This application claims priority under 35 U.S.C. §119 (a) to Chinese Utility Model No. 200420020402.X, filed Feb. 24, 2004.
1. Field of the Invention
The invention relates to the field of umbrella/parasol devices and more particularly to an umbrella/parasol with an adjustable tilt feature.
2. Description of the Related Art
Umbrellas or parasols are devices which are typically utilized in an outdoor setting, such as in an outdoor patio, balcony, garden, cafe, and the like to provide shade and protection against the elements. Umbrellas or parasols generally include a canopy assembly which is frequently generally circular and which includes a plurality of support ribs. The support ribs can be deployed and supported in position to uphold a fabric canopy which provides shade and protection from the elements. The canopy assembly is generally supported above users of the umbrella or parasol, generally either by support structures which extend underneath the canopy assembly, or by support structures which extend upward along an outer periphery of the canopy assembly and further extend toward the center of the canopy assembly to support the same in a suspended manner.
One consideration in the use and design of umbrellas or parasols is that the incident sunlight and environmental elements which the users may wish to be shielded against, for example rain which may be wind-driven, is subject to change. As another example, the incident angle of sunlight changes throughout the course of a day as the sun traverses across its daily path. Similarly, the direction of wind during inclement weather may change, such that the rainfall direction, while generally downwards, may shift direction of horizontal components of its fall. Thus, in many applications, it is a desirable feature that an umbrella or parasol assembly be provided with some sort of adjustment or variable positioning to accommodate such shifts in the relative angle of protection provided.
For example, U.S. Pat. No. 5,937,882 to Harbaugh discloses an umbrella with side support for tilting an opening or a generally vertically extending support structure which is interconnected via movable interconnecting braces to a canopy assembly, such that the canopy assembly can be tilted outward and inward with respect to the vertical support at a variety of tilt angles from a generally vertically erect orientation. However, the Harbaugh device is capable of tilting in only a single direction away from a vertically erect orientation, and this direction is generally away from the vertical support. This presents disadvantageous limitations to use of the Harbaugh umbrella as the Harbaugh umbrella is not capable of tilting towards the vertical support to provide protection to a user should the incident angle of sunlight or other environmental elements indicate such a positioning of the canopy assembly. Even if the Harbaugh reference were somehow modified to provide such an adjustment capability, a sheltered or shielded zone provided by the canopy assembly would coincide with the vertical support, thereby blocking or obstructing that area underneath the Harbaugh umbrella, for example, for placement of chairs, tables, or the users themselves.
U.S. Pat. Nos. 4,878,509 and 5,029,596 to Tung disclose a stepless tilting device for umbrellas of the general type wherein the canopy assembly is supported underneath by a generally vertically-extending support member, however, with the support member provided with a mechanism for stepless tilting of the umbrella from a generally vertically erect orientation. However, similar to the Harbaugh device, the Tung devices provide tilting in only a single direction from the vertical erect orientation and further suffer the drawback of this general type of umbrella or parasol that the generally vertically extending support member positioned underneath the canopy assembly partially blocks the shielded or sheltered region provided underneath the canopy assembly, thereby limiting the placement of tables, chairs, and users.
U.S. Pat. Nos. 6,152,156 and 6,478,037 also to Tung disclose another variation of a sunshade with tiltable canopy, wherein a canopy assembly is suspended from above by an arcuate tube which is hingedly connected to a generally vertically extending support pole. Thus, via adjustment of the hinged interconnection between the arcuate tube and the vertical support pole, the canopy assembly of the Tung '156 and '037 devices can be tilted inwards and outwards from a generally vertically extending orientation, however, again suffer similar disadvantages to the Harbaugh device as they appear to only offer a tilt in a single direction away from the generally vertical support pole. Also, if somehow modified to provide tilt towards the pole, these Tung devices would again suffer from blockage of the shielded or sheltered region underneath the canopy assembly by the presence of the vertical support pole.
U.S. Pat. No. 6,662,815 also to Tung discloses a canopy support frame for a sunshade which is similar in many respects to the '156 and '037 devices, however, with the further addition of a toothed joint which is configured to be held together in tension as the canopy assembly is erected by a cable member, such that throughout various tilt angles of the arcuate tube with respect to the vertical support, the canopy assembly is maintained in a substantially vertically erect orientation in spite of variations in the relative angle between the arcuate tube and the vertical support and also in applications wherein the vertical support is not oriented in a vertical orientation.
Thus, it will be appreciated that there is an unsatisfied need for an umbrella or parasol assembly which provides greater flexibility in tilting adjustment and more particularly avoids interference of the shielded or sheltered region provided underneath the canopy throughout the range of tilt adjustment with, for example, support structure of the umbrella assembly itself to provide greater access and utility to users, for example, for placement of furniture. It would be a further advantage to provide such an umbrella or parasol assembly configured for improved ease of use, for example, by avoiding the need for tools, excessive force, or two handed operation to provide the desired tilting adjustment. It would also be advantageous that such an umbrella or parasol assembly having tilt capability be of robust and relatively simple construction and with reduced exposure of operating or moving parts to the environment to reduce exposure to dirt, dust, grit, water, or other contaminants.
In one embodiment, an umbrella assembly is provided. The umbrella assembly includes a support pole assembly, a canopy assembly, and a tilt assembly. The support pole assembly includes a first, generally vertically extending support pole and a second support pole. The second support pole has a proximal end and a distal end and is curved therebetween. The second support pole is coupled with and extends generally transverse to the first support pole. The canopy assembly is coupled with the second support pole adjacent the distal end. The tilt assembly includes a transmission and a drive shaft. The transmission is configured to be driven by a crank handle. The drive shaft is housed in the second support pole. The drive shaft has a first end coupled with the transmission and a second end adjacent to the distal end of the second support pole. The transmission is configured to convert rotation of the crank handle into rotation of the drive shaft to pivot the canopy assembly relative to the first support pole.
In another embodiment, a sunshade is provided that includes a support pole assembly, a canopy assembly, a linkage, and a crank member. The support pole assembly includes a supporting pole having a lower end and an upper end, a holding sleeve pivotally connected to the upper end of the supporting pole, and a suspending tube slidably extended through the holding sleeve. The suspending tube includes a first end and a second end. The canopy assembly is coupled with the second end of the suspending tube for suspending a canopy. The canopy assembly also includes an upper central member having a plurality of ribs attached thereto for supporting a canopy, and a lower central member having a plurality of struts attached thereto for supporting the ribs. The linkage extends between the first end and the second end of and within the supporting tube. The crank member coupled with the support pole assembly. In this embodiment, the linkage is configured to be rotated when the crank member is rotated, whereby the canopy assembly is tilted relative to the support pole.
In another embodiment, an umbrella assembly is provided that includes a support pole assembly, a canopy assembly, and a tilt assembly. The support pole assembly includes a first, generally vertically extending support pole and a second support pole. The second support pole has a proximal end and a distal end and defines a first length therebetween. The second support pole is coupled with and extends generally transverse to the first support pole. The canopy assembly is coupled with the second support pole adjacent the distal end thereof. The tilt assembly includes a transmission configured to be driven by a crank handle and a drive shaft. The drive shaft has a first end and a second end and defines a second length therebetween. The first end of the drive shaft assembly is coupled with the transmission. The first length is not substantially less than the second length. Rotation of the drive shaft assembly pivots the canopy assembly relative to the first support pole.
In another embodiment, an umbrella assembly includes an extendable canopy assembly, a generally vertically extending support structure, and a generally horizontally extending interconnecting structure. The generally horizontal structure interconnects the canopy assembly and the vertically extending support structure so as to suspend the canopy assembly and such that the canopy assembly can be oriented both inwards and outwards with respect to the vertically extending structure as well as tilted side to side.
In another embodiment is a tilt system for an umbrella assembly, the tilt system comprising a transmission assembly having an input and an output, a crank handle connectable to the input of the transmission assembly, a drive shaft assembly configured to be operated within an arcuate support pole, the drive shaft assembly defining a drive shaft axis and being connected at a first end to the output of the transmission assembly, and a tilt mechanism connected to a second end of the drive shaft assembly such that user actuation of the crank handle induces the tilt assembly to pivot about an axis generally parallel with the drive shaft axis to a tilt orientation.
Various additional features, objects, and advantages of the invention will be more apparent from the following description taken in conjunction with the accompanying drawings.
Reference will now be made to the drawings wherein like reference numerals refer to like parts throughout. The figures also illustrate embodiments of the invention with respect to an indicated 3-dimensional Cartesian space. It will be appreciated that description of the various embodiments with respect to this Cartesian space is for the reader's ease of understanding the relative orientations and interactions of components of the various embodiments, and should not be interpreted as limiting on the implementation or use of the described and claimed embodiments. For example, where reference is made to a vertical orientation, e.g., generally along the indicated Z axis, this is for the reader's clarity of understanding with reference to the indicated components and does not limit the indicated components to use or construction in a vertical orientation.
The umbrella assembly 100 also comprises in this embodiment a canopy assembly 106 which includes a plurality of canopy webs 110 which are interconnected to an erector base 114 via a corresponding plurality of support struts 112 which are hingedly or pivotably interconnected with the canopy webs 110 and the erector base 114. This allows the canopy assembly 106 to transition between an open or erect configuration as illustrated in
In this embodiment, the canopy assembly 106 is interconnected with the vertical support 102 via an interposed interconnecting member 116. The interconnecting member 116 is a relatively rigid elongate member and in certain embodiments is arched or arcuate in configuration. The interconnecting member 116 extends generally horizontally from the vertical support 102 across the top or upper surface of the canopy assembly 106 and attaches to and supports the canopy assembly 106 in a suspending manner. As previously noted, this general arrangement of support and attachment to the canopy assembly 106 provides the advantage that the region or sheltered area underneath the canopy assembly 106 is not obstructed by underlying support structure as in other types of umbrella or parasol assemblies.
In this particular embodiment, the interconnecting member 116 is connected to the vertical support 102 via an interposed coupler 120. The coupler 120 of this embodiment is slidingly engaged with the interconnecting member 116 such that when the coupler 120 is loosened, the interconnecting member 116 can slide axially within the coupler 120, e.g., generally in the YZ plane to vary and adjust the extension of the interconnecting member 116 from the upper end of the vertical support 102. In this embodiment, the coupler 120 is provided with fasteners, clamps, tighteners, or the like to secure the interconnecting member 116 in a desired axial location. The coupler 120 is also configured in this embodiment for hinged connection to the upper end or top end of the vertical support 102 such that the interconnecting member 116 and attached canopy assembly 106 can be pivoted or tilted generally about the X axis or in the YZ plane, for example, between a first inward/outward tilt orientation, as shown in
In this embodiment, the umbrella assembly 100 further comprises an erector mechanism 122 which is configured generally as a crank member configured for hand operation by the user. In one embodiment, the crank member is coupled with a tension cable, cord, rope, chain, or the like and with the erector base 114. In one embodiment, the tension cable, cord, rope, chain, or the like extends at least partially through or within the vertical support or the interconnecting member 116. For example, the interconnecting member can be configured such that a passage 125 through which the tension cable, cord, rope, chain, or the like may extend is provided. The passage 125 may be defined adjacent to or alongside other components, such as a drive shaft assembly, discussed below. In one embodiment, the passage 125 includes a first short passage 125a extending distally of the proximal end of the interconnecting member 116 and a second short passage 125b extending proximally of the distal end of the interconnecting member 116. The passage 125 can be formed a plurality of segments, some of which are about the same size as the tension cable, cord, rope, chain, or the like. In one embodiment, the drive shaft assembly and the tension cable, cord, rope, chain, or the like extend alongside each other in a common lumen of the interconnecting member 116.
Actuation of the erector mechanism 122 applies tension force to the cord, rope, chain, cable, or the like so as to draw the erector base 114 upwards, thereby extending or erecting the support struts 112 and interconnected canopy webs 110. Similarly, reverse actuation of the erector mechanism 122 allows the canopy assembly 106 to collapse or fold as tension is released from the erector base 114. The umbrella assembly 100 can be arranged so that when the canopy assembly 106 is closed, the umbrella assembly 100 is relatively compact. For example, the interconnecting member 116 can be retracted proximally in the coupler 120 until the proximal end of the interconnecting member 116 is adjacent a lower end of the vertical support 102 and a distal end of the interconnecting member 116 is adjacent to an upper end of the vertical support 102. In this position, the canopy assembly 106, the vertical support 102, and the interconnecting member 106 would all be position very closely together. Some additional conventional features useful in opening and closing an umbrella assembly are set forth in U.S. Pat. No. 6,152,156, which is hereby incorporated by reference herein in its entirety. In one embodiment, the erector mechanism 122 is incorporated with a brace member 123 which offers a triangulated bracing between the vertical support 102 and the interconnecting member 116. It will be appreciated that in certain embodiments, the brace member 123 is of fixed length and in slidable engagement with the vertical support 102. In other embodiments, the brace member 123 is of telescoping or adjustable length to accommodate the embodiments of the umbrella assembly 100 wherein hinging and relative axial movement of the interconnecting member 116 is provided with the coupler 120.
In this embodiment, the umbrella assembly 100 also comprises a tilt drive 124 and a tilt assembly 126 which together provide a tilt system 132 for the umbrella assembly 100. More particularly, the tilt drive 124 in this embodiment is arranged at a first end of the interconnecting member 116 that is opposite a second end of the interconnecting member 116 which is adjacent the canopy assembly 106. The tilt drive 124 is configured for user actuation without requirement for special tools or application of excessive actuation force. The tilt assembly 126 is arranged at a distal end of the interconnecting member 116 or adjacent the canopy assembly 106. Together, the tilt system 132 provides the capability to the umbrella assembly 100 that user actuation of the tilt drive 124 induces the tilt assembly 126 and corresponding canopy assembly 106 to tilt or adjust, for example, between a first tilt orientation 130a, which is displaced an angle α from a vertical orientation, as illustrated in
The tilt system 132 is further configured such that the relative tilt orientation 130 of the canopy assembly 106 can be readily adjusted by the user via application of force to the tilt drive 124. Preferably, when the actuating force is removed, the tilt system 132 of the umbrella assembly 100 resists restoring forces which may impinge upon the canopy assembly 106, such as via wind loading, rainfall, gravitational forces. As such, the umbrella assembly 100 resists variation in a set tilt orientation 130 absent further user actuation of the tilt drive 124. Thus, the umbrella assembly 100 provides the capability to a user to readily adjust the tilt drive 124 and once the desired tilt orientation 130 is achieved, the user can simply step away from the umbrella assembly 100 and the canopy assembly 106 will be maintained in substantially the set tilt orientation 130. Preferably the user is not required to further secure the canopy assembly 106 in place, such as via application of clamping or tightening forces or utilization of fasteners, detents, latches, and the like.
In one embodiment, an outer cover 144 is provided and is interconnected to the first end of the interconnecting member 116. In this embodiment, the gear wheel 140 is connected to the outer cover 144 via a bearing 142 and the transmission 136 also is mounted within the outer cover 144. The user adjustment member 134 engages with the transmission 136, such that together the outer cover 144 substantially encloses and protects one or more of the operating moving parts of the tilt drive 124. Such protection is against contamination with dirt, debris, dust, and the like which may degrade or shorten the life of the tilt drive 124, as well as against possible injury to a user who could become entrapped within moving parts of the tilt drive 124. Thus, the enclosure provided by the outer cover 144 increases durability, longevity, and safety for the tilt drive 124. Further, the outer cover 144 can be configured in an aesthetically pleasing form such that the possibly aesthetically less pleasant operating components of the tilt drive 124 are shielded from user view.
In this embodiment, the gear wheel 140 is also engaged with an output shaft 146. The output shaft 146 provides an output from the tilt drive 124 wherein the user adjustment member 134 provides a corresponding input. Thus, in this embodiment, the user adjustment member 134 operates substantially about an input axis that lies generally along or parallel to the X axis and converts this input force via the transmission 136 into a corresponding rotation arranged generally 90 degrees relative to the input axis of the user adjustment member 134, e.g., substantially within the YZ plane. The output shaft 146 is engaged via shaft rings 150 with a proximate drive shaft member 152a. The drive shaft member 152a is a generally rigid straight elongate member which is interconnected with the output shaft 146 such that rotation of the output shaft 146 is correspondingly conveyed to the drive shaft member 152a. In this particular embodiment, the proximate drive shaft member 152a is a first drive shaft member that is coupled via a first joint 154a to a second drive shaft member 152b. The second drive shaft member 152b is further coupled via a second joint 154b to a third drive shaft member 152c.
As illustrated in
The degree of curvature, if present, of the interconnecting member 116 can influence an appropriate length dimension for each individual drive shaft member 152. It will be appreciated that in some embodiments, the interconnecting member 116 is substantially straight such that a single drive shaft member 152 can provide the needed transmission of force. In other variations, only a portion of the interconnecting member 116 is curved or arcuate, such that different lengths of drive shaft members 154 are appropriate for particular applications. It will be further understood that depending upon the physical dimensions and inertial loading of an umbrella assembly 100, an arched or arcuate interconnecting member 116 can be accommodated by a drive shaft assembly 156 which is of a single unitary construction, however, comprises inherent flexibility. For example, relatively small lightweight umbrella assemblies 100 can accommodate carbon fiber, fiberglass, and/or plastic drive shaft assemblies 156 where the force transmission required is relatively low.
The drive member 176 can be engaged with inner surfaces of an upper hinge 182 which is engaged with the housing 172 in such a manner as to be free to rotate with respect to the housing 172. In one embodiment, the rotation is generally about the Y axis, but is restrained against axial translation with respect thereto. In one embodiment, axial restraint is provided by a cooperating flange or abutment portion of the upper hinge 182 which can engage a respective flange or abutment portion of the housing 172. Further axial restraint can be provided by one or more retention members 190.
In various embodiments, the dirve member 176 engages with the inner surfaces of the upper hinge 182 in a geared manner. In yet other embodiments, one or more of outer surfaces of the drive member 176 and inner surfaces of the upper hinge 182 are provided with a resilient relatively high friction coefficient material, such as a synthetic rubber. Thus, depending upon the requirements of a particular application, embodiments of engagement between the drive member 176 and upper hinge 182 may be in a strictly mechanical implementation such that relative slippage between the drive member 176 and upper hinge 182 cannot occur without distortion or damage to one or both members. In other embodiments, the relative slippage between the drive member 176 and upper hinge 182 is inhibited yet accommodated upon application of sufficient force, for example, to inhibit damage to the umbrella assembly 100 upon accidental application of excessive force due, for example, to extreme wind loading or impact of an object upon the umbrella assembly 100.
In some embodiments, a lower hinge 186 is included that is engaged via a pivot 184 with the upper hinge 182. A lower or distal end of the lower hinge 186 is configured for attachment to the canopy assembly 106 and the pivoting engagement between the upper and lower hinges 182, 186 provides further adjustment possibilities for the tilt orientation 130 in an inward or outward direction with respect to the vertical support 102, e.g., a folding capability such that the canopy assembly 106 can be collapsed or closed and folded into adjacency with the interconnecting member 116 for storage or movement of the umbrella assembly 100. In one embodiments, the pivot 184 can include a tightening or fixing capability, such that upon attainment of a desired tilt orientation substantially about the X axis, the pivot 184 may be tightened to retain the umbrella assembly 100 in the desired configuration, and in yet other embodiments, the upper hinge 182 may be fixedly attached to the lower hinge 186, e.g., without the pivot 184.
One advantageous feature of the tilt system 132 including the tilt assemblies 126, such as illustrated in
Further advantages of the tilt system 132 as disclosed herein are that the mechanical operating portions of the tilt system 132 are substantially enclosed within the outer cover 144, the interconnecting member 116, and housing 172. Thus, these moving operative components of the tilt system 132 are shielded against exposure to dust, dirt, water, and other contaminants, and also such that lubricants and/or protective coatings are shielded from environmental influences which might induce their removal leading to reduced ease of use and longevity of the tilt system 132. The encasement of the moving operative components of the tilt system 132 also provides safety advantages as the moving components are shrouded, preventing contact with users or their clothing which reduces the likelihood, for example, of pinching injuries which might otherwise occur during use of the umbrella assembly 100. Other advantages are that the potentially less aesthetic operating components of the tilt system 132 are shielded from view providing a more desirable visual appearance to the users and purchasers of the umbrella assembly 100. Yet other advantages are that the interconnecting member 116 may be provided solely as an interconnecting fixedly attached structural member between the coupler 120 and the tilt assembly 126 and is not directly involved in pivoting or jointed movement to provide greater overall structural strength and stability to the umbrella assembly 100. This also provides the capability of reduced manufacturing costs offering greater profit margins to the manufacturer and/or reduced cost to the end consumer. The various components of the umbrella assembly 100 further comprise relatively high strength and corrosion resistant materials, such as aluminum, plastics, stainless steel, etc., such that the umbrella assembly 100 is weather resistant throughout extended exposure to the elements.
Although the foregoing description of the preferred embodiment of the present invention has shown, described, and pointed out the fundamental novel features of the invention, it will be understood that various omissions, substitutions, and changes in the form of the detail of the apparatus as illustrated, as well as the uses thereof, may be made by those skilled in the art without departing from the spirit of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2004 2 0021402 U | Feb 2004 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
2235518 | Goshaw | Mar 1941 | A |
2475406 | Russell | Jul 1949 | A |
2661752 | Kampf et al. | Dec 1953 | A |
2905187 | Croce | Sep 1959 | A |
3120238 | Glatz | Feb 1964 | A |
3145720 | Torii | Aug 1964 | A |
4586525 | Glatz et al. | May 1986 | A |
4622987 | Redl et al. | Nov 1986 | A |
4674523 | Glatz | Jun 1987 | A |
4697606 | Ma | Oct 1987 | A |
4878509 | Tung | Nov 1989 | A |
5002081 | Stromeyer | Mar 1991 | A |
5029596 | Tung | Jul 1991 | A |
5156395 | Smith | Oct 1992 | A |
5161764 | Roney | Nov 1992 | A |
5349975 | Valdner | Sep 1994 | A |
5499644 | Geniele | Mar 1996 | A |
5584564 | Phyle | Dec 1996 | A |
5611364 | Woods et al. | Mar 1997 | A |
5678585 | May | Oct 1997 | A |
5735302 | Saliva | Apr 1998 | A |
5785069 | Glatz | Jul 1998 | A |
D398443 | Bolle | Sep 1998 | S |
5845665 | Koehn | Dec 1998 | A |
5937882 | Harbaugh | Aug 1999 | A |
6014980 | Glatz | Jan 2000 | A |
D434215 | Lin | Nov 2000 | S |
6152156 | Tung | Nov 2000 | A |
D434556 | Lin | Dec 2000 | S |
6220261 | Glatz | Apr 2001 | B1 |
6311705 | Ma | Nov 2001 | B1 |
6435444 | Lin | Aug 2002 | B1 |
6478037 | Tung | Nov 2002 | B2 |
6520192 | Lo | Feb 2003 | B1 |
6575182 | Tung | Jun 2003 | B2 |
6575183 | Tung | Jun 2003 | B2 |
D477458 | Goldwitz | Jul 2003 | S |
6588438 | Steiner | Jul 2003 | B1 |
6619306 | Ma | Sep 2003 | B2 |
6662815 | Tung | Dec 2003 | B2 |
D497479 | Yu | Oct 2004 | S |
6837255 | Bunch et al. | Jan 2005 | B2 |
6840253 | Ma | Jan 2005 | B2 |
6851823 | Bilotti | Feb 2005 | B2 |
6923193 | Chen | Aug 2005 | B2 |
6926019 | Glatz | Aug 2005 | B2 |
6953043 | Yu | Oct 2005 | B2 |
6988504 | Goldwitz | Jan 2006 | B1 |
D518629 | Ma | Apr 2006 | S |
20020083969 | Tung | Jul 2002 | A1 |
20020104557 | Tung | Aug 2002 | A1 |
20030010366 | Glatz | Jan 2003 | A1 |
20030015230 | Glatz | Jan 2003 | A1 |
20040031513 | Bunch et al. | Feb 2004 | A1 |
20040055627 | P. Moga | Mar 2004 | A1 |
20040055628 | Yu | Mar 2004 | A1 |
20040069333 | Ma | Apr 2004 | A1 |
20040182429 | Chen | Sep 2004 | A1 |
20050229957 | Glatz | Oct 2005 | A1 |
20050268952 | Joen-an Ma | Dec 2005 | A1 |
20060278262 | Ma | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
2419864 | Feb 2001 | CN |
580503 | Jul 1933 | DE |
32 29 776 | Apr 1983 | DE |
3229776 | Apr 1983 | DE |
3820573 | Aug 1989 | DE |
202 05 561 | Jul 2002 | DE |
0 392 989 | Oct 1990 | EP |
1 400 186 | Mar 2004 | EP |
22218 | Jan 1911 | GB |
WO 9704682 | Feb 1997 | WO |
WO 0055456 | Sep 2000 | WO |
WO 2005018369 | Mar 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20050183762 A1 | Aug 2005 | US |