Hold-down systems, more specifically, a hold-down system for underground fluid storage tanks.
This invention relates to the installation of underground storage tanks, more specifically, horizontal, cylindrical fluid storage tanks in an area that may be subject to a high water table. With a high water table, the underground tanks may become buoyant when the water table rises up past the lower walls thereof and, thus, there is a need for a hold-down system. Further, a device and system is needed that eliminates the “man downhole” situation, where a man must enter an excavated hole, to the floor thereof, to engage a hold-down strap to a deadman or other similar devices, such as a slab or other anchor-type device (hereinafter called deadmen).
An underground fluid storage tank hold-down system for holding down an underground cylindrical fluid storage tank in a hole that has been excavated, the underground tank hold-down system comprising a multiplicity of paired hold-down straps having a first end and a second end; a multiplicity of paired deadmen anchors adapted to be placed to either side of the tank when the tank is in the hole, the deadmen anchors each with anchor upstanding loops; and a tank hold-down assembly comprising a take-up coupler assembly having a pair of arched sections, including a first arched section and a second arched section and a threaded engagement assembly, the threaded engagement assembly including a threaded member and a receiving member adapted to receive part of the threaded member, wherein the paired straps are adapted to engage the arched sections at a first end and the paired deadmen anchor eyes or loops at a second end; and wherein the first and second arched sections each comprise a multiplicity of strap engaging hooks and means to engage the threaded member to the first arched section and the receiving member to the second arched section such that rotation of the threaded member when it is engaged with the receiving member brings the two sections closer to one another and snugs the straps to the walls of the underground tank.
A method for securing an underground storage tank in an excavated area, comprising the steps of providing on the bottom of an excavation an anchoring assembly comprising a multiple of paired upstanding anchor spaced apart loop sections; providing a multiplicity of paired hold-down straps, each having a first end and a second end, a length, and a width; a multiplicity of paired deadmen anchors adapted to be placed to either side of the tank when the tank is in the hole, the deadmen anchors each with anchor upstanding loops; a tank hold-down assembly comprising a take-up coupler assembly having a pair of arched sections, including a first arched section and a second arched section and a threaded engagement assembly, the threaded engagement assembly including a threaded member and a receiving member adapted to receive part of the threaded member; wherein the paired straps are adapted to engage the arched sections at a first end of the straps and the paired deadmen anchors at a second end of the straps; and wherein the first and second arched sections each comprise a multiplicity of strap engaging hooks and walls to engage the threaded member to the first arched section and the receiving member to the second arched section such that rotation of the threaded member when it is engaged with the receiving member brings the two sections closer to one another and snugs the straps down to the walls of the underground tank; attaching each strap to the multiple strap pairs to the anchor upstanding loops and the take-up coupler assembly having the threaded member engaging the arched section; and rotating the threaded member until the straps are snug.
Applicant discloses a tank hold-down assembly 10 for use with the tank. The tank may be an underground storage tank, such as a 10 foot by 21 foot cylindrical tank (12 k gallons), a 10 foot by 34 foot cylindrical tank (20 k gallons), a 10 foot by 77 foot (45 k gallons) cylindrical tank or any other size cylindrical tank for laying into an excavated hole with a long axis horizontal. These tanks are sometimes used at filling stations to hold gasoline (or other fluids) for supply of the pumps of the station. They are laid in excavated holes, horizontally disposed, and often into a bed of pea gravel (or other suitable material) with deadman anchors paired on either side of the tank. Such prior art systems may be found in U.S. Pat. No. 7,028,967, which patent is incorporated herein by reference.
Typically, as seen in
Applicant's underground tank hold-down assembly 10 includes a take-up coupler assembly 12 having a pair of arched sections, including a first arched section 14 and a second arched section 16. The two arched sections are engaged with a threaded engagement assembly 18. Straps 20/22 laying down each side of the container as set forth in
Turning now to the details of Applicant's underground tank hold-down assembly 10, it is seen that arched sections 14/16 typically comprise rectangular, curved bases 28/30 adapted to sit flush against the exterior walls of the tank (usually with a bumper pad or resilient member between them and the tank). The arched section bases usually have a radius of curvature substantially equal to that of the tank. If the tank exterior is ribbed, the assembly may be placed in the ribs or on the non-rib surface. Bases may be made up of mild 10 gauge steel. Bases 28/30 typically have a first end 28a/30a, a second end 28b/30b, and a body 28c/30c therebetween.
A multiplicity, here, at least a pair of hooks first and second hooks 32/34, may be found on curved base 28 and a pair of first and second hooks 36/38 on curved base 30. The hooks are adapted to receive second ends 20b/22b of straps 20/22. First end 20a/22a of straps 20/22 are adapted to include curved or hook members for engaging loops 24b/26b embedded in and extending above deadmen bodies 24a/26a (see
First and second arched section hooks 32/34/36/38 are typically spaced apart longitudinally as best seen in
Turning to
Threaded engagement assembly 18 includes an elongated rotating member 52 typically including a threaded body 52b with a fixed, tool engaging head 52a, such as a nut welded to one end thereof. Threaded engagement assembly 18 typically includes a threaded receiver 54 adapted to threadably engage threaded body 52b. Threaded receiver 54 may include a transverse member 54a with a hole 54b therethrough, which hole is designed to accommodate the diameter of threaded body 52b, and which transverse member 54a is sufficient to engage and span between windows 50a/50b as seen, for example, in
Hold-down straps may include those available as part No. HDS128.38-C3D3-0CL0 from Pultrusion Technique Inc. of St. Bruno, Canada. These straps typically include a fiberglass reinforced resin body with hot dipped galvanized hooks at one end (each with a mouth open wide enough to engage an upstanding anchor loop) and D-rings (or other closed loops) at the other end for engaging the anchors and the first and second arched sections, respectively. They may be designed to withstand a tensile load of 25,000 lbs. each. See www.pultrusiontech.com. These straps may be come in about 100″, 110″ or 128⅜″ lengths. They are non-compressible, fixed length, and bendable to conform to the curve of the tank outer surface.
Typically, when paired straps are used, they may be hooked into the lower hooks 32/36 and, when threaded rotating member 52, typically about 24 inches long threadably engages the plate 48 and threaded receiver 54, the body of the threaded member will lay close to the tank, but not touch it. Indeed, one of the advantages of Applicant's system over the prior art is that the threaded member, which couples the sections, lays low, close to the outer surface of the tank when the sections are engaged so as to reduce the bending moment. A typical range between the underside of the elongated rotating member when the assembly is cinched down is in the range of about ¾ inch to 1⅝ inch, preferred about 1 3/16″. This low profile is, in part, achieved by bringing the plate and windows within the range of about 4 to 30 to one another when the strap is cinched down. The low profile is also achieved by placement of the center of hole 48a on plate 48 preferably at about 2¼ inches above the underside of the curved base 28 or in the range of about 1¾ to 2¾ inches, and the center of windows 50a/50b preferably at about 1¾ inches above the underside of curved base 30 or in the range of about 1¼ to 2¼ inches.
Turning to
The table above illustrates the ranges of strap lengths (approximate) that may be used with Applicants' assembly, for different tank sizes.
Although the invention has been described with reference to a specific embodiment, this description is not meant to be construed in a limiting sense. On the contrary, various modifications of the disclosed embodiments will become apparent to those skilled in the art upon reference to the description of the invention. It is therefore contemplated that the appended claims will cover such modifications, alternatives, and equivalents that fall within the true spirit and scope of the invention.
This is a divisional patent application claiming priority to and the benefit of U.S. patent application Ser. No. 13/687,432, filed Nov. 28, 2012.
Number | Name | Date | Kind |
---|---|---|---|
1262413 | Tyler | Apr 1918 | A |
5655265 | Schneider et al. | Aug 1997 | A |
5848776 | Craig et al. | Dec 1998 | A |
5851038 | Robinson et al. | Dec 1998 | A |
7028967 | Burwell et al. | Apr 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20140250799 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13687432 | Nov 2012 | US |
Child | 14270449 | US |