1. Field of the Invention
This invention relates to devices and methods for attenuating energy that is transmitted underwater.
2. General Background
Many underwater engineering projects generate significant amounts of sound and other energy. This energy can have adverse consequences on marine ecology. For instance, the energy generated by a pile driving hammer can be great enough to kill fish that swim nearby. Especially when such noisy underwater projects are undertaken in environmentally sensitive areas, these ecological consequences are unacceptable.
A number of techniques have been developed to mitigate the adverse biological consequences of underwater construction. The first technique is to stage the project so that noisy phases occur only at times when the biological consequences are minimal. For instance, if the project is in a waterway traveled by anadromous or catadromous fish, noisy phases can be postponed when the fish are migrating. However, this technique is far from ideal, both because it is wasteful to allow labor and equipment to sit idle waiting for fish to migrate, and because most waterways have a residual fish population at all times.
The second technique is to erect a cofferdam around the project. The cofferdam can be constructed using traditional methods such as sheet piling, or by less traditional methods. For instance, an oversized casing tube can be fitted over a pile casing that is being driven, and then the water can be evacuated from the area between the casings, either partially by injecting air bubbles or fully by dewatering the annular space. The air within the casing or other cofferdam does attenuate the energy from the construction project, but this technique is quite expensive. Indeed, for some underwater projects, it is cost prohibitive to establish a persistent envelope of air around the work area.
A third technique is to enshroud the underwater construction area with a stream of bubbles. Like a cofferdam, this technique uses air to attenuate the energy, but unlike a cofferdam very little structure is needed. Indeed, this technique only requires bubble-producing units to be placed around and at the bottom of the construction project. The bubbles then travel from the bubble-producing units to the surface, blanketing the project in sound-dampening air.
While elegant, this technique is ineffective in areas of deep water or strong currents. In these circumstances, the bubbles disperse too far laterally while traveling upward, and cannot completely envelop the project. To contain the bubbles as they ascend, a skirt or blanket of flexible material can be placed around the work area. However, this technique can also be expensive, and is not particularly robust, since the flexible material can be torn or damaged. Also, the flexible material acts like a sail, and therefore this system is not appropriate for areas of high current. A substantial support frame would also be required to implement this system.
Thus, there is a need for a system that can robustly and inexpensively create a curtain of bubbles around underwater construction sites, even in areas of deep water or strong current.
The present invention is an underwater energy dampening device that can be used to envelop an underwater construction area in a curtain of bubbles. It comprises a plurality of vertically spaced bubble producing units.
The present invention is an underwater energy dampening device 10 comprising a series of vertically spaced bubble producing units. In one embodiment, the invention comprises a (i) spine 12, (ii) a series of vertically spaced frames 18 attached to the spine 12, (iii) a series of tubes 22 on the frames 18, and (iv) air supply tubing and hardware.
As shown best in
A series of vertically-spaced frames 18 are attached to the spine 12. See
The bubble-producing tubes 22 sit within the frames 18. See
The bubble-producing tubes 22 have a plurality of openings 24 on their top sides for release of bubbles. See
The bubble-producing tubes 22 and frames 18 are just one example of a bubble producing unit. For purposes of this patent, a bubble producing unit is any device or system that delivers bubbles. Such a unit a can be a tube, ring, hose, bubbler, chemical gas generation system, or any other device that can create bubbles.
The bubble-producing tubes 22 or other bubble producing units are vertically spaced, so that bubbles are being generated at various depths. See
Air supply tubing and hardware is used to provide and regulate airflow to the bubble-producing tubes 22. An air supply line 30 supplies air to each of the tubes 22. See
Each tube 22 has a valve 28 to control the flow of air. See
Although manual valves are shown, the valves may also be pneumatically or hydraulically controlled. Additionally, a more automated version of the present invention could be created, in which acoustic sensors provide data to a processing unit, which in turn control air flow or pressure so that a sufficient but not superfluous quantity of bubbles is produced.
With the basic structure of the invention now in mind, a particular operational embodiment can be described. In this embodiment, the invention is used in a pile driving operation.
In this operation, the pile casing 40 is driven deep into the bed of the waterway. A pile driving hammer (not shown) is used, and this hammer has a footprint 80 extending beyond the perimeter of the casing. Thus, the topmost portion of the energy dampening device cannot be inside the hammer's footprint 80. See
Typically, a template or deck structure 60 with a deck floor 62 is erected to support the pile driving operations. See
To install an energy dampening device 10 within such a deck structure 60, a dampening device frame 50 is placed atop the structure 60, over the opening into which the pile casing 40 is being driven. See
To completely surround the pile casing, it may be necessary to use more than one energy dampening device 10. Thus, in the embodiment depicted in
Preferably, the device or devices are installed as close to the energy source as possible. For instance, for pile driving operations, it is preferable to surrounding each pile casing with bubbles, rather than the entire pile group. However, except where limited by express claim language, the present patent covers any version of the present invention, including versions in which the device is placed around the periphery of a large work area.
The present invention offers a number of advantages over the prior art. First, the present invention can be inexpensively and effectively used in an area of high current and great depth. Before the present invention, the only effective high current/high depth technique was the use of a cofferdam such as an oversized casing, but this technique is quite expensive and difficult to implement at great depths. Second, the present invention can be modular, with the number, shape, and configuration of the energy dampening devices adjusted based on the particular requirements of the project and the available equipment. Third, the present invention is easier to use than the alternatives, since the amount of needed structure is minimal—all that is needed is an array of vertically spaced bubble-producing units.
One skilled in the art will appreciate that the present invention can be practiced by other than the preferred embodiments, which are presented for purposes of illustration and not of limitation.
Number | Name | Date | Kind |
---|---|---|---|
1348828 | Fessenden | Aug 1920 | A |
3177466 | Arnoldi | Apr 1965 | A |
3212602 | Jones et al. | Oct 1965 | A |
3713540 | Davidson et al. | Jan 1973 | A |
3896898 | Kirby et al. | Jul 1975 | A |
4320989 | Mamo | Mar 1982 | A |
4425240 | Johnson | Jan 1984 | A |
4625302 | Clark | Nov 1986 | A |
4903793 | Firey | Feb 1990 | A |
5253603 | Mascolo | Oct 1993 | A |
5513149 | Salmi et al. | Apr 1996 | A |
5959938 | Behrens | Sep 1999 | A |
5999491 | Harvey et al. | Dec 1999 | A |
6222794 | Woodall et al. | Apr 2001 | B1 |
6567341 | Dreyer et al. | May 2003 | B1 |
6571906 | Jones | Jun 2003 | B1 |
6606278 | Lee et al. | Aug 2003 | B1 |
20020080681 | Dreyer et al. | Jun 2002 | A1 |
20030034197 | Jones | Feb 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20050083783 A1 | Apr 2005 | US |