Information
-
Patent Grant
-
6279501
-
Patent Number
6,279,501
-
Date Filed
Thursday, September 28, 200024 years ago
-
Date Issued
Tuesday, August 28, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 242 3971
- 242 3972
- 242 1571
- 114 312
- 114 322
- 114 325
- 114 328
- 114 44
- 114 253
- 114 254
-
International Classifications
-
Abstract
An umbilical constraint mechanism. The mechanism keeps the umbilical line near the center of the payload bay opening when the umbilical line is deployed. The mechanism will transfer lateral umbilical loads into the drone vessel frame near the bottom of the payload bay. A modified cone shaped structure is provided in the payload bay above the normal storage position of the ROV. The cone is mounted on a frame that is capable of sliding up or down in the drone vessel.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention is generally related to the use of a remotely operated vehicle (ROV) from a drone vessel for underwater work and more particularly to means used to restrain the umbilical line between the drone vessel and ROV.
2. General Background
Many underwater operations, such as drilling for and production of oil and gas, installation and maintenance of offshore structures, or laying and maintaining underwater pipelines require the use of a remotely operated vehicle (ROV) or robotic tooling.
The deployment of an ROV is typically achieved by launching the unit from either a bottom founded or floating host platform, a dynamically positioned marine vessel dedicated specifically for the purpose of supporting an ROV, e.g. an ROV support vessel (RSV), or any such surface vessel with sufficient size and characteristics that provide a suitably stable platform for the launching and recovery of an ROV.
Both bottom founded and floating host platforms are fixed in position at the site and are normally engaged in collateral activities such as drilling and offshore production or construction. Thus, the operations of the ROV are limited according to the distance that the ROV can travel from the host platform as well as by restrictions in operating periods due to the collateral activities of the host platform.
In the case of dedicated vessel deployment such as an RSV, significant costs are associated with operation of a fully founded marine vessel and its mobilization to and from the ROV work site. Typically, a dedicated RSV may have a crew of twenty and a considerable cost not directly related to the operation of the ROV.
ROV operation and monitoring is controlled from the host platform or RSV by means of an umbilical line between the host platform or RSV and the ROV. It can be seen from this that the operational distance of the ROV is directly related to the length of the umbilical line.
A remotely operated near surface drone vessel with adequate stability that is capable of launching, controlling, and recovering an ROV eliminates the limitations associated with operation from a fixed host platform and reduces the expense associated with a manned, dedicated RSV.
The remotely operated drone vessel requires an umbilical line, storage drum and winch to launch, control, and recover the ROV. The stability of the drone vessel can be adversely affected by deployment of the ROV. This can occur from lateral loads imposed on the drone vessel from the umbilical line and ROV that effectively decreases the stability of the drone vessel. This leaves a need for a means of reducing the effects of lateral loads applied by the umbilical line and increasing the stability of the drone vessel.
SUMMARY OF THE INVENTION
The invention addresses the above needs. What is provided is an umbilical constraint mechanism. The mechanism keeps the umbilical line near the center of the payload bay opening when the umbilical line is deployed. The mechanism will transfer lateral umbilical loads into the drone vessel frame near the bottom of the payload bay. A modified cone shaped structure is provided in the payload bay above the normal storage position of the ROV. The cone is mounted on a frame that is capable of sliding up or down in the drone vessel.
BRIEF DESCRIPTION OF THE DRAWINGS
For a further understanding of the nature and objects of the present invention reference should be made to the following description, taken in conjunction with the accompanying drawings in which like parts are given like reference numerals, and wherein:
FIG. 1
illustrates a drone vessel for an ROV.
FIG. 2
illustrates a drone vessel for an ROV wherein a tether management system and ROV have been deployed from the drone vessel.
FIG. 3
is an enlarged cutaway view that illustrates the invention in the drone vessel.
FIG. 4
is a detail perspective view of the invention in the upper storage position.
FIG. 5
is a detail perspective view of the invention in the lower operating position.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to the drawings, it is seen in
FIG. 1
that a drone vessel is generally indicated by the numeral
10
. Drone vessel
10
is a buoyant vessel that utilizes a plurality of dynamic positioning thrusters
12
, one illustrated at each corner. Drone vessel
10
is also provided with propulsion means
14
. A mast
16
attached to the top of the drone vessel
10
extends upward and includes one or more radio telemetry antennas
18
. As seen in
FIG. 1
, the operational position of the drone vessel
10
is below the water line
20
, with the top of the mast
16
and the antennas being above the water line
20
. This allows a support vessel or fixed structure, not shown, on the water surface to remotely control the drone vessel
10
and a remotely operated vehicle (ROV), seen in
FIG. 2
, that is carried by, and controlled through, the drone vessel. The power supply, motors, and electronic equipment are housed within the drone vessel
10
.
FIG. 2
illustrates a tether management apparatus
22
and ROV
24
deployed from the drone vessel
10
. An umbilical line
26
stored on a drum in the drone vessel
10
provides communication with, and control of, the tether management apparatus
22
and the ROV
24
. The umbilical line
26
is returned to the storage drum by a winch located in the drone vessel
10
.
FIG. 3
is an enlarged cutaway view of a portion of the drone vessel
10
and illustrates the tether management apparatus
22
and ROV
24
stored in the drone vessel
10
. The umbilical line
26
is routed from a storage drum not seen over a pulley or sheave
28
and through a constraint mechanism
30
, best seen in
FIGS. 4 and 5
, to the tether management apparatus
22
and ROV
24
.
The constraint mechanism
30
is generally comprised of a pair of guide rails
32
, a bar
34
slidably mounted on the guide rails
32
, and a cone
36
mounted on the bar
34
.
The guide rails
32
are mounted on opposite sides of the hull of the drone vessel
10
in a vertical orientation. Each guide rail
32
is provided with upper and lower stops
38
that have a greater diameter than the rails
32
and are also used as attachment points to the hull of the drone vessel
10
, as indicated by numeral
40
.
The bar
34
is slidably mounted on the guide rails
32
by means of a bore provided on each end of the bar
34
. The bar
34
is movable between a first upper position when the tether management apparatus
22
and ROV
24
are stored in the drone vessel
10
and a second lower position when the tether management apparatus
22
and ROV
24
are deployed from the drone vessel
10
for work purposes.
A cone
36
is mounted substantially at the center of the bar
34
. The cone
36
is open at each end and mounted such that the larger opening of the cone is lower than the smaller opening. The cone
36
is sized to receive the umbilical line
26
and is preferably provided with a thirty degree radius.
In operation, the bar
34
and cone
36
of the constraint mechanism
30
are maintained in the first upper position by the tether management apparatus
22
and ROV
24
when they are stored in the drone vessel
10
as seen in
FIG. 3 and 4
. The constraint mechanism
30
moves to the second lower position, as seen in
FIG. 5
, by the force of gravity when the tether management apparatus
22
and ROV
24
are deployed as seen in FIG.
2
. When in the second lower position, the cone
36
limits the side-to-side movement of the umbilical line
26
caused by movement of the tether management apparatus
22
and ROV
24
. The second lower position of the cone
36
serves to reduce the leverage of the umbilical line
26
on the drone vessel
10
, compared to the upper position, by keeping the umbilical line near the center of the payload bay opening when the umbilical line is deployed. This transfers lateral umbilical line loads into the drone vessel frame near the bottom of the payload bay and thus increases the stability of the drone vessel
10
. For the purposes of this invention, the tether management apparatus
22
is an addition to the ROV and so should be considered as part of the ROV with regard to the operation of the constraint mechanism
30
. Thus, the ROV
24
is also capable of performing the function of moving and retaining the constraint mechanism
30
in the first upper position.
Because many varying and differing embodiments may be made within the scope of the inventive concept herein taught and because many modifications may be made in the embodiment herein detailed in accordance with the descriptive requirement of the law, it is to be understood that the details herein are to be interpreted as illustrative and not in a limiting sense.
Claims
- 1. In a drone vessel for an ROV having an umbilical line connected to an ROV that is stored in the drone vessel and deployed from the drone vessel, means for constraining the movement of the umbilical line caused by the ROV during deployment from the drone vessel, said constraining means comprising:a. a guide rail mounted in the drone vessel; b. a bar slidably mounted on the guide rail so as to be movable between a first upper position and a second lower position; and c. a cone, open at both ends, mounted on the bar and sized to receive the umbilical line.
- 2. The constraint mechanism of claim 1, wherein said cone has a is radius of thirty degrees.
US Referenced Citations (6)