Umbrella quick frame assembly systems and methods

Information

  • Patent Grant
  • 10631604
  • Patent Number
    10,631,604
  • Date Filed
    Monday, July 30, 2018
    6 years ago
  • Date Issued
    Tuesday, April 28, 2020
    4 years ago
  • Inventors
  • Examiners
    • Hawk; Noah Chandler
    Agents
    • Knobbe Martens Olson & Bear LLP
Abstract
An umbrella hub is provided that includes an inner portion, an outer periphery, a lower portion and an upper portion. A plurality of vertical grooves is disposed in the outer periphery and is configured to receive umbrella ribs or struts. A plurality of grooves extends transverse to the vertical grooves. A retention member is disposed in each of the transverse grooves. A first configuration of the hub permits deflection of the retention member such that a transverse pin coupled with the umbrella ribs or struts can be inserted into the transverse groove in which the retention member is disposed. A second configuration of the hub prevents deflection of the retention member such that inadvertent withdrawal of the pin from the transverse groove in which the retention member is disposed is prevented.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

This invention involves the technical aspects of an umbrella, especially the technical aspects of the upper and lower runners, sometimes referred to herein as hubs, of an umbrella. It specifically refers to the upper and lower runners of a quick frame assembly system and the relevant umbrella and the quick frame assembly method.


Description of the Related Art

An earlier frame assembly method for attaching the ribs to the upper and lower runners of an umbrella frame is: The upper and lower runners are provided with annular grooves and the ribs have through holes. Iron wires are inserted into the through holes of multiple ribs and are tightly wound in the annular grooves. Tools are required to carry out the assembly and the protruding ends of the wire could injure a user or assembler. The umbrella is difficult to assemble and requires extra care.


The current frame assembly method is: the two sides of one end of the umbrella ribs have lugs and the upper and lower runners are both divided into the hollow runner body and base. There are several U-shaped slots around the outer periphery of the hollow runner body. The two lugs on the rib are respectively situated in the two U-shaped slots. The base is fitted into the hollow runner body to seal up the U-shaped slots. The hollow runner body is provided with fasteners, i.e. for areas that can be fastened, and the fasteners pierce into the base and become secured.


SUMMARY OF THE INVENTIONS

These inventions herein hope to provide another type of quick frame assembly system with upper and lower runners, and where no fixtures, tools or screws are required for the frame assembly. The assembly is quick, easy and flexible, and the ribs can either be assembled vertically or horizontally.


Some of the objectives of these inventions are to address the shortcomings of the prior technology mentioned above by providing the upper and lower runners of a quick frame assembly system and the relevant umbrella frame and the quick frame assembly method. The upper and lower runners are cleverly designed and structurally simple. No fixtures, tools or screws are required for the frame assembly. The assembly is quick, easy and flexible, and the ribs can either be assembled vertically or horizontally. It is also suitable for large-scale application.


In order to achieve the aforementioned objective, the first aspect of this invention provides an upper runner of a quick frame assembly system comprising an upper runner cover and an upper runner base, wherein several upper runner rib hitching grooves or coupling grooves are disposed around the circumference of the outer periphery of the upper runner cover. A first upper runner vertical groove is located between the upper runner rib hitching grooves. The upper runner base has several upper runner stop blocks or retention members. A second upper runner vertical groove is located on the outer periphery of the upper runner base. The first vertical groove 1 is aligned with the second vertical groove. The upper runner cover and the upper runner base should be able to fit into each other and become mutually fastened at positions 1 and 2. At position 1, the upper runner stop block is set into the respective upper runner rib hitching groove and seals up blocks, or encloses a portion of the upper runner rib hitching groove. At position 2, the upper runner stop block is set into the respective upper runner rib hitching groove and seals up, blocks, or encloses all of the upper runner rib hitching groove.


Preferably, the upper runner cover has a first upper runner inverted fastening unit and a second upper runner inverted groove. The upper runner base should have a first upper runner inverted groove and a second upper runner inverted fastening unit. At position 1, the first upper runner inverted fastening unit is fastened to the first upper runner inverted groove. At position 2, the second upper runner inverted fastening unit is fastened to the second upper runner inverted groove.


More preferably, there should be at least two (2) of the first upper runner inverted fastening units. The first upper runner inverted fastening units should be symmetrical with respect to the axis of the corresponding upper runner cover. There should be at least two (2) of the first upper runner inverted grooves. The first upper runner inverted fastening grooves should be symmetrical with respect to the axis of the corresponding upper runner base.


More preferably, there should be at least two (2) of the second upper runner inverted grooves. The second upper runner inverted grooves should be symmetrical with respect to the axis of the corresponding upper runner cover. There should be at least two (2) of the second upper runner inverted fastening units. The second upper runner inverted astening units should be symmetrical with respect to the axis of the corresponding upper runner base.


Preferably, the center of the said upper runner cover has a hollow sleeve and the upper runner base is fitted into or over the said hollow sleeve.


More preferably, the lower section of the hollow sleeve is provided with positioning holes.


The second aspect of this invention provided a lower runner of a quick frame assembly system comprising a lower runner cover and a lower runner base, wherein several lower runner rib hitching grooves or coupling grooves are disposed around the circumference of the outer periphery of the said lower runner cover. A first lower runner vertical groove is located between the lower runner rib hitching grooves. The said lower runner base has several lower runner stop blocks or retention member. A second lower runner vertical groove is located on the outer periphery of the said lower runner base. The first vertical groove is aligned with the second vertical groove. The lower runner cover and the lower runner base should be able to fit into each other and be mutually fastened at first and second positions. At the first position, the lower runner stop block is set into the respective lower runner rib hitching groove and seals up, blocks, or encloses a portion of the lower runner rib hitching groove. In this context and as similarly discussed herein “seals up” and “encloses” can include a condition where the stop block partially blocks access to or egress from the hitching groove. As discussed further below in this position, the stop block is permitted to flex sufficiently to permit pins attached to ribs to be inserted into the hitching grooves. At the second position, the lower runner stop block is set into the respective lower runner rib hitching groove and seals up all of or completely encloses all of the lower runner rib hitching groove. In this context and as similarly discussed herein “seals up all” and “completely encloses” can include a condition where the stop block fully blocks access to or egress from the hitching or coupling groove. As discussed further below in this position, the stop block is braced so that it does not permit ribs or pins coupled with ribs to be inadvertently withdrawn from the hitching grooves.


Preferably, the lower runner cover has a first lower runner inverted fastening unit and a second lower runner inverted groove. The lower runner base should have a first lower runner inverted groove and a second lower runner inverted fastening unit. At the first fastening position, the first lower runner inverted fastening unit is fastened to the first lower runner inverted groove. At the second fastening position, the second lower runner inverted fastening unit is fastened to the second lower runner inverted groove.


More preferably, there should be at least two (2) of the first lower runner Inverted Fastening Units. The first lower runner Inverted Fastening Units should be symmetrical with respect to the axis of the corresponding lower runner cover. There should be at least two (2) of the first lower runner Inverted Grooves. The first lower runner inverted grooves should be symmetrical with respect to the axis of the said corresponding lower runner base.


More preferably, there should be at least two (2) of the second lower runner inverted fastening units. The second lower runner inverted fastening units should be symmetrical with respect to the axis of the corresponding lower runner cover. There should be at least two (2) of the second lower runner inverted grooves. The second lower runner inverted grooves should be symmetrical with respect to the axis of the said corresponding lower runner base.


Preferably, the lower runner cover has a first center hole. The lower runner cover also preferably has a third lower runner inverted fastening unit. The third lower runner inverted fastening unit can be located at an extension of the edge of the first center hole. The lower runner base should have a second center hole. The second center hole can have a third lower runner inverted groove. At the second fastening position, the third lower runner inverted fastening unit can be fastened to the third lower runner inverted groove.


More preferably, there should be at least two (2) of the third lower runner inverted fastening units. The third lower runner inverted fastening units can be symmetrical with respect to the axis of the corresponding lower runner cover. There should be at least two (2) of the third lower runner inverted grooves. The third lower runner inverted grooves can be symmetrical with respect to the axis of the corresponding lower runner base.


The third aspect of this invention provides an umbrella frame comprising first ribs and a shaft. One end of the first ribs has first shaft pins. The umbrella further comprises any of the upper runner embodiments discussed in this application. The upper runner is installed on the shaft. The upper runner cover and the upper runner base mutually come together at the second position. One end of the first ribs is situated in the first upper runner vertical groove. The two ends of the shaft pins 1 are situated in the two adjacent upper runner rib hitching grooves. The shaft pins 1 are immobilized by the upper runner stop blocks situated in the upper runner rib hitching grooves. In this context, “immobilized” means retained or prevented from being withdrawn inadvertently, but permitting at least rotational movement so that the ribs can swing through typical range of motion for opening and closing the umbrella.


Preferably, the center of the upper runner cover has a hollow sleeve. The upper runner base is inserted into or is advanced over the hollow sleeve and the hollow sleeve is set into the shaft. The upper runner base is held up against the shaft.


More preferably, the lower section of the hollow sleeve is provided with one or more positioning holes and the shaft is provided with fastener holes. The positioning holes and the fastener holes are connected with fasteners.


The fourth aspect of this invention provided an umbrella frame comprising of second ribs and a shaft. One end of the second ribs has second shaft pins. The umbrella further comprises any of the embodiments of the lower runner of a quick frame assembly system as discussed herein. The lower runner is mounted and slides on the shaft. The lower runner cover and the lower runner base mutually come together at the second position. One end of the second ribs is situated in the first lower runner vertical groove, and the two ends of the second shaft pins are situated in the two adjacent lower runner rib hitching grooves and are immobilized with the lower runner stop blocks situated in the lower runner rib hitching grooves. As discussed above, “immobilized” here means retained or prevented from being withdrawn inadvertently, but permitting at least rotational movement so that the ribs can swing through typical range of motion for opening and closing the umbrella.


Preferably, the lower runner cover has a first center hole, and The lower runner cover preferably also has a third lower runner inverted fastening unit that can be located at an extension of the edge of the first center hole. The lower runner base should have a second center hole. The second center hole preferably has a third lower runner inverted groove. The third lower runner inverted fastening unit can be fastened to the third lower runner inverted groove. The shaft goes through the first center hole 1 and the second center hole and is secured with the third lower runner inverted fastening unit.


The fifth aspect of this invention provides an umbrella frame comprising first ribs, second ribs, and a shaft. One end of the first ribs has first shaft pins. One end of the second ribs has second shaft pins. The other end of the second ribs is swivel-connected to a central portion of the first ribs. The umbrella further comprises any of the upper runners and any of the lower runners of a quick frame assembly system described herein. The upper runner is installed on the shaft. The upper runner cover and the upper runner base mutually come together at the second position. One end of the first ribs is situated in the upper runner vertical groove 1 and the two ends of the first shaft pins are situated in the two adjacent upper runner rib hitching grooves. The two ends of the first shaft pins are immobilized by the said upper runner stop blocks situated in the upper runner rib hitching grooves. “Immobilized” has the broad meaning discussed above in this regard. The lower runner is mounted and slides on the shaft and is situated below the upper runner. The lower runner cover and the lower runner base mutually come together at the second position. One end of the second ribs is situated in the lower runner vertical groove 1, and the two ends of the second shaft pins are situated in the two adjacent lower runner rib hitching grooves. The second shaft pins are immobilized by the lower runner stop blocks situated in the lower runner rib hitching grooves. “Immobilized” has the broad meaning discussed above in this regard.


The sixth aspect of this invention provides a quick frame assembly method realized using the abovementioned upper runner of a quick frame assembly system, wherein includes any combination or all of the following steps:


(1) The upper runner cover and the upper runner base are fitted together to cause the upper runner cover and the upper runner base to become mutually attached at the first position, thereby the upper runner stop block is respectively inserted into the upper runner rib hitching groove in a manner that seals up a portion of (e.g., partially blocks or encloses) the upper runner rib hitching groove;


(2) One end of the first rib is inserted into the upper runner vertical groove 1 and the two ends of the first shaft pins installed at one end of the first ribs are respectively positioned in the two adjacent upper runner rib hitching grooves, with further advancement of the first ribs causing the first shaft pins to press against the upper runner stop block. At least a portion of the upper runner stop block will exit (e.g., be deflected away or at least partially out of) the upper runner rib hitching groove as a result of the elastic deformation of the upper runner stop block or the elastic deformation of the upper runner cover and/or the upper runner base, and thus the first shaft pins are able to enter the upper runner rib hitching grooves. Thereafter, the upper runner stop block returns to its original position to immobilize the first shaft pins;


(3) The upper runner cover and the upper runner base move closer to each other to allow the upper runner cover and the upper runner base to become mutually attached at the second position, thereby the upper runner stop block moves further into the upper runner rib hitching groove and in turn seals up the entire upper runner rib hitching groove to firmly immobilize the shaft pins 1. “Seals up” and “immobilize” have the broad meaning discussed elsewhere herein.


Preferably, the upper runner cover should have a first upper runner inverted fastening unit and the upper runner base should have a first upper runner inverted groove. In the step (1), the upper runner cover and the upper runner base should be able to become mutually attached at the first position through the attaching of the first upper runner inverted fastening unit to the first upper runner inverted groove.


Preferably, the upper runner cover should have a second upper runner inverted groove and the upper runner base should have a second upper runner inverted fastening unit. In the step (3), the upper runner cover and the upper runner base should be able to become mutually attached at the second position through the attaching of the second upper runner inverted fastening unit to the second upper runner inverted groove.


The seventh aspect of this invention provides a quick frame assembly method realized using any of the abovementioned lower runners of a quick frame assembly system, wherein the method includes any combination or all of the following steps:


(A) The lower runner cover and the lower runner base are fitted together to cause the lower runner cover and the lower runner base to be able to mutually come together at the first fastening position, thereby the lower runner stop block is respectively inserted into the lower runner rib hitching groove and this seals up a portion of (as broadly defined herein) the lower runner rib hitching groove;


(B) One end of the second rib is inserted into the lower runner vertical groove 1 and the two ends of the second shaft pins, installed at one end of the second ribs, are respectively positioned in the two adjacent lower runner rib hitching grooves, with further advancement of the second ribs causing the shaft pins 2 to press against the lower runner stop block. At least a portion of the lower runner stop block will exit (e.g., be deflect away or at least partially out of) the lower runner rib hitching groove as a result of the elastic deformation of the lower runner stop block or the elastic deformation of the lower runner cover and/or the lower runner base. The second shaft pins are then able to enter the lower runner rib hitching grooves. Thereafter, the lower runner stop block returns to its original position to immobilize (as broadly defined herein) the second shaft pins;


(C) The lower runner cover and the lower runner base move closer to each other to allow the lower runner cover and the lower runner base to become mutually attached at the second position, thereby the lower runner stop block moves further into the lower runner rib hitching groove and this in turn seals up the entire (as broadly defined herein) lower runner rib hitching groove to firmly immobilize the second shaft pins.


Preferably, the lower runner cover should have a first lower runner inverted fastening unit and the lower runner base should have a first lower runner inverted groove. In step (A), the lower runner cover and the lower runner base should be able to become mutually attached at the first fastening position through the attaching of the first lower runner inverted fastening unit to the first lower runner inverted groove.


Preferably, the lower runner cover should have a second lower runner inverted groove and the lower runner base should have a second lower runner inverted fastening unit. In step (C), the lower runner cover and the lower runner base should be able to become mutually attached at the second fastening position through the attaching of the second lower runner inverted fastening unit to the second lower runner inverted groove.


Some of the specific benefits resulting from these inventions are:


1. The upper runner of various embodiments of this invention comprises an upper runner cover and an upper runner base. Several upper runner rib hitching grooves are created around the circumference of the outer periphery of the upper runner cover. A first upper runner vertical groove is located between the upper runner rib hitching grooves. The upper runner base has several upper runner stop blocks, and the second upper runner vertical groove is located on the outer periphery of the upper runner base. The first vertical groove is aligned with the second vertical groove, and the upper runner cover and the upper runner base should be able to fit into each other and become mutually attached at first and second positions. At the first position, the upper runner stop block is set into the respective upper runner rib hitching groove and seals up a portion (as broadly defined herein) of the upper runner rib hitching groove. At the second position, the upper runner stop block is set into the respective upper runner rib hitching groove and seals up the entire (as broadly defined herein) upper runner rib hitching grooves. After the upper runner cover and the upper runner base are thus fastened at the first position, elastic deformation is utilized to push the shaft pin on the rib to go beyond the upper runner stop block to enter into the upper runner rib hitching groove and it is then immobilized (as broadly defined herein) by the upper runner stop block. Thereafter, the upper runner cover and the upper runner base should come together at the second position, and the upper runner stop block moves further into the upper runner rib hitching groove to completely seal up (as broadly defined herein) the upper runner rib hitching groove, thereby completing the assembly of the rib with the upper runner in some embodiments. These inventions are cleverly designed and structurally simple. No fixtures, tools or screws are required for the rib assembly. The assembly is quick, easy and flexible, and the ribs can either be assembled vertically or horizontally. It is also suitable for large-scale application.


2. The lower runner of this invention comprises a lower runner cover and a lower runner base. Several lower runner rib hitching grooves are created around the circumference of the outer periphery of the lower runner cover. A first lower runner vertical groove is located between the lower runner rib hitching grooves. The lower runner base has several lower runner stop blocks. A second lower runner vertical groove is located on the outer periphery of the lower runner base. The first vertical groove is aligned with the second vertical groove, and the lower runner cover and the lower runner base should be able to fit into each other and become mutually fastened at the first and second positions. At the first position, the upper runner stop block is set into the respective upper runner rib hitching groove and seals up a portion of (as broadly defined herein) the lower runner rib hitching groove. At the second position, the lower runner stop block is set into the respective lower runner rib hitching groove and seals up the entire (as broadly defined herein) lower runner rib hitching groove. After the lower runner cover and the lower runner base are thus fastened at the first position, elastic deformation is utilized to push the shaft pin on the rib beyond the lower runner stop block to enter into the lower runner rib hitching groove. The shaft pin is then immobilized (as broadly defined herein) by the lower runner stop block. Thereafter, the lower runner cover and the lower runner base should come together at the second position, and the lower runner stop block moves further into the lower runner rib hitching groove to completely seal up (as broadly defined herein) the lower runner rib hitching groove, thereby completing the assembly of the rib in some embodiments. This invention is cleverly designed and structurally simple. No fixtures, tools or screws are required for the rib assembly. The assembly is quick, easy and flexible, and the ribs can either be assembled vertically or horizontally. It is also suitable for large-scale application.


An upper runner of a quick frame assembly system is provided that include an upper runner cover and an upper runner base. The system also includes a plurality of upper runner rib hitching grooves disposed around the circumference of the outer periphery of the upper runner cover. The system also includes a first upper runner vertical groove disposed between the upper runner rib hitching grooves. The upper runner base has several upper runner stop blocks and a second upper runner vertical groove disposed on the outer periphery of the upper runner base. The first upper runner vertical groove is aligned with the second vertical groove. The upper runner cover and the upper runner base are configured to fit together and become mutually fastened at first and second positions. At the first position, the upper runner stop blocks are disposed in the respective upper runner rib hitching grooves and partially blocks the upper runner rib hitching grooves. At the second position, the upper runner stop blocks are disposed in the respective upper runner rib hitching grooves and completely block the upper runner rib hitching grooves.


In another embodiment, an umbrella hub is provided that comprises an inner portion, an outer periphery, a lower portion and an upper portion. The lower portion comprises a lower surface of the hub. The upper portion comprises an upper surface of the hub. A plurality of grooves is disposed in the outer periphery configured to receive umbrella ribs or struts. A plurality of transverse slots is provided, where each slot extends transverse to the grooves. A retention member is disposed in each of the transverse slots. The hub comprises a first configuration that permits deflection of the retention member such that a transverse pin coupled with the umbrella ribs or struts can be inserted into the transverse slot in which the retention member is disposed. The hub comprises a second configuration that prevents deflection of the retention member such that inadvertent withdrawal of the pin from the transverse groove in which the retention member is disposed is prevented.


In another embodiment, an umbrella hub is provided that includes a hub body, a cavity disposed in the hub body, and a retention member disposed adjacent to the cavity. The hub has a first configuration that permits advancing an umbrella rib retention structure into the cavity and a second configuration. In the second configuration, the retention member prevents removing the umbrella rib retention from the cavity. The hub is actuated between the first and second configurations by moving the retention member. Such movement can be by moving one or both of upper and lower portions of the hub with which the retention member can be integrally formed.


In another embodiment, a quick frame assembly method is provided. In the method, a lower portion of a hub is coupled with an upper portion of the hub. The lower and/or upper portions define a first groove enabling movement of a rib or strut during umbrella operation. The upper and/or lower portions define a plurality of second grooves disposed transversely to the first groove. The retention structures are disposed on at least one of the upper and lower portions. The retention structures extend into the second grooves. One end of a first plurality of ribs is inserted into the first groove and ends of shaft pins of the ribs into the second grooves. The shaft pins are caused to press against the retention structures such that the retention structures are deflected. Deflection of the retention structures permits the shaft pins to be disposed in the second grooves, e.g., between the retention structures and a central axis of the hub. Relative movement is provided between the upper portion and the lower portion. Such movement moves the upper and lower portions of the hub to a position in which deflection of the retention members is prevented.


In another embodiment, an assembly method is provided. In the method, a lower portion of a hub is coupled in a first position with an upper portion thereof. The hub has a cavity. One end a rib is inserted into the hub such that an end of a transverse member of the rib is in the cavity. Relative movement is provided between the upper portion and the lower portion of the hub to block the transverse member from being dislodged from the cavity.


In another embodiment, a lower runner of a quick frame assembly system is provided that includes a lower runner cover and a lower runner base. The system also includes a plurality of lower runner rib hitching grooves disposed around the outer periphery of the lower runner cover. A first lower runner vertical groove is disposed between the lower runner rib hitching grooves. The lower runner base having several lower runner stop blocks and a second lower runner vertical groove disposed on the outer periphery of the said lower runner base. The first lower runner vertical groove is aligned with the second lower runner vertical groove. The lower runner cover and the lower runner base are configured to fit together and be mutually fastened at first and second positions. At the first Position, the lower runner stop blocks are disposed in respective lower runner rib hitching grooves and partially blocks the lower runner rib hitching grooves. At the second position, the lower runner stop blocks are set into the respective lower runner rib hitching grooves and completely block the lower runner rib hitching grooves.


In various combinations, umbrellas are provided that include any of the foregoing hubs or runners of a quick frame assembly systems.


In another embodiment, a quick frame assembly method is provided. In the method, a lower portion of a hub is coupled with an upper portion of a hub for rib assembly. The lower and/or upper portions define a first groove enabling movement of a rib or strut during umbrella operation. The upper and/or lower portions define a plurality of second grooves disposed transversely to the first groove. Retention structures that are disposed on at least one of the upper and lower portions extend into the second grooves. One end of a first plurality of ribs is inserted into the first groove and two pins or two ends of a shaft pin of the ribs are inserted into the second grooves. The shaft pin or ends of pins are pressed against the retention structures such that the retention structures are deflected, e.g. out of the second grooves, to permit further insertion of the pin (s). The deflection can be as a result of the elastic deformation of the retention structure and/or elastic deformation of at least one of the upper portion and the lower portion. The shaft pins or ends of are disposed in the second grooves between the retention structures and the central axis of the hub. The retention structures are permitted to return to an undeflected position to retain the shaft pins or ends. Relative movement is provided between the upper portion and the lower portion to move the upper and lower portions of the hub closer to each other to allow the said upper portion and the lower portion to become fully and mutually attached to prevent deflection of the retention members.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic front view of a specific embodiment of the upper runner of this invention in a first fastening position.



FIG. 2A is a schematic perspective view of a specific embodiment of the upper runner cover shown in FIG. 1.



FIG. 2B is a schematic bottom view of a specific embodiment of the upper runner cover shown in FIG. 1.



FIG. 2C is a schematic sectional view taken through section plane A-A in FIG. 2B.



FIG. 3A is a schematic perspective view of a specific embodiment of the upper runner base shown in FIG. 1.



FIG. 3B is a schematic top view of a specific embodiment of the upper runner cover shown in FIG. 1.



FIG. 3C is a schematic sectional view taken through section plane B-B in FIG. 3B.



FIG. 4 is a schematic sectional view taken through section plane C-C in FIG. 1.



FIG. 5 is a schematic top view of a specific embodiment shown in FIG. 1.



FIG. 6 is a schematic sectional view taken through section plane D-D in FIG. 5.



FIG. 7 is a schematic cross-sectional front view of a specific embodiment shown in FIG. 1 in a second fastening position.



FIG. 8 is a schematic front view of a specific embodiment of the lower runner of this invention in a first fastening position.



FIG. 9A is a schematic perspective view of a specific embodiment of the lower runner cover shown in FIG. 8.



FIG. 9B is a schematic top view of a specific embodiment of the lower runner cover shown in FIG. 8.



FIG. 9C is a schematic sectional view of taken through section plane E-E in FIG. 9B.



FIG. 10A is a schematic perspective view of a specific embodiment of the lower runner base shown in FIG. 8.



FIG. 10B is a schematic top view of a specific embodiment of the lower runner cover shown in FIG. 8.



FIG. 10C is a schematic sectional view taken through section plane F-F in FIG. 10B.



FIG. 11 is a schematic sectional view taken through section plane G-G in FIG. 8.



FIG. 12 is a schematic cross-sectional front view of a specific embodiment shown in FIG. 8 in a second fastening position.



FIG. 13 is a schematic front view of a specific embodiment of the umbrella frame of this application.



FIG. 14 is a schematic partial cross-sectional front view of an upper portion of the umbrella frame shown in FIG. 13.



FIG. 15 is a schematic partial cross-sectional front view of a lower portion of the umbrella frame shown in FIG. 13.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In order to be able to understand the technical content of the embodiments more clearly, the following implementations are specially cited and described in detail.


With reference to FIGS. 1-7, an upper runner or hub 1 of this invention comprises an upper hub cover 2 and an upper hub base 3. Several upper hub rib hitching grooves or coupling grooves 21 are created around the circumference of the outer periphery of the upper hub cover 2. A first upper hub vertical groove 22 is located between the upper hub rib hitching grooves 21. The upper hub base 3 has several upper runner stop blocks 31. The stop blocks 31 are examples of retention members within the scope of the embodiments herein. A second upper hub vertical groove 32 is located on the outer periphery of the upper hub base 3. The first upper hub vertical groove 22 is aligned with the second upper hub vertical groove 32. The upper hub cover 2 and the upper hub base 3 should be able to fit into each other and become mutually fastened at positions 1 and 2. At the position 1, the upper hub stop blocks 31 are set into the respective upper hub rib hitching grooves 21 and these partially seal up all of the upper hub rib hitching grooves 21. At the position 2, the upper hub stop blocks 31 are set into the respective upper hub rib hitching grooves 21 and they completely seal up all the upper hub rib hitching grooves 21.


Any suitable structure can be employed to cause the upper hub cover 2 and the upper hub base 3 to become mutually fastened at positions 1 and 2. With reference to FIGS. 1-7, in the specific embodiment of this invention, the upper hub cover 2 has first upper hub inverted fastening units 23 and second upper hub inverted grooves 24. The upper hub base 3 has first upper hub inverted grooves 33 and second upper hub inverted fastening units 34. At the position 1, the first upper hub inverted fastening units 23 are fastened to the first upper hub inverted grooves 33. At the second position, the second upper hub inverted fastening units 34 are fastened to the second upper hub inverted grooves 24.


The quantity of the first upper hub inverted fastening units 23 and the upper hub inverted grooves 33 and their installation method can be arbitrarily defined. Preferably, there are at least two of the first upper hub inverted fastening units 23 that are symmetrical with respect to the axis of the corresponding upper hub cover 2. Preferably, there are at least two of the first upper hub inverted grooves 33 that are symmetrical with respect to the axis of the corresponding upper hub base 3. With reference to FIGS. 2B and 3A, in the specific embodiment of this invention, the quantity of the first upper hub inverted fastening units 23 and the first upper hub inverted grooves 33 is two.


The quantity of the second upper hub inverted fastening units 34 and the second upper hub inverted grooves 24 and their installation method can be arbitrarily defined. More preferably, there should be at least two of the second upper hub inverted grooves 24 and that are symmetrical with respect to the axis of the said corresponding upper hub cover 2. There also should be at least two of the second upper hub inverted fastening units. The second upper hub inverted fastening units preferably are symmetrical with respect to the axis of the said corresponding upper hub base 3. With reference to FIGS. 3A, 3B and 5, in the specific embodiment of this invention, the quantity of the second upper hub inverted fastening units 34 and the second upper hub inverted grooves 224 is four.


Any suitable structure can be employed to install the upper hub 1 on the shaft 10. With reference to FIGS. 1-2C, in the specific embodiment of this invention, the center of the said upper hub cover 2 has a hollow sleeve 25 and the upper hub base 3 is fitted over the hollow sleeve 25. The upper hub 1 is installed on the shaft 10 by means of the hollow sleeve 25.


Any suitable structure can be employed to install the upper hub 1 on the shaft 10 by means of the hollow sleeve 25. With reference to FIGS. 1 and 2A, in various embodiments of this invention, the lower section of the hollow sleeve 25 is provided with positioning holes 26. The upper hub 1 is installed on the shaft 10 by means of the positioning holes 26.


With reference to FIGS. 8-12, the lower runner 4 comprises a lower runner cover 5 and a lower runner base 6. Several lower runner rib hitching grooves or coupling grooves 51 are created around the circumference of the outer periphery of the lower runner cover 5. A first lower runner vertical groove 52 is located between the lower runner rib hitching grooves 51. The lower runner base 6 has several lower runner stop blocks, or retention members 61. A second lower runner vertical groove 62 is located on the outer periphery of the lower runner base 6. The first vertical groove 52 is aligned with the second vertical groove 62, and the lower runner cover 5 and the lower runner base 6 should be able to fit into each other and be mutually attached at positions 1 and 2. At position 1, the lower runner stop blocks 61 are set into the respective lower runner rib hitching grooves 51 and partially seal up (as broadly defined herein) all the lower runner rib hitching grooves 51. At position 2, the lower runner stop blocks 61 are set into the respective lower runner rib hitching grooves 51 and completely seal up (as broadly defined herein) all the lower runner rib hitching grooves 51.


Any suitable structure can be employed to cause the lower runner cover 5 and the lower runner base 6 to become mutually fastened at positions 1 and 2. With reference to FIGS. 8-12, in specific embodiments, the lower runner cover 5 has first lower runner inverted fastening units 53 and second lower runner inverted grooves 54), and the lower runner base 6 has first lower runner inverted grooves 63 and second lower runner inverted fastening units 64. At position 1, the first lower runner inverted fastening units 53 are fastened to the first lower runner inverted grooves 63. At position 2, the second lower runner inverted fastening units 64 are fastened to the second lower runner inverted grooves 54.


The quantity of first lower runner inverted fastening units 53 and first lower runner inverted grooves 63 and their installation method can be arbitrarily defined. Preferably, there should be a plurality, e.g., at least two, of the first lower runner inverted fastening units 53. The first lower runner inverted fastening units 53 may be symmetrical with respect to the axis of the corresponding lower runner cover 5 There should be a plurality, e.g., at least two, of the first lower runner inverted grooves 63. The first lower runner inverted grooves 63 can be symmetrical with respect to the axis of the corresponding lower runner base 6. With reference to FIGS. 9A, 9B and 11, in a specific embodiment of this invention, there is a plurality, e.g., two of the first lower runner inverted fastening units 53 and the first lower runner Inverted Grooves 63.


The quantity of the second lower runner inverted fastening units 64) and the second lower runner inverted grooves 54 and their installation method can be arbitrarily defined. Preferably, there is a plurality, e.g., at least two of the second lower runner inverted grooves 54. The second lower runner inverted grooves 54 may be symmetrical with respect to the axis of the corresponding lower runner cover 5. There should be a plurality, e.g., at least two of the second lower runner inverted fastening units 64. The second lower runner inverted fastening units 64 may be symmetrical with respect to the axis of the said corresponding lower runner base 6. With reference to FIGS. 10A and 10B, in specific embodiments there is a plurality of, e.g., four of the second lower runner inverted fastening units 64 and the second lower runner Inverted Grooves 54.


In order to secure the connection, with reference to FIGS. 8-12, in the specific embodiment of this invention, the lower runner cover 5 has a first center hole 55. Third lower runner inverted fastening units 56 are located at the extension of the edge of the firstcenter hole 155. The first center hole 55 can be an aperture, e.g., a short cylindrical structure that facilitates sliding movement along an umbrella pole. The lower runner base 6 should have a second center hole 65. The second center hole 65 preferably has third lower runner inverted grooves 66. The second center hole 65 can be an aperture, e.g., a short cylindrical structure that facilitates sliding movement along an umbrella pole. At the fastening position 2, the third lower runner inverted fastening units 56 are fastened to the third lower runner inverted grooves 66.


The quantity of the third lower runner inverted fastening units 56 and the third lower runner inverted grooves 66 and their installation method can be arbitrarily defined. Preferably, there should be a plurality of, e.g., at least two of the third lower runner inverted fastening units 56. The third lower runner inverted fastening units 56 preferably are symmetrical with respect to the axis of the corresponding lower runner cover 5. There should be a plurality of, e.g., at least two of the third lower runner inverted grooves 66. The third lower runner inverted grooves preferably are symmetrical with respect to the axis of the said corresponding lower runner base 6. With reference to FIGS. 9A, 9B and 12, in specific embodiments, the quantity of the third lower runner inverted fastening units 56 and the third lower runner inverted grooves 66 is 2.


With respect to FIGS. 13-15, an umbrella frame of this invention comprises first ribs 7, second ribs 8 and a shaft 10. One end of the first ribs 7 has first shaft pins (not illustrated). One end of the second ribs 8 has second shaft pins (not illustrated) and the other end of the second ribs 8 is swivel-connected to the center of the first ribs 7. The umbrella frame further comprises the upper hub 1 and the lower runner 4 of a quick frame assembly system. The upper hub 1 is installed on the said shaft 10. The upper runner cover 2 and the said upper runner base 3 mutually come together at position 2. One end of the first ribs 7 is situated in the first upper runner vertical grooves 22, and the two ends of the first shaft pins are situated in two adjacent upper runner rib hitching grooves 21. The first shaft pins are retained by the upper runner stop blocks 31 situated in the upper runner rib hitching grooves 21. The lower runner 4 is mounted and slides on the said shaft 10 and is situated below the upper hub 1. The lower runner cover 5 and the lower runner base 6 mutually come together at the position 2. One end of the second ribs 8 is situated in the first lower runner vertical grooves 52, and the two ends of the second shaft pins are situated in the two adjacent lower runner rib hitching grooves 51 and are retained by the lower runner stop blocks 61 situated in the lower runner rib hitching grooves 51.


Any suitable structure can be employed to install the upper hub 1 on the shaft 10. With reference to FIG. 14, in specific embodiments, the center of the upper runner cover 2 has a hollow sleeve 25. The upper runner base 3 is fitted into or over the hollow sleeve 25 and the hollow sleeve 25 is set into the shaft 10, and the upper runner base 3 is held up against the said shaft 10.


In order to ensure that the connection between the upper hub 1 and shaft 10 is reliable, the bottom section of the hollow sleeve 25 is provided with positioning holes 26, the shaft 10 is provided with fastener holes 9 and the positioning holes 26 and the fastener holes 9 are connected with fasteners 91. With reference to FIG. 14, in specific embodiments, the positioning holes 26 are threaded holes, the fastener holes 9 are screw holes and the fasteners 91 are screws. The screws are screwed into the said threaded holes and screw holes to achieve the connection.


Any suitable structure can be employed to install the lower runner 4 on the shaft 10. With reference to FIG. 15, in specific embodiments, the lower runner cover 5 has a first center hole 55 and the third lower runner inverted fastening units 56 are located at the extension of the edge of the center hole 1 (55). The lower runner base 6 should have a second center hole 65. The second center hole 65 has the third lower runner inverted grooves 66. The third lower runner inverted fastening units 56 are fastened to the third lower runner inverted grooves 66. The shaft 10 goes through the first center hole 55 and the second center hole 65 and is secured with the third lower runner inverted fastening unit 56. As no excess space between the third lower runner inverted fastening unit 56 and shaft 10, the lower runner will not fall off easily and thus achieve the effect of being immobilized.


When the upper hub cover 2 and the upper hub base 3 are fitted together, it will cause the upper hub 1 to be fastened at position 1 as illustrated in FIGS. 1, 4 and 6. One end of the first ribs 7 is situated in the first upper runner vertical groove 22, and the two ends of the first shaft pins are situated in the two adjacent upper runner rib hitching grooves 21, which then pushes the first ribs 7, causing the first shaft pins to press against the upper runner stop blocks 31. At least a portion of the said upper runner stop blocks 31 will be displace, e.g., out of the upper runner rib hitching grooves 21 as a result of the elastic deformation of the upper runner stop blocks 31 or the elastic deformation arising from the fastening of the first upper runner inverted fastening unit 23 to the first upper runner inverted groove 33. Upon such displacement the shaft pins 1 are able to enter the said upper runner rib hitching grooves 21. Thereafter, the upper runner stop blocks 31 return to their original position to immobilize or retain the shaft pins 1. The upper hub cover 2 and the upper hub base 3 are moved closer to each other until they become mutually fastened at position 2 as illustrated in FIGS. 7 and 14. The upper hub stop blocks 31 will move further into the upper runner rib hitching grooves 21 and in turn completely seal up or block all the upper hub rib hitching grooves 21 to firmly immobilize or retain shaft pins 1.


Similarly, when the lower runner cover 5 and the said lower runner base 6 are fitted together, it will cause the lower runner 4 to fasten at position 1 as illustrated in FIGS. 8 and 11. One end of the second ribs 8 is situated in the first lower runner vertical groove 52, and the two ends of the shaft pins 2 are situated in the two adjacent lower runner rib hitching grooves 51, which then pushes the second ribs 8, causing the second shaft pins to press against the lower runner stop blocks 61. At least a portion of the said lower runner stop blocks 61 will be displaced, e.g., out of the lower runner rib hitching grooves 51 as a result of the elastic deformation of the lower runner stop blocks 61 or the elastic deformation arising from the fastening of the first lower runner inverted fastening unit 53 to the first lower runner inverted groove 63, and thus the shaft pins 2 are able to enter the said lower runner rib hitching grooves 51. Thereafter, the lower runner stop blocks 61 return to their original position to immobilize or retain the second shaft pins. The lower runner cover 5 and the lower runner base 6 move closer to each other until they become mutually fastened at position 2 as illustrated in FIGS. 12 and 15. The lower runner stop blocks 61 will move further into the lower runner rib hitching grooves 51 and in turn completely seal up or block all the lower runner rib hitching grooves 51 to firmly immobilize or retain shaft pins 2.


Therefore, no fixtures, tools or screws are required, only the runner covers and runner bases need to be securely fastened. The fastening units will be firmly fastened and the umbrella ribs can be assembled upside down (horizontal assembly).


In summary, the upper and lower hubs of these embodiments are cleverly designed and structurally simple. In another embodiment, a quick frame assembly method is provided. FIGS. 6 and 7 illustrate parts of a method related to an upper hub for an umbrella. A base 3 or lower portion is coupled with a cover 2 or upper portion of the hub. The hub has a groove 22 for ribs to move in during umbrella operation. The hub has transverse grooves 51 for receiving and retaining pins or other transverse members of an umbrella rib. Projections that may be flat members, referred to herein as stop blocks 31, are retention structures that are disposed on the base 3 but can also or alternatively be disposed on the cover 2. The retention structures extend into the transverse grooves 51 in a first assembly position (as in FIG. 6). One end of each rib of a plurality of ribs is inserted into the grooves 22 and ends of transverse members of the ribs into the transverse grooves 51. In one embodiment, the retention structures 31 are flexible so that when the shaft pins are pressed against them, the retention structures 31 are deflected. The deflection of the retention structures 31 permits the transverse members to be disposed in the transverse grooves. The position can be between the retention structures 31 and a central axis of the hub, e.g., passing through the centre of the sleeve 25. Relative movement is provided between the cover 2 and the base 3 to move the cover and base in to engagement (as in FIG. 7). The cover 2 and base 3 of the hub in this position prevent deflection of the retention structures 31. Deflection is prevented in the FIG. 7 position because the retention structures 31 are received in a recess that provides a rigid wall on both sides of the free end of the retention structures 31. These rigid walls hold the free end of the retention structures 31 so that the retention structures 31 will not deflect when the umbrella rib is loaded in normal use in a manner that permits the rib to be dislodged from the hub. There may be some deflection of course, but not sufficient of permit the free end of the retention structures 31 to come free of the rigid structures into which it is received.


Various figures show hook-like projections, which may be referred to as “fastening units” and corresponding grooves or inverted grooves, which have surfaces for engaging the hook-like members. These structures define first and second positions in a discrete and very secure way. These structures are discussed above in great detail.


No fixtures, tools or screws are required for the rib assembly. The assembly is quick, easy and flexible, and the ribs can either be assembled vertically or horizontally. It is also suitable for large-scale application.


In this specification, embodiments have been described with reference to specific implementations. However, many modifications and variations can clearly still be made without departing from the essence and scope of the inventions. Therefore, the Specifications and drawings should be considered as illustrative rather than restrictive.

Claims
  • 1. An umbrella hub, comprising: an outer periphery;a base comprising a first outer surface of the outer periphery;a cover comprising a second outer surface of the outer periphery;an opening disposed in the outer periphery, the opening having an end disposed radially inwardly of the outer periphery; anda retention member having a fixed end attached to one of the base and the cover, the retention member having a free end disposed away from the fixed end, the free end insertable into the other one of the cover and the base;wherein the opening permits a transverse pin coupled with an umbrella rib to be inserted into the hub through the opening when the cover and base are not fully assembled together and the retention member traps the transverse pin in the hub between the end and the outer periphery by blocking the opening when the cover and base are fully assembled together; andwherein the retention member is disposed radially inwardly of the outer periphery when the cover and base are fully assembled together.
  • 2. The umbrella hub of claim 1, wherein the fixed end of the retention member is coupled with the base and the free end is insertable into the cover.
  • 3. The umbrella hub of claim 1, wherein the cover and the base are coupled together when not fully assembled by one or more inverted fastening units.
  • 4. The umbrella hub of claim 1, wherein the cover and the base are coupled together when fully assembled by one or more inverted fastening units.
  • 5. The umbrella hub of claim 1, wherein the cover and the base are coupled together in a partially assembled configuration before being assembled in a fully assembled configuration.
  • 6. The umbrella hub of claim 1, wherein the retention member is offset radially inwardly from the outer periphery.
  • 7. The umbrella hub of claim 1, wherein the retention member is a stop block disposed within the opening.
  • 8. The umbrella hub of claim 1, further comprising a plurality of vertical grooves in the outer periphery, each groove of the plurality of grooves configured to receive an end portion of an umbrella rib, the opening in the hub extending transverse to one of the vertical grooves.
  • 9. An umbrella hub, comprising: an outer periphery;a base comprising a first outer surface of the outer periphery;a cover comprising a second outer surface of the outer periphery;an opening disposed in the outer periphery, the opening having an end disposed radially inwardly of the outer periphery; anda retention member having a fixed end attached to one of the base and the cover, the retention member having a free end disposed away from the fixed end;wherein the opening provides access for a transverse pin of an umbrella rib to be inserted into the hub between the end and the outer periphery by deflecting the retention member radially inwardly when the cover and base are not fully assembled together and where the retention member traps the transverse pin between the end and the outer periphery when the cover and base are fully assembled together.
  • 10. The umbrella hub of claim 9, wherein the retention member is prevented from being deflected radially outwardly by the outer periphery when the cover and base are fully assembled together.
  • 11. The umbrella hub of claim 9, wherein the fixed end of the retention member is coupled with the base and the free end is insertable into the cover.
  • 12. The umbrella hub of claim 9, wherein the cover and the base are coupled together in when not fully assembled by one or more inverted fastening units.
  • 13. The umbrella hub of claim 9, wherein the cover and the base are coupled together in when fully assembled by one or more inverted fastening units.
  • 14. The umbrella hub of claim 9, wherein the cover and the base are coupled together in a partially assembled configuration before being assembled in a fully assembled configuration.
  • 15. The umbrella hub of claim 9, wherein the retention member is offset radially inwardly from the outer periphery.
  • 16. The umbrella hub of claim 9, wherein the retention member is a stop block disposed within the opening.
  • 17. The umbrella hub of claim 9, further comprising a plurality of vertical grooves in the outer periphery, each groove of the plurality of vertical grooves being configured to receive an end portion of the umbrella rib, the opening in the hub extending transverse to one of the vertical grooves.
  • 18. A shade structure hub, comprising: a base;a cover having a rib space and a wall partly defining the rib space, the wall having a slot formed therein extending along the rib space, the slot having an open end and a closed end;an opening disposed in an outer periphery of the hub in a first configuration; anda retention member having a fixed end attached to the base, the retention member having a free end disposed away from the fixed end, the free end insertable into the cover, the hub providing access to the open end of the slot through the opening in the first configuration;wherein the opening permits a transverse pin coupled with a rib to be inserted into the hub through the opening in a radially inward direction when the cover and base are in the first configuration and the retention member and the slot within the wall of the cover trap the transverse pin in the hub upon closing the opening when the cover and base are in a second configuration; andwherein the retention member is disposed radially inwardly of the outer periphery when the cover and base are in the second configuration.
  • 19. A shade structure hub, comprising: a base and a cover comprising an outer periphery and an inner periphery extending along a longitudinal axis;an opening disposed in the outer periphery, the opening having an end disposed radially inwardly of the outer periphery; anda retention member having a fixed end attached to the base, the retention member having a free end disposed away from the fixed end;wherein the opening provides access for a transverse pin of a rib to be inserted radially inwardly into the hub between the end and the outer periphery when the cover and base are assembled together in a first configuration and wherein the retention member traps the transverse pin between the end and the outer periphery when the cover and base are assembled together in a second configuration in which the opening is closed by relative movement of the base and cover together along the longitudinal axis from the first configuration to the second configuration;wherein the free end of the retention member is received within a slot in the base in the second configuration.
Priority Claims (1)
Number Date Country Kind
2012 1 0116279 Apr 2012 CN national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of Chinese Patent Application No. 201210116279.0, filed Apr. 19, 2012, and is a continuation of U.S. patent application Ser. No. 15/341,971, filed Nov. 2, 2016, which is a divisional of U.S. patent application Ser. No. 13/797,477 filed Mar. 12, 2013, the entirety of which are hereby incorporated by reference for all purposes.

US Referenced Citations (191)
Number Name Date Kind
331231 Folger Nov 1885 A
476364 Collins Jun 1892 A
501089 Lichtenstein Jul 1893 A
620815 Warren Mar 1899 A
750178 Fesenfeld Jan 1904 A
770704 Vogel Sep 1904 A
847805 McAvoy Mar 1907 A
899718 Eberle Sep 1907 A
878270 Blake et al. Feb 1908 A
880534 Hoyt Mar 1908 A
897026 Seitzinger Aug 1908 A
924627 Baker et al. Jun 1909 A
928169 Bardon Jul 1909 A
941952 Riehl Nov 1909 A
947790 Carter Feb 1910 A
959127 Edwards May 1910 A
1001076 Redford Aug 1911 A
1022944 Hodinger Apr 1912 A
1078069 Simons Nov 1913 A
1107415 Drohan Aug 1914 A
1264075 Hout Apr 1918 A
1469495 Bunker Oct 1923 A
1712430 Giszczynski May 1929 A
1808610 Roy Jun 1931 A
1852513 Frey Apr 1932 A
1862674 Frey Jun 1932 A
2101510 Rathbun Dec 1937 A
2207043 Weiss et al. Jul 1940 A
2321495 Levin Jun 1943 A
2336116 Morando Dec 1943 A
2385575 Isler Sep 1945 A
2469637 Evans et al. May 1949 A
2635616 Haydu Apr 1953 A
2762383 Wittman Sep 1956 A
2796073 Wittman Jun 1957 A
2860647 Negri Nov 1958 A
2914154 Russell Nov 1959 A
3157186 Hammer Nov 1964 A
3177882 Vincent Apr 1965 A
3181542 Bareis May 1965 A
3252468 Militano May 1966 A
3330582 Morris Jul 1967 A
3424180 Andolfi Jan 1969 A
3462179 Hinkle Aug 1969 A
3557809 Vazquez et al. Jan 1971 A
3643673 Weber Feb 1972 A
3704479 Whitaker Dec 1972 A
D231955 Weber Jun 1974 S
4201237 Watts et al. May 1980 A
4368749 Lindler et al. Jan 1983 A
4369000 Egnew Jan 1983 A
4627210 Beaulieu Dec 1986 A
4673308 Reilly Jun 1987 A
4750509 Kim Jun 1988 A
4790338 Strobl Dec 1988 A
4941499 Pelsue et al. Jul 1990 A
4966178 Eichhorn Oct 1990 A
D320111 Ma Sep 1991 S
5056291 Leung Oct 1991 A
D321779 Ma Nov 1991 S
5069572 Niksic Dec 1991 A
5085239 Chin-Hung et al. Feb 1992 A
5188137 Simonelli Feb 1993 A
5193566 Chen Mar 1993 A
5328286 Lee Jul 1994 A
D360522 Ko Jul 1995 S
5433233 Shiran et al. Jul 1995 A
5445471 Wexler et al. Aug 1995 A
5694958 Chang Dec 1997 A
5738129 Vogt Apr 1998 A
5740824 Tang Apr 1998 A
5797613 Busby Aug 1998 A
5797695 Prusmack Aug 1998 A
5842494 Wu Dec 1998 A
D411655 Tung Jun 1999 S
5911233 Wu Jun 1999 A
D412056 Wang Jul 1999 S
6076540 You Jun 2000 A
6095169 Lin et al. Aug 2000 A
6116256 Pawsey et al. Sep 2000 A
6199572 Rousselle et al. Mar 2001 B1
6227753 Boer May 2001 B1
6298867 Chang Oct 2001 B1
6311706 Sato Nov 2001 B1
6314976 Clarke Nov 2001 B1
6332657 Fischer Dec 2001 B1
6345637 Ko Feb 2002 B1
6354316 Chen Mar 2002 B1
6374840 Ma Apr 2002 B1
6386215 Chang May 2002 B1
6397867 You Jun 2002 B2
D460947 Montena Jul 2002 S
D465915 Earnshaw Nov 2002 S
6499856 Lee Dec 2002 B2
6604844 Hussey Aug 2003 B2
6643889 Kotlarski Nov 2003 B1
6651682 Woodward Nov 2003 B1
6701946 You Mar 2004 B2
6705335 You Mar 2004 B2
6732753 Chang May 2004 B2
6758228 You Jul 2004 B1
6758354 Carletti Jul 2004 B2
6769441 Liu Aug 2004 B2
6814093 You Nov 2004 B2
6904923 Chai et al. Jun 2005 B2
7178535 Eder Feb 2007 B2
7464503 Hoberman Dec 2008 B2
7481235 Prusmack Jan 2009 B2
7509967 Kim Mar 2009 B2
7574777 Fuller et al. Aug 2009 B1
7637276 Mallookis et al. Dec 2009 B2
7686024 Lai Mar 2010 B1
7703464 Ma Apr 2010 B2
D623396 He Sep 2010 S
D626324 Ma Nov 2010 S
7861734 Ma Jan 2011 B2
D631848 Montena et al. Feb 2011 S
7891367 Ma Feb 2011 B2
8061375 Ma Nov 2011 B2
8069872 Bae Dec 2011 B2
8082935 Ma Dec 2011 B2
8082937 Tarter et al. Dec 2011 B2
8166986 Ma May 2012 B2
D661659 Natoli et al. Jun 2012 S
D662064 Natoli et al. Jun 2012 S
D668446 Patzak Oct 2012 S
D670901 Rothbucher et al. Nov 2012 S
8356613 Ma Jan 2013 B2
8360085 Lee Jan 2013 B2
8485208 Seo Jul 2013 B2
8496019 Zhou Jul 2013 B2
8522804 Tung Sep 2013 B1
8534304 Tung Sep 2013 B1
8555905 Ma Oct 2013 B2
8763620 Tung Jul 2014 B1
D719342 Ma Dec 2014 S
D719343 Ma Dec 2014 S
8899250 Tung Dec 2014 B1
9060576 Siegenthaler Jun 2015 B2
9078497 Ma Jul 2015 B2
9113683 Ma Aug 2015 B2
D738609 Ma Sep 2015 S
9192215 Ma Nov 2015 B2
D744742 You Dec 2015 S
D749835 Whitaker Feb 2016 S
9265313 Ma Feb 2016 B1
D750364 Lah Mar 2016 S
9433269 Ma Sep 2016 B2
9498030 Ma Nov 2016 B2
9615637 Tung Apr 2017 B1
D786661 Wright May 2017 S
D813525 Ma Mar 2018 S
D814173 Ma Apr 2018 S
10034524 Ma Jul 2018 B2
D826543 Ma Aug 2018 S
10060152 Ma Aug 2018 B2
D833137 Ma Nov 2018 S
10292466 Ma May 2019 B2
20010007260 Rousselle et al. Jul 2001 A1
20040025915 Wang Feb 2004 A1
20040123891 Ma Jul 2004 A1
20040255993 Ma Dec 2004 A1
20050115599 You Jun 2005 A1
20060005867 Chang Jan 2006 A1
20060024128 Chiu Feb 2006 A1
20060124160 Lee Jun 2006 A1
20070113878 Ko May 2007 A1
20070172310 Yang et al. Jul 2007 A1
20070261728 Lin et al. Nov 2007 A1
20090071518 Amsel Mar 2009 A1
20090126769 Hoogendoorn May 2009 A1
20090260664 Ma Oct 2009 A1
20100288318 Beaulieu Nov 2010 A1
20110017249 Ma Jan 2011 A1
20110132418 Ma Jun 2011 A1
20110209732 Ma Sep 2011 A1
20110214705 Ma Sep 2011 A1
20120318316 Choi et al. Dec 2012 A1
20130008478 Prieto Jan 2013 A1
20130206192 Ma et al. Aug 2013 A1
20140026931 Lee Jan 2014 A1
20140069476 Zimmer et al. Mar 2014 A1
20140246062 Ma Sep 2014 A1
20140251394 Ma Sep 2014 A1
20150237977 Ma Aug 2015 A1
20160115707 Schneider et al. Apr 2016 A1
20180110303 Ma Apr 2018 A1
20180153269 Ma Jun 2018 A1
20190045894 Ma Feb 2019 A1
20190119946 Ma Apr 2019 A1
20190373992 Ma Dec 2019 A1
Foreign Referenced Citations (21)
Number Date Country
1269018 May 1990 CA
204444542 Jul 2015 CN
1152226 Aug 1963 DE
0202769 Dec 1989 EP
0897678 Feb 1999 EP
2774504 Jan 2017 EP
855628 May 1940 FR
002650491 Feb 1991 FR
2857835 Jan 2005 FR
2113543 Aug 1983 GB
2165448 Nov 1987 GB
61131921 Aug 1986 JP
H08-322621 Dec 1996 JP
2002-336020 Nov 2002 JP
3144314 Jul 2008 JP
2009-045359 Mar 2009 JP
100851744 Aug 2008 KR
10-2009-0110808 Oct 2009 KR
10-2012-0107607 Oct 2012 KR
WO 2005023042 Mar 2005 WO
WO 2017048868 Mar 2017 WO
Non-Patent Literature Citations (6)
Entry
EPO Extended Search Report dated Apr. 5, 2011 for European Patent No. 09252140.0, filed Sep. 7, 2009.
Extended European Search Report issued in EP Application No. 14157685, dated Jul. 7, 2014, in 8 pages.
Extended European Search Report issued in EP Application No. 14158057, dated Jul. 7, 2014, in 7 pages.
Extended European Search Report issued in EP Application No. 15156587.6, dated Jul. 23, 2015, in 7 pages.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2016/051771, dated Dec. 28, 2016.
Treasure Garden, 2010 Products Catalog, pp. 20 and 60.
Related Publications (1)
Number Date Country
20190191834 A1 Jun 2019 US
Divisions (1)
Number Date Country
Parent 13797477 Mar 2013 US
Child 15341971 US
Continuations (1)
Number Date Country
Parent 15341971 Nov 2016 US
Child 16049387 US