band of light centered at a wavelength in the range of from 345 nanometers to 388 nanometers.
H. An apparatus according to A wherein the photocatalyst comprises at least first and second semiconductor photocatalysts.
I. An apparatus according to A wherein the surface area of the photocatalyst is more than 10 times the surface area of the substrate.
J. An apparatus according to A wherein the intensity of light from the second light source is in the range of from one to fifty milliwatts per square centimeter.
K. An apparatus according to A comprising a heat exchanger coupled to the inlet and outlet for transferring heat from fluid exiting the outlet to fluid entering the inlet.
L. An apparatus according to A wherein the substrate comprises quartz, silica or glass fibers.
M. An apparatus according to A wherein the housing comprises a plurality of chambers, each chamber containing light transmitting substrate with photocatalyst adhered to the substrate, the housing defining a fluid flow path from the inlet through the chambers to the outlet.
N. An apparatus according to M comprising at least three concentric annular chambers comprising right cylindrical chamber walls, the exterior most chamber wall comprising a light reflective material, the other cylindrical walls comprising light transmissive material, an interior lamp receiving chamber being provided within the interior of the innermost annular chamber for receiving at least one first light source, said at least one first light source comprising a low pressure mercury lamp, the at least one second light source comprising a plurality of LED light sources mounted to the walls of the annular chambers.
O. An apparatus according to N wherein the LED light sources are positioned in light transmitting tubes mounted within at least one chamber.
P. An apparatus according to O wherein the tubes comprise flexible material which is spirally disposed within at least one of the chambers.
Q. An apparatus according to P wherein the tubes are of a light transmitting fluorinated ethylene propylene (FEP).
R. An apparatus according to O wherein the light transmissive material is selected from the group consisting of glass, silica, quartz and fluorinated ethylene propylene.
S. An apparatus according to A comprising at least one elongated optical wave guide extending into the interior of the housing from a first location, at least one of the first and second light sources being optically coupled to the at least one elongated wave guide with the wave guide guiding light from the said at least one optically coupled light source into fluid in the housing.
T. An apparatus according to S wherein said at least one optical wave guide comprises fluorinated ethylene propylene.
U. An apparatus according to S wherein said at least one wave guide comprises a wall surface and wall surface modifications that diffuse light passing along the wave guide outwardly from the wave guide through the wall surface.
V. An apparatus according to U wherein said surface modifications comprise one or more of a surface coating, chemical etchings, mold-texturing, photo-ablation, and sand blasted regions.
W. An apparatus according to A comprising control circuitry operable to selectively turn on and off the first and second light sources.
X. An apparatus according to A comprising control circuitry operable to vary the intensity of light from the first and second light sources.
Y. An apparatus according to A comprising at least one temperature sensor for monitoring the temperature of fluids treated by the light sources and a controller responsive to the temperature sensor and operable to interrupt light from the first and second light sources in the event the temperature exceeds a temperature threshold.
Z. An apparatus according to A comprising at least one flow sensor for monitoring the flow of fluid through the housing and a controller responsive to the flow sensor and operable to interrupt the delivery of light to fluid in the housing in the event the flow of fluid drops below a flow threshold.
AA. An apparatus according to A comprising at least one performance sensor for testing one or more properties of the fluid flowing through the housing and for providing an output corresponding to said one or more properties.
BB. An apparatus according to AA wherein the at least one performance sensor comprises at least one carbon dioxide sensor that monitors carbon dioxide levels within the housing to monitor photo degradation of organic materials.
CC. An apparatus according to A comprising at least one fluid filter positioned one or both of a location upstream in the fluid flow path from the first and second light sources or a location downstream in the fluid flow path from the first and second light sources.
DD. An apparatus according to A comprising a housing having a plurality of housing components, a first housing component comprising a mount for coupling the first housing component to a fixed support surface, a second housing component being detachably mounted to the first housing component and defining at least one chamber within which the substrate and adhered photocatalyst are positioned, the first housing component comprising the fluid inlet and the fluid outlet and a power receiving input.
EE. An apparatus according to A comprising an air source coupled to the housing and operable to selectively add air to fluid within the housing.
In addition, fluid treatment methods corresponding to treatment steps accomplished by the embodiments set forth in the disclosure and the claims below, form a part of this invention.
The above examples, as well as examples of embodiments set forth elsewhere in this disclosure further serve to illustrate the invention. Having illustrated and described the invention with reference to exemplary embodiments, it will be apparent to those of ordinary skill in the art that these embodiments can be modified in arrangement and detail without departing from the inventive principles set forth herein. We claim all such embodiments that fall within the scope of the following claims.
This application is a continuation of U.S. national stage application Ser. No. 12/665,003, entitled ULTRAVIOLET PHOTOREACTOR FOR THE PURIFICATION OF FLUIDS, filed on Dec. 16, 2009, which is the U.S. National Stage of International Application PCT/US2008/007654, entitled ULTRAVIOLET PHOTOREACTOR FOR THE PURIFICATION OF FLUIDS, filed on Jun. 20, 2008, which claims the benefit of United States Provisional Application Ser. No. 60/936,642, entitled ULTRAVIOLET PHOTOREACTOR FOR THE PURIFICATION OF FLUIDS and filed on Jun. 20, 2007, all of which applications are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60936642 | Jun 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12665003 | Dec 2009 | US |
Child | 13963602 | US |