The present invention relates to submergible lights and light fixtures and, more particularly, to underwater LED lights for use in swimming pools and spas.
Modern designs for swimming pools and spas commonly provide for illumination of the pool or spa from beneath the waterline. For example, underwater light assemblies equipped with glass or plastic external lenses can be installed on and/or in the wall of a pool or spa below the waterline such that part or all of the external lens faces into the pool or spa, and is exposed to the water contained therein. Typically the external lens of such a light at least partially defines a water-tight illumination compartment of the light within which the light-emitting element or light emitter is mounted. While such an arrangement can be advantageous from the standpoint of illumination efficiency, it has long been recognized that such light assemblies can pose a risk of electric shock to bathers, especially if deliberate steps to mitigate this risk are not taken (e.g., during the product design phase). For example, should the water-tight integrity of the compartment containing the light emitter become compromised (e.g., while the pool and the light assembly are in use, and/or during pool or light assembly maintenance, etc.) and pool or spa water is admitted therein, a direct path of conductive water could be created along which current, previously contained within the light assembly, could stray into the main body of the pool or spa.
At least one commonly followed standard for safety with respect to such underwater lights, namely, Standard for Safety for Underwater Luminaires and Submersible Junction Boxes, UL 676, eighth edition, dated Jun. 9, 2003 and developed and maintained by Underwriter's Laboratories Incorporated of Northbrook Ill., recognizes that there are many different ways in which the risk to bathers of electrical shock from such underwater lights can be reduced and/or eliminated. In accordance with the UL 676 standard, many manufacturers have, for example, developed underwater lights with external lenses made of certain modern plastic and/or other polymeric materials, such as polycarbonate (e.g., from the LEXAN series of polycarbonate/plastics resins manufactured by General Electric Co.), or polycarbonate alloy, and in this way have obtained the desired safety certification. By choosing this design path, such manufacturers are essentially relying on the basic toughness and resiliency of such materials to avoid lens degradation via such stressors as impact shock, thermal shock, fatigue-inducing thermal cycling, etc. Unfortunately, such materials also have drawbacks in comparison to more traditional lens materials, such as optical glass and/or similar (i.e., glass-like) materials. For example, such plastic or polymeric materials tend to become internally cloudy over time, and are typically not very scratch-resistant. This limits their utility, at least with respect to certain underwater light markets, such as the market for commercial and high-end consumer pool and spas, in which premiums are often placed on such characteristics as overall aesthetic appearance, and/or sustained brightness/luminosity, etc.
Seeking to service such markets, some other manufacturers produce high-quality underwater lights equipped with external lenses made from the more traditional glass or glass-like materials. Unfortunately, such lenses tend not to exhibit the type of strength and toughness which characterizes the above-mentioned plastic and polymer-type lenses. Accordingly the external lenses of such underwater lights are characteristically more likely to fail the impact and/or thermal shock tests associated, for example, with the above-mentioned UL 676 safety standard. In such circumstances, in order to achieve the desired safety certification with respect to the risk of shock from stray electrical current, design solutions must generally be devised and implemented which ensure that, even in the event of a complete fracture of the external lens, resulting in a complete flooding of the light fixture and/or a short in the applicable electrical and/or electronic circuit, the shock risk to nearby bathers is nevertheless still acceptable. Some such design solutions are disclosed in U.S. Patent Application Publication No. 2002/0101198, and in U.S. Pat. Nos. 3,949,213; 4,234,819; 5,545,952; and 5,842,771. Accordingly, design solutions for underwater lights shown to reduce the shock risk to nearby bathers to acceptable levels are both necessary and desirable.
In addition to contending with issues relating to the risk of electrical shock to nearby bathers, manufacturers of high quality underwater lights must ensure that, to the extent excessive heat is generated by the various components thereof, e.g., light-emitting elements, transformers, microprocessors (if applicable), etc., such heat is promptly and efficiently conducted away from the light. In particular, certain types of underwater lights, e.g., underwater lights equipped with one or more LED arrays, tend to produce heat in such quantity that the effectiveness of the methods and apparatus employed therein for heat removal is critical to issues such as safe operation and product reliability/durability. Especially in light of the current trend toward brighter and brighter underwater lights, including underwater lights producing white light via the simultaneous illumination of separate arrays of blue, red and green LEDs, the development and deployment of effective new methods and apparatus for conducting heat from underwater lights is an industry priority.
The present invention overcomes the disadvantages and shortcomings of the prior art discussed above by providing a new and improved underwater light for use in spas, pools, and the like which substantially reduces and/or eliminates the risk of shock to nearby bathers from stray electrical current escaping from the light. More particularly, the underwater light includes a housing, an outer compartment within the housing, a current shield within the outer compartment and at least partially defining an inner compartment within the outer compartment, and a light emitter within the inner compartment. Ordinarily, the housing is water tight, but in the event the housing is no longer watertight (e.g., due to accidental damage to the housing, such as a lens fracture), the outer compartment is subject to flooding by water flowing therein. The underwater light further includes a passageway communicating between the inner and outer compartments such that flood water in the outer compartment can enter the inner compartment and come into contact with the light emitter. The underwater light further includes a conductor positioned so as to collect stray electrical current conducted from the inner compartment by water within the passageway and thereby reduce a risk of shock presented by such stray electrical current.
In accordance with one aspect of the current invention, the conductor is grounded and includes an electrically conductive surface which at least partially defines the passageway. In accordance with another aspect of the invention, an electrically insulative surface of the current shield is disposed opposite the electrically conductive surface. In accordance with a further aspect of the invention, the underwater light further includes a transformer compartment spaced apart from the inner and outer compartments by a distance sufficiently long so as to permit a free flow of water in a space between the transformer compartment and the inner and outer compartments for efficient removal of heat therefrom.
For a more complete understanding of the present invention, reference is made to the following detailed description of exemplary embodiments of the present invention, considered in conjunction with the accompanying drawings, in which:
Although the present invention can be used in conjunction with any type of underwater lighting application, it is particularly suitable for use in connection with pools, spas, baths and the like. Accordingly, the present invention will be described hereinafter in connection with swimming pool and spa lighting applications. It should be understood, however, that the following description is only meant to be illustrative of the present invention and is not meant to limit the scope of the present invention, which has applicability to other types of underwater applications, such as aquariums, fish ponds, water park rides, venues for viewing aquatic animal performances, etc.
Referring to
The backplate/PCA assembly 12 of
The printed circuit assembly 24 is employed as a light emitter, and includes a front side 38 populated by a plurality of light-emitting diodes (LEDs) 40 arranged in three separately controllable arrays for emitting red, green, and blue light, respectively. As such, any one such LED array may be illuminated alone, or more than one such LED array may be illuminated simultaneously. Various colors and intensities of light may thereby be produced, at the discretion of the user, including white light of considerable brightness.
The current shield 26 is formed from transparent plastic so as to permit substantially all light produced by the LEDs 40 on the printed circuit assembly 24 to reach the lens 16, and thereby be emitted into the pool water. Of simple construction, the current shield 26 is relatively thin (i.e., 0.06 inches) and is dome-shaped, having a top span 42, and side walls 44 which extend downward from the top span 42, terminating in an edge 46, circular in shape, and forming a downward-facing electrically insulative surface (not separately shown) disposed opposite the interior surface 28 of the backplate 22. The current shield 26 also includes an interior surface 48 (see
Referring to
As also shown in
With respect to normal underwater lighting operation, for purposes of the present discussion, the underwater light assembly 10 functions in a manner similar to conventional underwater lights equipped with printed circuit assemblies populated with LEDs as the principle light emitters or lighting elements. However, the underwater light assembly 10 further performs a stray electrical current collection function, as described below.
In the event the watertight integrity of the outer compartment 54 is compromised (e.g., via a crack in the lens 16 caused by impact trauma), pool water may be expected to flood the outer compartment 54 of the underwater light assembly 10. A portion of such flood water may be expected to further invade the inner compartment 60 by flowing through the non-watertight interface (or passageway) between the edge 46 of the current shield 26 and the interior surface 28 of the backplate 22. Such invading flood water could then contact the printed circuit assembly 24, causing an electrical short in the high-voltage and/or power supply electronics thereof. As a result of such a short, electrical current previously contained within the printed circuit assembly 24 may be expected to escape therefrom, after which such stray electrical current will be borne by a volume of flood water adjacent to and impinging against the printed circuit assembly 24. Presuming, temporarily, that the above-mentioned current shield 26 is absent from of the underwater light assembly 10, the compromised watertight integrity of the outer compartment 54 would give rise to a significant risk that a considerable amount of such stray electrical current would be conducted through the flood water, out of the outer compartment 54, and into the main body of pool water, placing nearby bathers at risk of electrical shock.
Given, however, that the current shield 26 both exists and is assembled to the backplate 22 as described above, any such stray electrical current (indicated by corresponding arrows within the inner compartment 60) has no other route to escape from the inner compartment 60 and into the compromised outer compartment 54 except along one or more continuous paths of conductive flood water leading through the non-watertight interface or passageway between the edge 46 of the current shield 26 and the interior surface 28 of the backplate 22. Prototype tests of the underwater light of the present invention, conducted in accordance with the provisions of UL 676 (see the Background section above), have demonstrated that most, if not substantially all such stray electrical current does not, in fact, emerge from the inner compartment 60 and enter the compromised outer compartment 54. While not desiring to be bound by theory, applicants believe that a combination of an adequate thickness of the edge 46 of the current shield 26, the close proximity of the edge 46 to the interior surface 28 of the backplate 22, the conductive characteristics of the interior surface 28, and the path to ground originating therefrom, causes substantially all such stray electrical current (e.g., such stray electrical current as enters the relevant interface) to pass entirely out of the flood water, enter the backplate 22 via the adjacent interior surface 28, and flow directly to ground. As a result, little to no such stray electrical current actually escapes the underwater light assembly 10, and nearby bathers are well-protected from electrical shock. As the terms “substantially all stray electrical current” and “any and substantially all stray electrical current” are used herein, at least one meaning each term shall be considered to have is the following: enough such stray electrical current to ensure that the maximum acceptable levels of stray electrical current escaping the underwater light, according to a conventional standard such as UL 676, are adhered to.
It should be appreciated that the underwater light assembly 10 of the present invention provides numerous advantages over the prior art discussed above. For example, with the risk of electric shock from stray electrical current lowered to an acceptable level by guiding the stray electrical current from the flood water to ground by operation of the current shield 26, the selection of materials for the lens 16 is not restricted by a desire to maximize toughness or resiliency to prevent fracture thereof. As a result, the lens 16 may comprise any otherwise suitable material, including but not limited to glass and glass-type materials, which tend to retain a scratch-free non-cloudy appearance. Also, the higher thermal conductivity of glass contributes to the important function of cooling the underwater light assembly through the external interface between the lens 16 and the pool water, an especially important consideration in the current context because of the tendency of LEDs to run very hot. Further, the grounding arrangement is relatively simple (e.g., very few parts), reliable (e.g., no moving parts or “solid state”), and inexpensive (e.g., the current shield 26 can be manufactured in large quantities from inexpensive plastic materials via conventional molding techniques, and the current shield 26 itself takes up very little otherwise useable space within the outer compartment 54).
It should be noted that the underwater light assembly 10 of the present invention can have numerous modifications and variations. For instance, the LEDs 40 may be replaced with other types of light-emitting elements, and the printed circuit assembly 24 may be eliminated and/or replaced by other equipment designed to support, control, and/or provide power to the light-emitting elements. By way of example, the underwater light assembly 10 may include one or more incandescent or halogen bulbs, and/or neon lights, etc., with appropriate sockets. The 120V A/C external power routed to the underwater light assembly 10 may be replaced by 12V A/C external power (in which case the transformer 30 can be configured to step the external power up to 36V A/C), 12V D/C external power, and/or A/C or D/C power defined by an alternative standard, or by no particular standard. The backplate 22, ordinarily metallic (e.g., ASTM A 240 Type 304 18GA Stainless Steel), may comprise one or more non-metallic materials (e.g., ceramic, glass, plastic) provided the replacement material or collection of materials provide adequate conductive cooling for the printed circuit assembly 24, and an adequate amount of conductive, grounded material is provided at/along the interior surface 28 of the backplate 22 at its current-collecting interface with the current shield 26.
The dome-shaped current shield 26 can be replaced by a current shield of any suitable shape, including planar, oblong, rectangular, and/or polygonal, etc., or thickness, including thicknesses greater than or less than its 0.06″ thickness. The plastic material (e.g., transparent polycarbonate, such as GE Plastics LEXAN 953A) of the current shield 26 may be replaced by other electrically insulative materials providing good light transmissibility, such as one or more types of glass. A current shield which is translucent, but not specifically transparent, may be used if desired. Small gaps in the edge 46 of the current shield 26 (and/or in the conductivity of the interior surface 28 of the backplate 22 opposite the edge 46) or small perforations in the current shield 26 are allowable to the extent they do not result in the amount of escaping stray electrical current exceeding the maximum allowable under the applicable safety standard (e.g., UL 676). Multiple materials may be employed for the current shield 26, e.g., in combination, such as in layers, and/or thin coatings. In addition, the interior surface 28 of the current shield 26 need not be completely electrically insulative (e.g., it may be at least partially electrically conductive, e.g., via a thin electrodeposited metal layer), provided current is still prevented from flowing through the current shield 26 across its thickness.
The edge 46 and the interior surface 28 meet along a circular peripheral interface. However it is not necessary that such an interface be circular. As such, the interface may describe one or more other shapes, in addition or alternatively, including oblong, curved but having at least one straight side, polygonal, etc.
The edge 46 and the interior surface 28 are in physical contact along corresponding peripheral surfaces (not separately shown) which are complementary at least in that both are substantially planar. As such, the flatness of the resulting interface can be controlled if necessary by easily-achieved flatness tolerances along with adequate material stiffness, and the width of the resulting interface can be controlled by specifying an appropriate thickness for the current shield 26 and/or an appropriate radial width of an annular conductive surface of the interior surface 28 of the backplate 22. However, the corresponding peripheral surfaces need not be necessarily flat and/or planar in shape. For example, the peripheral surfaces (not separately shown) may describe one or more shapes (e.g., in addition to planar/flat, or alternatively thereto) such as curved, frustoconical, cylindrical, and/or labyrinthine, etc., while remaining effective from a stray electrical current collection standpoint.
The current shield 26 can be assembled to the backplate 22 in such a way as to create a partial (e.g., incomplete, intermittent, and/or irregular, etc.) or even continuous (e.g., complete) gap between the edge 46 and the interior surface 28. Such a gap or series of gaps can grow or shrink accordingly (e.g., according to an iterative design process), in keeping with a goal of reducing the amount of water-borne stray electrical current which is allowed to escape from the inner compartment 60 to an acceptably low level. While the present applicants observe that a gap of more than 0.1 inches or more can be acceptable in certain instances, a gap 0.1 inches or less, and in particular a gap of 0.02 inches or less, has been observed to provide excellent stray electrical current collection results in conjunction with an interface which is otherwise permeable to flood water. Similarly, while the present applicants observe that a current shield 26 having a edge width or edge thickness of less than 0.04 inches can be acceptable in some instances, an edge thickness of 0.04 inches or greater, and in particular an edge thickness in a range of about 0.05 inches to about 0.07 inches, has been observed to provide excellent stray electrical current collection results. While edge thicknesses larger than 0.07 inches are acceptable in many instances, applicants have observed current shields 26 having relatively shorter edge thicknesses can be superior from a light transmission standpoint (e.g., presuming such current shields 26 to be of substantially uniform thickness). A current shield 26 having a non-uniform thickness (i.e., thicker at the edge 46 than elsewhere) can also be used.
Referring to
A second exemplary embodiment of the present invention is illustrated in
In
Referring to
The printed circuit assembly 124 includes a front side 138 populated by a plurality of light-emitting diodes (LEDs) 140 arranged in three separately controllable arrays for emitting red, green, and blue light, respectively. As such, any one such LED array may be illuminated alone, or more than one such LED array may be illuminated simultaneously. Various colors and intensities of light may thereby be produced, at the discretion of the user, including white light of considerable brightness. The printed circuit assembly 124 is considerably smaller than the printed circuit assembly 24 of the embodiment of
The current shield 126 is formed from transparent plastic so as to permit substantially all light produced by the LEDs 140 on the printed circuit assembly 124 to reach the lens 116, and thereby be emitted into the pool water. Of simple construction, the current shield 126 is relatively thin (i.e., 0.06 inches), and has a top span 142, and side walls 144 which extend downward from the top span 142, terminating in an edge 146, circular in shape, and downward-facing for close communication along the width of the edge 146 with the interior surface 128 of the backplate 122. The current shield 126 also includes an interior surface 148 (see
Referring to
As also shown in
With respect to normal underwater lighting operation, for purposes of the present discussion, the underwater light assembly 110 functions in a manner similar to conventional underwater lights equipped with printed circuit assemblies populated with LEDs as the principle light emitters or lighting elements. However, the underwater light assembly 110 further performs a stray electrical current collection function, as described above with respect to the underwater light assembly 10 of the embodiment of
Referring again to
Referring to
It should be appreciated that the underwater light assembly 110 of the present invention provides numerous advantages over the prior art discussed above. Since the underwater light assembly 110 is equipped with a 120V A/C to 12V A/C transformer, it may be conveniently coupled directly to standard 120V A/C power obtained from a remote source to which multiple instances of the underwater light assembly may be coupled in parallel. The underwater light assembly 110 may be incorporated into the concrete wall of a permanent (e.g., below ground) spa, as may other known spa lights, but the underwater light assembly 110 provides the further advantage of being simultaneously capable of producing its own DC power from an external 120V A/C source, and producing white light of exceptional brilliance/luminosity from multiple arrays of color LEDs, without risk of overheating. At least one major hurdle to this type of performance is cleared by the above-described separate transformer compartment arrangement for maximizing spa water cooling, e.g., in combination with similar backplate and lens exterior-surface cooling.
It should be noted that the underwater light assembly 110 of the present invention can have numerous modifications and variations. For example, in particular spa lighting applications in which a built-in transformer design is not required, the transformer 130 and the separate transformer compartment 168 can be removed from the underwater light assembly 110 (i.e., similar to the underwater light assembly 10 associated with the first embodiment of the present invention, discussed above). In such applications, the underwater light assembly 110 can be supplied with external 12V A/C power (e.g., by the use of a conventional off-the-shelf 120V A/C to 12V A/C transformer mounted in a steel enclosure near the spa) for later conversion to DC power.
It will be understood that the embodiments of the present invention described herein are merely exemplary and that a person skilled in the art may make many variations and modifications without departing from the spirit and scope of the invention. For example, the transformer 30 of the underwater light assembly 10 associated with the above-discussed first embodiment for a pool lighting application can be housed in a substantially separate rearwardly-extending compartment (e.g., similarly to the transformer 130 of underwater light assembly 110 associated with the above-discussed second embodiment for a spa lighting application). All such variations and modifications, including those discussed above, are intended to be within the scope of the invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2072841 | Tracey et al. | Mar 1937 | A |
2683620 | Keech | Jul 1954 | A |
3456103 | Bond | Jul 1969 | A |
3949213 | Paitchell | Apr 1976 | A |
3962675 | Rowley et al. | Jun 1976 | A |
4053758 | Shaw | Oct 1977 | A |
4234819 | Maxey | Nov 1980 | A |
4539629 | Poppenheimer | Sep 1985 | A |
4574337 | Poppenhemer | Mar 1986 | A |
4617615 | Eychaner | Oct 1986 | A |
4617617 | Cunningham et al. | Oct 1986 | A |
5122936 | Guthrie | Jun 1992 | A |
5349505 | Poppenheimer | Sep 1994 | A |
5432688 | Tobias et al. | Jul 1995 | A |
5483428 | Poppenheimer | Jan 1996 | A |
5545952 | Mortensen | Aug 1996 | A |
5556188 | Poppenheimer | Sep 1996 | A |
5607224 | Tobias et al. | Mar 1997 | A |
5842771 | Thrasher et al. | Dec 1998 | A |
5908236 | Lueken et al. | Jun 1999 | A |
6016038 | Mueller et al. | Jan 2000 | A |
6149283 | Conway et al. | Nov 2000 | A |
6184628 | Ruthenberg | Feb 2001 | B1 |
6196471 | Ruthenberg | Mar 2001 | B1 |
6315424 | Hui | Nov 2001 | B1 |
6340868 | Lys et al. | Jan 2002 | B1 |
6379025 | Mateescu et al. | Apr 2002 | B1 |
6435691 | Macey et al. | Aug 2002 | B1 |
6528954 | Lys et al. | Mar 2003 | B1 |
6577073 | Shimizu et al. | Jun 2003 | B1 |
6616291 | Love | Sep 2003 | B1 |
6798154 | Sullivan et al. | Sep 2004 | B1 |
6811286 | Mateescu et al. | Nov 2004 | B1 |
20020101198 | Kemp | Aug 2002 | A1 |
20030048632 | Archer | Mar 2003 | A1 |
20030137838 | Rizkin et al. | Jul 2003 | A1 |
20040208008 | Mateescu et al. | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
2021749 | Dec 1979 | GB |
Number | Date | Country | |
---|---|---|---|
20060002104 A1 | Jan 2006 | US |