Many undergraduate engineering students choose to pursue a master's degree, some immediately after finishing their bachelor's degree and others after working in industry for a period of time. These students may choose to leave the workforce temporarily, or they might continue to work while they pursue their graduate study. The goal of this project is to learn more about how their work influences the way in which they learn and how they integrate new knowledge with their previous knowledge and experiences. Understanding how industry experience influences learning will be used to develop recommendations to improve master's degree programs both for returners, those who are coming back from industry, and for their classmates. Greater understanding of how these returning students learn will allow masters' degree programs to better serve their needs, tailoring programs so that they can take full advantage of their experience and learn more deeply and effectively. It will also allow universities to enhance the learning environment for those students who proceed directly from their undergraduate institution to graduate school, because they can leverage the knowledge and experiences of returners to enhance project teams and classroom discussions and to situate technical knowledge in real world applications so that students can better understand the ways they can apply what they are learning.<br/><br/>Lifelong learning is widely acknowledged to be critically important for engineers to maintain and improve their skills, and to advance in their careers. While learning can take place in many different settings, one avenue for continuing education is obtaining a graduate degree, such as a master's degree in engineering. The impact of a master's degree on a student's knowledge level and career trajectory depends, in part, on a student's background, interests, and capabilities. Returners, those with engineering undergraduate degrees who work for at least five years and then pursue a graduate degree, bring a wide variety of real-world experiences to their degree programs. These experiences can enhance their own educational experiences, provide context for the new knowledge they obtain, and enrich the academic climate for their fellow students. This project will focus on those returners with an undergraduate degree in engineering who are pursuing a master's degree in engineering, and will investigate the skills that returners and direct-pathway students have and the approaches they take to learning new material through a survey, and will explore knowledge construction, in both returners and direct-pathway students, through semi-structured interviews and concept mapping activities with a smaller number of participants. This project will create new knowledge about returners in the master's program, particularly in the areas of what skills are developed through work experience, and how knowledge construction is influenced by work experience. Better understanding of how returners construct knowledge will allow them to consciously leverage their work experience and other strengths in order to be more successful in the classroom. This will enhance the overall classroom learning environment, which will benefit direct-pathway students as well. For institutions, better understanding of knowledge construction in both groups will allow them to improve their learning environment in general, and to specifically tailor their programs in ways that will appeal to returners and support their success. As the returners are successful in enhancing their knowledge, and in enriching the classroom environment for all students, the engineering profession will benefit from more skilled and knowledgeable engineers.