The present invention relates to systems comprising chains and underwater connectors for the mooring lines of floating structures and methods for connecting mooring lines.
Offshore platforms or drilling rigs are floating structures which must be secured to the seabed in a specific fixed area so as to not be subjected to movements that may be caused by sea currents or atmospheric conditions. To that end, anchoring devices which are secured to mooring lines attached to said floating structures are used. The anchoring devices can be anchors or piles which are driven into the seabed, commonly incorporating a chain segment, one of the ends of said chain segment being attached to the anchoring device, and the other end of the chain segment having to be attached to another chain segment which is launched from the surface of the water and attached to the floating structure to be secured. To attach the chain segments under water, the use of underwater connectors which are arranged in the anchoring devices is known.
Document EP2809969A1, or EP2858888A1, shows an underwater connector for connecting a chain under water comprising a connector body having a first end with an anchoring point and a second end for the anchoring of an end of the chain, the second end comprising an inlet opening. The anchoring point of the first end of the connector body is used for the anchoring of an end of another chain.
A male element which is launched together with the chain from the surface of the water, submerging the male element together with the chain until the male element is introduced into the connector body, is arranged at the end of the chain. Both the male element and the connector body have cavities for the passage of a locking pin, such that when the male element is inserted into the connector body, with the cavities of both elements being aligned with one another, the locking pin is introduced through the cavities by means of a remotely operated vehicle for locking the male element in the connector body.
Document US2014026796A1 shows an in-line mooring connector and tensioner employed for connecting and tensioning a chain underwater.
Document US20140224163A1 shows a device and a method of tensioning anchor chains, in particular mooring legs.
Disclosed is a system comprising a chain and an underwater connector for connecting the chain under water, and a method for connecting the chain with said system.
An aspect of the invention relates to a system comprising a chain and an underwater connector for connecting the chain under water, the underwater connector comprising a connector body having a first end with an anchoring point and a second end for the anchoring of the chain, the second end comprising an inlet opening. The connector body additionally comprises a housing communicated with the inlet opening in which at least the last link of an end of the chain is housed, and a locking plate which locks by contact one of the links of the end of the chain housed in said housing. The locking plate has a through groove for receiving another one of the links of the end of the chain and thrusting means for being actuated by a remotely operated vehicle (ROV), the locking plate being movable from a first position, in which the locking plate is arranged outside the housing allowing the passage of the end of the chain into the housing, to a second position, in which the locking plate is arranged in the housing locking the link of the end of the chain housed in said housing by contact.
Another aspect of the invention relates to a method for connecting a chain under water. The method comprises:
The housing of the connector body in which at least the last link of the end of the chain is housed, and the locking plate which locks one of the links of said chain, allow the end of the chain to be locked directly in the connector body without having to use additional elements. The underwater connectors of prior art document EP2809969A1, or EP2858888A1, use a male element that must be attached out of the water to an end of the chain, and then under water, when the male element is arranged such that it is housed in the connector body, a locking pin must be used to attach the male element to the connector body. The underwater connector of the invention does not require using a male element to connect the chain, or to attach the male element with the end of the chain out of the water, thereby resulting in a simpler and more cost-efficient solution for connecting a chain under water.
These and other advantages and features will become evident in view of the drawings and detailed description.
The figures show first and second embodiments of an underwater connector 100, 200 for connecting a chain 300 under water.
The underwater connector comprises a connector body 110, 210 having a first end 111, 211 with an anchoring point 112, 212 and a second end 113, 213 for the anchoring of the chain 300, the second end 113, 213 comprising an inlet opening 114, 214. The connector body 110, 210 additionally comprises a housing 115, 215 communicated with the inlet opening 114, 214 in which at least the last link 301 of an end of the chain 300 is housed, and a locking plate 116, 216 which locks by contact one of the links 301 of the end of the chain 300 housed in said housing 115, 215.
The underwater connector 100, 200 is used for connecting a chain 300 and another connection element 400 under water, for example, another chain 400 or an underwater cable.
Preferably, the underwater connector 100, 200 is used for connecting a first chain 300 and a second chain 400 under water. The first chain 300 and the second chain 400 form a mooring line connecting a floating structure with an anchoring device 500 which is arranged on the seabed.
The first chain 300 is connectable to the floating structure and the second chain 400 is connectable to the anchoring device 400 (see
The mooring line connecting the floating structure with the anchoring device 500 may have a tensioning element for tensioning the first chain 300 and the second chain 400. Therefore, the underwater connector 100, 200 connects the first chain 300 and the second chain 400 under water, and the tensioning element tensions the first chain 300 and the second chain 400.
The chains comprise a plurality of links arranged such that they are intercalated with one another, with a 90° rotated arrangement between two consecutive links. In the sense of the invention, the chains comprise a plurality of even-number links and odd-number links, the even-number links being arranged such that they are intercalated between the odd-number links.
The underwater connector 100 of the first embodiment of
The locking plate 116 has a through groove 117 for receiving another one of the links 302 of the end of the first chain 300 and thrusting means 118 for being actuated by a remotely operated vehicle (ROV), the locking plate 116 being movable from a first position (see
The locking plate 116 is configured for locking the end of the first chain 300 following a curved path between the first and second positions.
The anchoring point 112 of the first end 111 of the connector body 110 has two parallel projecting portions 119 defining an aperture 120 for arranging a link of the second chain 400 (see
As shown in
The rotating shaft 124 of the locking plate 116 is arranged between ribs 127 of the inlet opening 114, the ribs 127 projecting with respect to the lower part of the inlet opening 114, such that, in the second position, the locking plate 116 contacts the lower part of the inlet opening 114. The rotational coupling of the locking plate 116 is established at the lower end of the ribs 127 projecting with respect to the lower part of the inlet opening 114, the ribs 127 projecting a distance similar to the width of the locking plate 116, such that in the second position, the upper face of the locking plate 116 is supported on the lower part of the inlet opening 114, which acts as a stop to limit the rotation of the locking plate 116 (see
The thrusting means 118 comprise protuberances 128 and cables 129, each of the projecting arms 125 having one of the protuberances 128, and wherein each of the cables 129 has an end attached to one of the protuberances 128 and another free end which is operable by the remotely operated vehicle (ROV). The protuberances 128 are arranged in the outer lateral part of the lower end of the projecting arms 125, in the part opposite the rotating shaft 124, such that the force the ROV must exert to rotate the plate 116 and bring it from the first position to the second position is reduced.
The connector body 110 has an aperture 131 for the passage of the locking plate 116 from the first position to the second position (see
The connector body 110 has holes 130 for the passage of the cables 129 of the thrusting means 118. The holes 130 are arranged in the connector body 110 in a position diametrically opposite to the aperture 131 which the connector body 110 has for the passage of the locking plate 116 from the first position to the second position, such that the cables 129 go through the housing 115 of the connector body 110. The holes 131 are arranged at the second end 113 of the connector body 110 in which the inlet opening 114 is arranged, in a position diametrically opposite to the area in which the rotating shaft 124 of the locking plate 116 is attached to the ribs 127 of the inlet opening 114, such that when the remotely operated vehicle (ROV) pulls the cables 129 to bring the locking plate 116 to the second position, the protuberances 128 of the locking plate 116 are close to the holes 131. Therefore, the friction of the cables 129 with the holes 130 of the connector body 110 is limited and pulling is improved.
When the locking plate 116 is in the second position locking the first chain 300, the locking plate 116 is kept in said second position by the pull exerted on the first chain 300, however, under certain circumstances, the first chain 300 may let up, so the arrangement of means for retaining the locking plate 116 in the second position has been envisaged. Therefore, as seen in detail in
As seen in
The underwater connector 100 is preferably configured for establishing a vertical connection of the first chain 300 and the second chain 400 under water such that, in use, the underwater connector 100 is arranged in a vertical orientation with respect to the seabed. Therefore, the locking plate 116 is kept in the first position by gravity, and the thrusting means 118 are used for bringing the locking plate 116 from the first position to the second position.
To that end, the connector body 110 has supporting means 138 for arranging the connector body 110 in a vertical orientation with respect to the seabed. The inlet opening 114 of the housing 115 is therefore oriented vertically for receiving the end of the first chain 300 which is launched from the surface of the water also in a vertical orientation, so complex handling of the first chain 300 to introduce it in the housing 115 is not required.
The supporting means 138 is configured for establishing a removable attachment of the underwater connector 100 with the anchoring device 500. Therefore, when connection is established between the first chain 300 and second chain 400 and the underwater connector 100 is released from the anchoring device 500, no support element remains in the anchoring device 500. In the connectors of the state of the art, the connector body is arranged such that it is supported on a metal support structure that is welded to the anchoring device and remains attached to the anchoring device when the connector is released, so said structure may get tangled up with trawl fishing nets passing above the anchoring devices. The use of the supporting means 138 that are arranged directly in the connector body 110, and therefore moved together with the connector body 110, when the underwater connector 100 is released from the anchoring device 500, ensure the nonoccurrence of said tangling up.
Preferably, the connector body 110 has supporting means 138 comprising a vertical wall 139 which is attached to the connector body 110 by means of arms 140, there being defined between the vertical wall 139 and the arms 140 a groove 141 in which an upper edge of the anchoring device 500 can be arranged by means of being fitted therein. The groove 141 is arranged parallel to the connector body 110, such that when the underwater connector 100 is supported in the anchoring device 500, the groove 141 establishes a support by contact with the upper edge of the anchoring device 500, the underwater connector 100 being arranged in the vertical orientation, and when chains 300 and 400 have been connected, the groove 141 is extracted from the upper edge of the anchoring device 500 by means of pulling the first chain 300.
The anchoring device 500 can be a pile or an anchor arranged on the seabed or a support structure for being arranged on the seabed.
The underwater connector also allows establishing a connection of the first chain 300 and second chain 400 other than vertical connection, because the thrusting means 118 of the locking plate 116 allow the remotely operated vehicle to be able to actuate the plate 116, moving it between the first and second positions regardless of the orientation of the underwater connector 100 such that, in use, the underwater connector can be arranged in a position other than vertical.
The housing 115 of the connector body 110 is sized for receiving the last two links 301 and 302 of the end of the first chain 300, such that, in the second position, the last link 301 of the end of the first chain 300 is in contact with the locking plate 116 and the penultimate link 302 of the end of the first chain 300 is arranged in the through groove 117 of the locking plate 116. The last link 301 is an odd-number link and the penultimate link 302 is an even-number link. The housing 115 of the connector body 110 extends vertically between the first end 111 in which the anchoring point 112 is arranged and the second end 113 in which the inlet opening 114 is arranged, the housing 115 having a vertical dimension coinciding with the vertical dimension of two consecutive links of the first chain 300. In the partially sectioned view of
Accordingly, the method for connecting the first chain 300 using the underwater connector 100 comprises:
The locking plate 116 moves from the first position to the second position following a curved path.
The last link 301 of the first chain 300 is introduced through the cross of the inlet opening 114 in an arrangement in which the last link 301 is arranged parallel to the locking plate 116 and the penultimate link 302 is arranged perpendicular to the locking plate 116, such that when the end of the first chain 300 is housed in the housing 115, the penultimate link 302 is facing the through groove 117, thereby allowing the locking plate 116 to be able to rotate transitioning from the first position to the second position. The first chain 300 is then pulled towards the inlet opening 114 until the last link 301 contacts the locking plate 116, the upper part of the last link 301 being partially housed in the notches 126 of the projecting arms 125 of the locking plate 116. In said situation, and to ensure the immobility of the locking plate 116, the locking pin is introduced through the cavity 133 of the connector body 110 and the cavity 132 of the locking plate 116.
Before connecting the chains 300 and 400 to one another, the anchoring device 500 is arranged on the seabed, and the underwater connector 100 is arranged in the anchoring device 500 in a vertical orientation by means of the supporting means 138. To that end, the groove 141 of the supporting means 138 is introduced in the upper edge of the anchoring device 500. When the connection between chains 300 and 400 has been established, and the locking plate 116 is in the second position locking the first chain 300, an additional pulling of the first chain 300 is performed to extract the groove 141 from the upper edge of the anchoring device 500.
The underwater connector 200 of the second embodiment of
The locking plate 216 has a through groove 217 for receiving another one of the links 302 of the end of the first chain 300 and thrusting means 218 for being actuated by a remotely operated vehicle (ROV), the locking plate 216 being movable from a first position (see
The locking plate 216 is configured for locking the end of the first chain 300 following a straight path between the first position and the second position.
The anchoring point 212 of the first end 211 of the connector body 210 has two parallel projecting portions 219 defining an aperture 220 for arranging a link of the second chain 400. Each of the projecting portions 219 has a cavity 221 for receiving a pin 222 attaching the anchoring point 212 with the link of the second chain 400 which is arranged in the aperture 220. Said anchoring point 212 may have a different shape, as described above in the underwater connector 100 of the first embodiment.
As shown in
The connector body 210 has an aperture 231 for the passage of the locking plate 216 from the first position to the second position (see
The two projecting arms 225 of the locking plate 216 are configured for being moved through grooves 224 of the connector body 210 between the first position and the second position following the straight path. As seen in
The locking plate 116 of the underwater connector 100 of the first embodiment which is depicted in
Each of the projecting arms 225 has a channel 227 for receiving a pin 229 guiding the locking plate 216 according to the straight path between the first position and the second position. The connector body 210 has cavities 230 which are located in the grooves 224, and the pins 229 go through said cavities 230 to project into the grooves 224 and to thereby enter the channels 227 of the locking plate 216 for guiding it in the straight path between the first position and the second position.
As seen in detail in
As seen in
The housing 215 of the connector body 210 has two pairs of vertical plates 237 facing one another for guiding the last link 301 of the end of the first chain 300 into the housing 215. In the second embodiment, the connector body 210 has two facing walls between which the housing 215 is defined, and each of the vertical plates 237 is arranged in one of the walls of the connector body 210.
The housing 115 of the connector body 110 of the first embodiment may also have the two pairs of vertical plates 237 which allow guiding the last link 301 of the end of the first chain 300 when it is introduced in the housing 115. In the first embodiment, the connector body 110 has a circular shape defining the housing 115, such that the two pairs of vertical plates 237 would be arranged in diametrically opposite positions of the housing 115 of the connector body 110.
The underwater connector 200 is preferably configured for establishing a vertical connection of the first chain 300 and second chain 400 under water such that, in use, the underwater connector 200 is arranged in a vertical orientation with respect to the seabed. To that end, the connector body 210 has supporting means 238 for being attached to the anchoring device 500 and for arranging the connector body 210 in a vertical orientation with respect to the seabed.
The supporting means 238 comprises a rod 239 which is arranged between two lugs 240 of the connector body 210, the rod 239 being able to be arranged in an anchoring structure 241 which is attached to the anchoring device 500.
As seen in
The upper part 243 is separated from the lower part 242 for receiving the rod 239 in the arms 245 of the lower part 242, and when the rod 239 is supported in the lower part 242, the upper part 243 is arranged on the lower part 242, the rod 239 being retained between the arms 245 of the anchoring structure 241. When the rod 239 is retained, the locking closure 244, which is made up of a locking pin, assures the attachment of the upper part 243 with respect to the lower part 242 preventing their separation.
The anchoring structure 241 has three arms 245, two of the arms 245 are arranged in the lower part 242 and the other arm 245 is arranged in the upper part 243. The arms 245 have a circular shape that is complementary to the rod 239 to assure its retention and prevent its movement.
To attach the underwater connector 200 with the anchoring device 500, the underwater connector 200 is first brought to the anchoring device 500, the anchoring structure 241 is opened by separating the upper part 243 from the lower part 242, the underwater connector 200 is arranged in the anchoring structure 241 by supporting the rod 239 on the arms 245 of the lower part 242 of the anchoring structure 241, and then the anchoring structure 241 is closed by moving the upper part 243 closer to the lower part 242, such that the rod 239 is retained. Finally, the locking closure 244 is introduced for locking the upper part 243 with the lower part 242.
The underwater connector 200 of the second embodiment may have supporting means 138 like those described above for the first embodiment. Likewise, the underwater connector 100 of the first embodiment may have supporting means 238 like those of the underwater connector 200 of the second embodiment.
The housing 215 of the connector body 210 is sized for receiving the last two links 301 and 302 of the end of the first chain 300, such that in the second position, the last link 301 of the end of the first chain 300 is in contact with the locking plate 216 and the penultimate link 302 of the end of the first chain 300 is arranged in the through groove 217 of the locking plate 216. The last link 301 is an odd-number link and the penultimate link 302 is an even-number link. The housing 215 of the connector body 210 extends vertically between the first end 211 in which the anchoring point 212 is arranged and the second end 213 in which the inlet opening 214 is arranged, the housing 215 having a vertical dimension coinciding with the vertical dimension of the last link 301 and part of the penultimate link 302 of the first chain 300.
The underwater connector 200 of the second embodiment has a locking plate 216 which moves between the first and second positions according to a straight path, whereas the underwater connector 100 of the first embodiment has a locking plate 116 which moves between the first and second positions according to a curved path, to that end, the connector body 210 of the underwater connector 200 of the second embodiment has a vertical dimension smaller than that of the connector body 110 of the underwater connector 100 of the first embodiment.
Accordingly, the method for connecting the first chain 300 using the underwater connector 200 comprises:
The locking plate 216 moves from the first position to the second position following a straight path.
The last link 301 of the first chain 300 is introduced through the cross of the inlet opening 214 in an arrangement in which, during the introduction, the last link 301 is facing the side arms 225 of the locking plate 116 and the penultimate link 302 is facing the groove 217 of the locking plate 116. The first chain 300 is then pulled towards the inlet opening 214 until the last link 301 contacts the locking plate 216, the upper part of the last link 301 being partially housed in the notches 226 of the projecting arms 225 of the locking plate 216. In said situation, and to ensure the immobility of the locking plate 216, the locking pin 228 is introduced through the cavity 233 of the connector body 210 and the cavity 232 of the locking plate 216.
As seen in
Before connecting the chains 300 and 400 to one another, the anchoring device 500 is arranged on the seabed, and the underwater connector 200 is arranged in the anchoring device 500 in a vertical orientation by means of the supporting means 238, as described above.
All the features described in relation to underwater connectors 100 and 200 are also considered as being described for the connection method insofar as it concerns said connectors.
For reasons of completeness, various aspects of the present disclosure are set out in the following numbered clauses:
Clause 1. System comprising a chain and an underwater connector for connecting the chain (300) under water, the underwater connector comprising a connector body (110, 210) having a first end (111, 211) with an anchoring point (112, 212) and a second end (113, 213) for the anchoring of the chain (300), the second end (113, 213) comprising an inlet opening (114, 214), the connector body (110, 210) additionally comprises a housing (115, 215) communicated with the inlet opening (114, 214) in which at least the last link (301) of an end of the chain (300) is housed, and a locking plate (116, 216) which locks by contact one of the links (301) of the end of the chain (300) housed in said housing (115, 215), the locking plate (116, 216) has a through groove (117, 217) for receiving another one of the links (302) of the end of the chain (300) and thrusting means (118, 218) for being actuated by a remotely operated vehicle (ROV), the locking plate (116, 216) being movable from a first position, in which the locking plate (116, 216) is arranged outside the housing (115, 215) allowing the passage of the end of the chain (300) into the housing (115, 215), to a second position, in which the locking plate (116, 216) is arranged in the housing (115, 215) locking the link (301) of the end of the chain (300) housed in said housing (115, 215) by contact.
Clause 2. System according to clause 1, wherein the locking plate (116) has an upper part (123) in which a rotating shaft (124) of the locking plate (116) is arranged, and two projecting arms (125) which are attached to the upper part (123), with the through groove (117) being arranged between the two projecting arms (125).
Clause 3. System according to the preceding clause, wherein the thrusting means (118) comprise protuberances (128) and cables (129), each of the projecting arms (125) having one of the protuberances (128), and wherein each of the cables (129) has an end attached to one of the protuberances (128) and another free end which is operable by the remotely operated vehicle (ROV).
Clause 4. System according to clause 2 or 3, wherein the rotating shaft (124) of the locking plate (116) is arranged between ribs (127) of the inlet opening (114), the ribs (127) projecting with respect to the lower part of the inlet opening (114), such that in the second position, the locking plate (116) contacts the lower face of the inlet opening (114).
Clause 5. System according to clause 3 or 4, wherein the connector body (110) has holes (130) for the passage of the cables (129) of the thrusting means (118).
Clause 6. System according to the preceding clause, wherein the holes (130) for the passage of the cables (129) of the thrusting means (118) are arranged in the connector body (110) in a position diametrically opposite to an aperture (131) which the connector body (110) has for the passage of the locking plate (116) from the first position to the second position, such that the cables (129) go through the housing (115) of the connector body (110).
Clause 7. System according to any of the preceding clauses, wherein the inlet opening (114) has an inner wall (134) for receiving the end of the chain (300), the inner wall (134) extending directly between an upper edge (135) and a lower edge (136), the lower edge (136) having a cross shape, and the upper edge (135) being wider than the lower edge (134), such that the inner wall (134) defines inclined channels (137) to lead the links (301,302) of the chain (300) to the cross shape of the lower edge (136).
Clause 8. System according to clause 1, wherein the locking plate (216) has an upper part (223) in which the thrusting means (218) are arranged, and two projecting arms (225) which are attached to the upper part (223), the through groove (217) being arranged between the two projecting arms (225), and wherein the two projecting arms (225) are configured for being moved through grooves (224) of the connector body (210) between the first position and the second position following a straight path, preferably each of the projecting arms (225) has a channel (227) for receiving a pin (229) guiding the locking plate (216) between the first and second positions.
Clause 9. System according to any of the preceding clauses, wherein the locking plate (116, 216) has a cavity (132, 232) for receiving a locking pin (228), and the connector body (110, 210) has another cavity (133, 233) for receiving the locking pin (228), such that with the two cavities (132, 133) being aligned with one another, the locking pin retains the locking plate (116, 216) in the connector body (110, 210) preventing the movement thereof.
Clause 10. System according to any of the preceding clauses, wherein the housing (115, 215) of the connector body (110, 210) has two pairs of vertical plates (237) facing one another for guiding the last link (301) of the end of the chain (300) into the housing (115, 215).
Clause 11. System according to any of the preceding clauses, wherein the connector body (110) has supporting means (138) comprising a vertical wall (139) which is attached to the connector body (110) by means of arms (140), there being defined between the vertical wall (139) and the arms (140) a groove (141) in which an upper edge of an anchoring device (500) can be arranged by means of being fitted therein.
Clause 12. System according to any of clauses 1 to 10, wherein the connector body (210) has supporting means (238) comprising a rod (239) arranged between two lugs (240) of the connector body (210), the rod (239) being able to be arranged in an anchoring structure (241) which is attached to an anchoring device (500).
Clause 13. System according to the preceding clause, wherein the anchoring structure (241) comprises a lower part (242) connectable to the anchoring device (500) and an upper part (243) having an end which is rotatably attached with the lower part (242) and another end having a locking closure (244) for locking the upper part (243) with the lower part (242), and wherein arms (245) which are configured for receiving the rod (239) of the supporting means (238) and locking same are arranged between the upper part (243) and the lower part (242).
Clause 14. System according to any of the preceding clauses, wherein the housing (115, 215) of the connector body (110, 210) is sized for receiving the last two links (301, 302) of the end of the chain (300), such that in the second position, the last link (301) of the end of the chain (300) is in contact with the locking plate (116, 216), and the penultimate link (302) of the end of the chain (300) is arranged in the through groove (117) of the locking plate (116).
Clause 15. Method for connecting a chain (300) under water, the method comprising:
using a system defined according to any of the preceding clauses;
introducing at least the last link (301) of the end of the chain (300) into the housing (115, 215) of the connector body (110, 210) through the inlet opening (114, 214);
using a remotely operated vehicle (ROV) to actuate the locking plate (116, 216) moving it so as to lock the end of the chain (300) housed in said housing (115, 215); and
pulling the chain (300) towards the inlet opening (114, 214) until one of the links (301) of the end of the chain (300) which is housed in the housing (115, 215) contacts the locking plate (116, 216).
Number | Date | Country | Kind |
---|---|---|---|
20382548.4 | Jun 2020 | EP | regional |
This application is a continuation of International Application No. PCT/ES2021/070416, filed Jun. 7, 2021, which claims the benefit and priority to European Application No. 20382548.4, filed Jun. 23, 2020.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/ES2021/070416 | Jun 2021 | US |
Child | 18087179 | US |