This case is related to the following U.S. patent application Ser. Nos. 12/165,060 (Underwater Gun Comprising a Valve-Type Barrel-Seal), 12/165,066 (Underwater Gun Comprising a Barrel Adapter including a Barrel Seal), 12/165,079 (Underwater Gun Comprising a Passive Fluidic Barrel Seal), and 12/165,090 (Underwater Gun Comprising a Turbine-Based Barrel Seal), all of which were filed on even date herewith and all of which are incorporated by reference herein.
The present invention relates to underwater guns.
Underwater guns are useful as anti-mine and anti-torpedo devices. Recently, autonomous underwater vehicles (AUVs) have been fitted with underwater guns for torpedo defense and underwater “hunter-killer” CONOPs.
A gun, especially one with a high muzzle velocity, cannot be fired when water is in its barrel. If a firing where to incur in a water-filled barrel, a very high breach pressure would result as the ignited propellant charge forces (or tries to force) the water out of the barrel. The likely result would be material failure of the barrel.
The prior art is replete with approaches for waterproofing the barrel of an underwater gun, or for clearing water from its barrel before firing. U.S. Pat. No. 5,639,982 discloses a means for firing a fully automatic gun underwater using a blank barrel-clearance round. Blank barrel-clearance rounds are alternated with live rounds of ammunition. To begin the process, a blank barrel-clearance round is first detonated. This creates gas and steam within the chamber that forms a bubble at the muzzle end of the barrel, thereby displacing water from the chamber. A live round is then immediately fired. The process is repeated, whereby the subsequent detonation of a blank barrel-clearance round displaces any water that has re-entered the barrel subsequent to the firing of the live round.
U.S. Pat. No. 5,648,631 discloses a spooled tape seal for sealing the barrel of an underwater gun. The system includes a tap that covers the opening of the gun barrel and sprockets for advancing the tape across the opening. Hydrostatic pressure keeps the tape pressed to the end of the barrel to create an effective seal. When a bullet is fired, it perforates the tape. During this brief period of egress, the exhaust gases from combustion of the propellant charge keep water from entering the barrel. Almost immediately, a non-perforated portion of the tape is advanced by the sprockets to cover the barrel opening. External hydrostatic pressure re-seats the tape, thereby preventing water from entering the barrel.
U.S. Pat. No. 5,687,501 discloses a sealing plate for providing a watertight seal for a multi- or single-barreled underwater gun. The sealing plate provides one or more firing apertures in an otherwise solid surface. Between firings, the gun muzzle is sealed by a solid surface of the sealing plate. To fire a bullet, the sealing plate or muzzle rotates to align the gun muzzle with one of the firing apertures. This permits unimpeded egress. After the bullet fires, the plate or muzzle again rotates so that a solid portion of the sealing plate covers the muzzle.
These are but a few of the many patents pertaining to various aspects of underwater gun design in general, and to the water-in-the-barrel problem, in particular. Notwithstanding the many approaches to the problem, no truly satisfactory approach has been developed for keeping water out of the barrel of an underwater gun between and during operation.
The present invention provides an underwater gun having a plate-type barrel seal for preventing water from entering the barrel between the firing of rounds.
In the illustrative embodiment, the barrel seal comprises one or more disks that, by virtue of an actuation system, are moved between a “sealing” state and a “firing” state. In the sealing state, the disk is axially aligned with and abuts the muzzle end of the gun's barrel, thereby substantially preventing water from entering the barrel. In the firing state, the disk is moved out of axial alignment with the barrel such that a round is free to exit the barrel without interference from the disk.
In some embodiments, the actuation system comprises a drive shaft, drive, controlled power source, and a controller. When triggered by the gun's fire-control system, the controller directs the controlled power source to power the drive, which turns the drive shaft. The drive shaft rotates a disk into the sealing state or the firing state, as appropriate.
In some other embodiments, the actuation system comprises an electromagnet, controlled current source, and controller. A plurality of magnetic (or magnetically attractable) disks are stored in a supply region within a housing that surrounds the barrel of the gun. When triggered by the gun's fire-control system, the controller directs the controlled current source to supply current to the electromagnet. The energized electromagnet generates a magnetic field, which draws a disk from a supply region in the housing. Based on the orientation of the magnetic field, the disk is drawn into axial alignment with the barrel. The disk is magnetically attracted to the muzzle end of the barrel and thereby seals the barrel. When the magnetic field is withdrawn by stopping the current flow, the disk falls away from the barrel and into a return region of the housing.
The terms appearing below are defined for use in this specification, including the appended claims, as follows:
The present invention pertains to guns that are intended for (1) use in an underwater environment and (2) firing rounds that include a chemical propellant. The underwater guns described herein will typically, although not necessarily, be fitted to AUVs. For clarity, gun 100 is typically depicted in the Figures as having a single round in the chamber or bore. It is to be understood, however, that gun 100 is typically a multi-shot weapon.
Gun 100 includes barrel 102, chamber 104, bore 108, fire-control system 110, and elements of the plate-type barrel seal. The plate-type barrel seal comprises housing 114, actuation system 116, and plate arrangement 117. A live round 112 is depicted in bore 108.
Barrel 102, chamber 104, and bore 108 are conventional features of most guns. Fire-control system 110 is basically a computer and ancillary elements that enable gun 100 to hit a target. The relative sophistication of any particular embodiment of fire-control system 110 is primarily a function of the intended application for gun 100. That is, a relatively more sophisticated fire-control system is required for a relatively more autonomous application (e.g., for use in conjunction with an AUV, etc.).
In a typical embodiment, fire-control system 110 interfaces with one or more sensors (e.g., sonar, radar, infra-red search and track, laser range-finders, water current, thermometers, etc.). The sensor input is used to develop a firing solution for a target. To the extent that gun 100 is located on an AUV, etc., fire-control system 110 advantageously takes into account movements of the AUV itself. And, when associated with an AUV, fire-control system 110 is operatively coupled to aiming and firing mechanisms.
The structural details of the fire-control system are not particularly germane to an understanding of the invention and, furthermore, are well understood by those skilled in the art. As a consequence, fire-control system 110 will not be described in further detail.
As previously noted, the plate-type barrel seal comprises housing 114, actuation system 116, and plate arrangement 117. The plate arrangement includes at least one water-impermeable disk 118 that is capable of preventing water from entering barrel 102.
Disk 118 is movable, via the action of actuation system 116, between:
In some embodiments, the disk and barrel 102 are magnetized (or otherwise magnetic), such that when the disk 118 aligns with bore 108 to seal barrel 102, the disk is pulled against the muzzle of barrel 102 to effect a seal.
In the embodiment that is depicted in
Controller 220 includes a microprocessor that is capable of receiving a signal from fire-control system 110 and taking action responsive thereto. In some embodiments, that action is to generate a signal that causes current source 222 to deliver current or stop delivering current. Drive 224, when energized with current from current source 222, is operable to turn driveshaft 226. In some embodiments, drive 224 is an electric motor.
Plate arrangement 117 is operatively coupled to drive shaft 226. The movement of the drive shaft is controlled, ultimately, by fire-control system 110. More particularly, fire-control system 110 directs controller 220 to cause current source 222 to supply current to drive 224. Once activated, drive 224 causes drive shaft 226 to turn, thereby causing plate arrangement 117 to rotate a disk into or out of registration with barrel 102.
It will be appreciated that fire-control system 110 must synchronize the operation of the barrel seal with the firing of a round (after a period of quiescence) or with the cessation of firing (after a period of continuous firing).
There are a number of time delays that must be considered in the context of synchronizing the operation of the barrel seal with the onset or cessation of firing. In particular, there is a finite amount of time, typically a millisecond or so, that it takes for round 112 to transit barrel 102 to muzzle end 106. This time is, of course, a function of the amount of charge used, the length of the barrel, etc. Furthermore, there is a time delay between the moment that fire-control system 110 signals actuation system 116 to move plate arrangement 117 and the moment that the plate arrangement:
When round 112 is fired, combustion gases are generated (upon ignition of the round's chemical propellant). Pressure in bore 108 and chamber 104 rapidly rise as a consequence of the combustion process. To the extent that there is some amount of water in bore 108, the out rush of combustion gases through the muzzle of the barrel will expel such water.
If gun 100 continues to fire rounds, the substantially continuous generation of combustion gases will keep the barrel free of water. Upon an indication that firing is to cease, fire-control system 100 will advance plate arrangement to the sealing state, thereby sealing barrel 102.
Plate arrangement 117 comprises a plurality of disks 518, which are stored in supply region 528 of housing 514. The supply region is disposed vertically above barrel 102. In some embodiments, disks 518 are biased toward the muzzle end of the barrel by a spring, etc. (not depicted in
In the embodiment that is depicted in
Current from current source 222 is delivered to coil (electromagnetic) 532. The movement of current through coil 532 generates a magnetic field. The magnetic field that is generated by coil 532 draws one of the disks 518 into a sealing position at muzzle end 106 of barrel 102. Current flow is maintained through coil 532 for as long as barrel 102 is to be sealed.
When fire-control system 110 receives a signal to fire gun 100, it signals controller 220. The controller then takes appropriate action (e.g., sends a signal, etc.) to stop the flow of current from current source 222. In the absence of the magnetic field that is generated by the flowing current, disk 518 drops away from muzzle end 106 of barrel 102 into return or storage region 530 of housing 514. In some embodiments, housing 514 is configured so that disks 518 simply accumulate in return region 530. When the number of disks 518 in supply region 528 reaches some figure (e.g., 100, etc.), an indication directs an operator to empty return region 530 and re-supply supply region 528 with disks 518 at a convenient time. Since gun 100 will often be disposed on an AUV and operated substantially autonomously, the “indication” might appear, for example, on a panel in a control room on the mother ship, etc.
In some further embodiments, housing 518 is configured so that disks 518 can be automatically shuttled from return region 530 to supply region 528. Any mechanism suitable for such purpose (e.g., a conveyor system, etc.), as is known to those skilled in the art, may be used.
Similar to the first embodiment of the plate-type barrel seal, fire-control system 110 must synchronize the operation of the second embodiment of plate-type barrel seal with the firing of a round (after a period of quiescence) or with the cessation of firing (after a period of continuous firing).
For this case, the relevant time delays that must be considered in the context of synchronizing the operation of the barrel seal with the onset or cessation of firing include:
When round 112 is fired, combustion gases are generated (upon ignition of the round's chemical propellant). Pressure in bore 108 and chamber 104 rapidly rise as a consequence of the combustion process. To the extent that there is water in bore 108, the out rush of combustion gases through the muzzle of the barrel will expel such water.
To the extent that gun 100 continues to fire rounds, the substantially continuous generation of combustion gases will keep the barrel free of water. Upon an indication that firing is to cease, fire-control system 110 will advance plate arrangement to the sealing state, thereby sealing barrel 102.
It is to be understood that the disclosure teaches just one example of the illustrative embodiment and that many variations of the invention can easily be devised by those skilled in the art after reading this disclosure and that the scope of the present invention is to be determined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1186023 | Moore | Jun 1916 | A |
5639982 | Cipolla | Jun 1997 | A |
5648631 | Kirschner et al. | Jul 1997 | A |
5687501 | Stace et al. | Nov 1997 | A |
5746018 | Kirschner et al. | May 1998 | A |
5966858 | Curtis et al. | Oct 1999 | A |
6701819 | Williams et al. | Mar 2004 | B1 |
7237353 | Beauchamp et al. | Jul 2007 | B1 |
Number | Date | Country | |
---|---|---|---|
20100281729 A1 | Nov 2010 | US |