The present invention belongs to the technical field of emergency danger avoiding devices, and in particular relates to an underground temporary danger avoiding system for defending against a short-duration and strong impact of a ground fluid.
In China, a large number of cascade reservoir groups have been built in a plurality of drainage basins, the reservoirs are at risk of dangerous situations under extreme environments such as earthquakes and heavy rainfall, and the cascade reservoirs will cause the dangerous situations to spread in a chain until the last reservoir forms a huge flood disaster. The flood has a short duration and a strong impact, which will cause destructive damage to densely populated areas such as villages, towns, markets and cities along the way, and threatens the lives of people along the way. When a chain disaster occurs, an early warning can be timely notified to the people living downstream, however, the flood has a high propagation speed, there will still be people who are too late to transfer, and their lives are greatly threatened. Under the flood with high water heads and a strong impact, the traditional flood control and lifesaving high platform cannot solve the danger caused by flood climbing due to the extremely short danger avoiding time and the limited height of the lifesaving high platform, which is difficult to ensure the life safety of danger avoiders. In the face of the danger avoiding requirements under extreme disaster conditions such as the burst of cascade reservoir groups, it is urgently needed to invent a novel underground temporary danger avoiding system, and to provide a corresponding scientific design method and parameters.
In view of the above defects in the prior art, the present invention is intended to provide an underground temporary danger avoiding system for defending against a short-duration and strong impact of a ground fluid, so as to solve the problem that the traditional flood control and lifesaving high platform cannot solve the danger caused by the flood climbing due to the extremely short danger avoiding time and the limited height of the lifesaving high platform under the flood with high water heads and a strong impact, which is difficult to ensure the life safety of danger avoiders.
For the above objective, the present invention adopts technical schemes as follows.
An underground temporary danger avoiding system for defending against a short-duration and strong impact of a ground fluid comprises a danger avoiding chamber having a danger avoiding service radius of r; a danger avoiding entrance arranged at a position in the danger avoiding chamber that is close to danger avoiders, and a rescue exit arranged at a position of the highest point of the danger avoiding chamber; waterproof doors resisting to high water heads and unidirectionally opened outwards that are arranged at both the danger avoiding entrance and the rescue exit; an alarm apparatus arranged at the danger avoiding entrance; and a rotary stair leading to the rescue exit that is arranged in the danger avoiding chamber, and a life support system and a rescue device configured in the danger avoiding chamber.
Further, the life support system comprises a harmful gas removal device, an oxygen supply device, a lighting device, and a device for storing food, clothing and drinking water.
Further, the rescue device includes a satellite communication device, an emergency power supply, a lifebuoy, a life jacket, and a lifeboat.
Further, determining the danger avoiding service radius r comprises:
Further, the high water head, i.e., a land surface water depth hg, which the waterproof doors resist is calculated as:
Further, hg is solved as:
c12c3hg3−(c12c4+2c1c2c3)hg2+(2c1c2c4+c22c3)hg−(c22c4+c5)=0
The underground temporary danger avoiding system for defending against a short-duration and strong impact of a ground fluid provided by the present invention has the following beneficial effects.
The underground temporary danger avoiding system according to the present invention can protect danger avoiders under a short-duration and strong-impact flood, solve the problem of flood climbing when the traditional flood control and lifesaving high platform is in the face of flood with high water heads and a strong impact, and have the advantages of high safety and strong practicability.
Numerals in the drawings: 1. danger avoiding entrance; 2. rescue exit; 3. danger avoiding chamber; 4. waterproof door; 5. alarm apparatus; 6. life support system; 7. rescue device; 8. rotary stair; and 9. silt deposits.
The following description of the specific embodiments of the present invention is provided to facilitate the understanding of the present invention by those skilled in the art, however, it should be understood that the present invention is not limited to the scope of the specific embodiments, and for those of ordinary skill in the art, various changes that are made without departing from the spirit and scope of the present invention as defined and determined by the appended claims are apparent, and all inventions and creations that are made by using the concept of the present invention are within the protective scope.
Example 1: referring to
The life support system 6 comprises a harmful gas removal device, an oxygen supply device, a lighting device, and a device for storing food, clothing and drinking water, and provides a living environment while protecting danger avoiders from the flood; and the devices in the lift support system all are devices in the prior art, so that the structures thereof are not described in detail.
This example provides an oxygen supply principle of the oxygen supply device:
The oxygen supply device mainly comprises sodium peroxide (Na2O2), which reacts with carbon dioxide (CO2) in the air to generate sodium carbonate (Na2CO3) and oxygen gas (O2), and may further react with water (H2O) to generate sodium hydroxide (NaOH) and oxygen gas (O2), wherein the reaction equations are as follows:
2Na2O2+2CO2=2Na2CO3+O2
2Na2O2+2H2O=4NaOH+O2↑
The carbon dioxide in the air may be reduced while the oxygen gas is provided to maintain the air pressure balance in the closed danger avoiding facility.
The rescue device 7 includes a satellite communication device, an emergency power supply, a lifebuoy, a life jacket, and a lifeboat, which are convenient for rescue communication and follow-up rescue work.
The rescue exit 2 of this example should be built hg meters higher than the local height, which reduces the pressure head of flood to the waterproof doors 4 and may prevent the silt deposits 9 from depositing and blocking the exit; the rescue exit 2 is built at a position that is convenient to rescue, so that the rescue may be conveniently and quickly performed after the flood peak; and the danger avoiding chamber 3 is configured to accommodate danger avoiders and protect danger avoiders from the flood discharging process.
The danger avoiding system of this example has a certain service range, and when a short-duration and strong-impact ground flood occurs, in order to ensure that danger avoiders in the service radius can transfer into the danger avoiding facility, in this example, a position of the danger avoiding system with the optimal distance from the danger avoiders may be selected according to the determination of the service radius, and the determination of the danger avoiding service radius r comprises:
The danger avoiding entrance 1 of this example is built at a position close to the danger avoiders, and the height is close to the residence of the danger avoiders, so that the danger avoiders conveniently enter the danger avoiding entrance; the danger avoiding entrance 1 is provided with waterproof doors 4 with corresponding specification, the waterproof doors 4 have a capability of resisting an impact to defend against the impact of the flood, and the waterproof doors 4 have a capability of resisting high water heads, which can ensure that water flow is prevented from entering under high water head; and the waterproof doors 4 can resist a size hg of the water head:
The high water head, i.e., a land surface water depth hg, which the waterproof doors 4 resist is calculated as:
c12c3hg3−(c12c4+2c1c2c3)hg2+(2c1c2c4+c22c3)hg−(c22c4+c5)=0
According to the local hydrogeological conditions, a proper flood peak attenuation coefficient and a proper land surface flood attenuation coefficient are selected, the water depth hg when the flood reaches the danger avoiding facility is calculated, and the waterproof doors 4 are built according to hg to resist the flood attack.
The final solution of the above equation to the water depth hg is a unitary cubic equation, and the solution process is a conventional means and is not described in detail herein.
The present invention has the creativity that a principle scheme of a novel underground temporary danger avoiding system for defending against a short-duration and strong impact of a ground fluid is provided, and an original and scientific calculation method is provided for the design of the structural parameters of the underground temporary danger avoiding system. By combining the scheme and the calculation method, the target of the present invention can be achieved, and the target of scientific and effective disaster avoidance is achieved, which has remarkable substantial innovation and technological progress.
The danger avoiding working principle of this example is as follows.
Timely danger avoidance and transfer before flood occurrence:
Flood impact avoidance:
Timely rescue after flood peak:
Example 2: referring to
A certain city is located downstream of the cascade reservoir, and its distance from the last reservoir is 14888.8 m, the slope of the watercourse is 0.0019, the watercourse is a trapezoid section, the bottom width of the trapezoid is 98.62 m, the side slope coefficient is 1.528, the maximum water depth of the watercourse is 23 m, and the watercourse roughness coefficient is 0.1.
The above data are substituted into the calculation formula in Example 1, and it can be calculated that when the water depth is maximum, the hydraulic radius R=16.85 m. The notification time is set to 30 min, and the service radius is calculated as r=2300 m. That is, residents within the range of 2300 m around the danger avoiding facility can be safely transferred into the danger avoiding facility after receiving a notification half an hour after the reservoir dam bursts; and
The specific embodiments of the present invention have been described in detail in conjunction with the drawings, however, it should not be construed as limiting the scope of protection of the present invention. Various modifications and variations that can be made within the scope described in the claims by those skilled in the art without creative efforts still belong to the protection scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
202210794115.7 | Jul 2022 | CN | national |