This application is a United States National Phase application of International Application PCT/EP2008/005825 and claims the benefit of priority under 35 U.S.C. §119 of German Patent Application DE 10 2007 034 512.9 filed Jul. 24, 2007, the entire contents of which are incorporated herein by reference.
The invention relates to a device for driving a screening machine comprised of at least one screening body.
DE 7811967 UI discloses a drive generating oscillations for processing machines, e.g. an elliptic vibratory screen, to generate real elliptic oscillations, said drive comprised of two circular oscillation exciters generating these oscillations, as well as comprised of different unbalanced weights circulating at the same speed synchronously and in opposite direction. The unbalanced weights are arranged on two through shafts, with a transmission gear being provided in stationary arrangement next to the oscillating part of the machine, e.g. the screen box. The shafts of the unbalanced weights are connected to each other through universally jointed shafts or comparable parts with the transmission gear outlets. The through shafts carrying the unbalanced weights are configured as rigid shafts or universally jointed shafts.
A drive unit attributable to the applicant is comprised of an unbalanced drive to generate linear oscillations of large-size mechanical screens, with the oscillations being excited by so-called double-type unbalanced transmission gears. A transmission gear of this type is comprised of two shafts with unbalanced disks provided thereon, said shafts supported in axis parallel arrangement in a casing and whose oppositely directed movement of rotation is synchronized by a pair of cog wheels within the casing. The unit forms an unbalanced module. One of the two shafts protrudes on both sides from the casing, it is unilaterally driven and via the other shaft end it can drive another unbalanced module of this kind. To achieve a sufficient oscillation rate, this drive unit is comprised of six unbalanced modules mounted on the screen body. These are arranged on cross members in two axis parallel groups. The drive is effected by a non-oscillating stationary unit comprised of an electric motor and a powerful synchronization transmission gear located next to the screen machine. It requires relatively large space on the screen machine and owing to the additional synchronous cog wheels existing in them, as well as due to the oil greasing and the necessarily massively built transmission gear casings, there is an unnecessarily high “dead” mass of the unbalanced modules that oscillates, too.
Now, starting out from this prior art in technology, it is the object of the present invention to provide an unbalanced drive for a screen body of a screen machine with a high throughput capacity that does not have these drawbacks, but whose mass oscillating together with the screen body exceeds the sum of its unbalanced masses as little as possible and whose unbalanced mass can be varied and altered in modules.
This task is solved by a device for driving a screen body of a screen machine, said device comprised of a drive motor, a synchronous transmission which is operatively connected thereto and has at least two output shafts which rotate in pairs in antiphase at the same rotation speed with respect to one another, wherein the drive motor and the synchronous transmission are mounted in a stationary manner, separately from the screening body, at the side alongside the screening body, and do not oscillate therewith, and wherein each output shaft has a single associated horizontal shaft which has unbalance elements, and which is connected to the output shaft by means of a rotationally rigid universally jointed shaft and is arranged with its axis parallel to the adjacent shaft and transversely with respect to the conveying direction of the screening body, and wherein the unbalance elements are arranged in the horizontal direction between the side walls of the screening body, the shaft is supported by means of bearing elements on a cross member which is connected to the side walls, the unbalance elements are arranged exclusively directly on the shafts, bearing elements are arranged exclusively on the shafts in the axial direction of the shafts between the unbalance elements, and the bearing elements are supported on a cross member which is connected to the side walls.
In an advantageous manner, groups of unbalance elements including their bearings are combined to form unbalance modules. Each of these unbalance modules may be surrounded by a casing and it may also include the associated shaft section. It is also conceivable to provide only parts of the unbalance and bearing elements within a casing.
Individual unbalance modules are so spaced to each other that they can be brought into an operative connection with each other via short-built rotationally rigid offset clutches to offset assembly tolerances. In their status as built in, a through shaft is thus formed between the synchronous transmission gear and the individual unbalance elements.
In particular, the invention relates to the generation of linear oscillations of the screen body, though it is not restricted to it.
It is also conceivable to provide several drive units on one screen body as well as to provide several screen bodies with the appropriate drive within a screen machine.
The inventive object is illustrated and outlined based on an example of an embodiment in the drawings. The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which a preferred embodiment of the invention is illustrated.
In the drawings:
Referring to the drawings in particular,
Bearing elements 18, 18′ are positioned between the individual unbalance elements 15, 16, 17. In this example, the unbalance elements 15, 17 are arranged outside the casing 14. Each unbalance module 7 is comprised of fastening areas 22 through which it can be fastened to the relevant cross member 21 in the corresponding area (see
The difference between
Advantages and benefits of the inventive unbalanced drive:
As compared with the represented prior art in technology, the internal synchronization transmission gears (pairs of cog wheels) contained in double-type unbalanced transmission gear modules as well as their secondary shafts are entirely omitted. Likewise omitted are the lubricating systems required for them. Moreover, the transmission gear casings are substantially less costly, because there is no need for exact cog wheel bearings and no need for a lubricating system as well as no need for casing seals and gaskets. Consequently, with the same “active” unbalanced mass, the demand for space, the overall weight, the co-oscillating “dead mass” and the price for the inventive unbalance modules 7 are much less than for prior art configurations.
The reduced demand for space (with identical outer dimensions) allows for adapting noticeably higher “active” unbalance masses and noticeably less co-oscillating “dead mass”. This permits implementing alternatively longer screen bottoms, achieving higher throughput rates and/or smaller screen machines with the same throughput rate, respectively. This reduces the cost involved and by minimizing the overall weight and outer dimensions it allows for road transportation of screen machines having a higher throughput rate than hitherto.
The modular adaptability of the unbalance mass to the class of sizes and performance rates of screen machines can be accomplished in a more finely graduated manner. The inventive facility is readily applicable to conveyor chutes, vibratory conveyors, shaker conveyor chutes or similar facilities.
While a specific embodiment of the invention has been described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 034 512 | Jul 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/005825 | 7/17/2008 | WO | 00 | 5/28/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/012922 | 1/29/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5037536 | Koch et al. | Aug 1991 | A |
5683586 | Harcourt et al. | Nov 1997 | A |
6155428 | Bailey et al. | Dec 2000 | A |
8312995 | Dufilho et al. | Nov 2012 | B2 |
Number | Date | Country |
---|---|---|
78 11 967 | Aug 1978 | DE |
34 10 449 AL | Sep 1985 | DE |
0 405 477 AL | Jan 1991 | EP |
0 692 317 | Jan 1996 | EP |
Entry |
---|
ThyssenKrupp Foerdertechnik, “Linear Vibrating Screens”, pp. 1-12, Printed in Germany. Screens LSS 01 D 08.02, Aug. 2002. |
Number | Date | Country | |
---|---|---|---|
20100243541 A1 | Sep 2010 | US |