Underwater light having programmable controller and replaceable light-emitting diode (LED) assembly

Information

  • Patent Grant
  • 11168876
  • Patent Number
    11,168,876
  • Date Filed
    Friday, March 6, 2020
    4 years ago
  • Date Issued
    Tuesday, November 9, 2021
    3 years ago
Abstract
An underwater light including a programmable controller and a replaceable light-emitting diode (LED) printed circuit board assembly (PCBA) is provided. The light includes a controller PCBA in communication with the LED PCBA, and a connector for connecting the controller PCBA to the LED PCBA. An optically-transparent potting compound encapsulates the LED PCBA, and the LED PCBA can be safely replaced by removing a rear housing of the underwater light.
Description
BACKGROUND
Technical Field

The present disclosure relates generally to the field of underwater lights for pools and spas. More specifically, the present disclosure relates to an underwater light having a programmable controller and a replaceable light-emitting diode (LED) printed circuit board assembly (PCBA).


Related Art

In the underwater lighting field, submersible luminaires are known and commonly used. These devices are conventionally made from a combination of metal, plastic, and glass. The various electrical components within a submersible luminaire housing generate heat. As a result of the foregoing, it would be desirable to provide a submersible luminaire including a programmable controller configured to optimize luminaire light shows and monitor an input voltage and temperature of the various electrical components.


In submersible luminaires, one or more light-emitting elements (e.g. light emitting diodes (LEDs)) mounted on a printed circuit board (PCB) within the submersible luminaire housing can become inoperable due to extended use or for other reasons. Conventional luminaires are hermetically sealed and, therefore, the entire luminaire must be replaced when LEDs are inoperable (e.g., when LEDs burn out). As a result of the foregoing, it would be desirable to provide a submersible luminaire with a replaceable PCB to avoid replacing a luminaire in its entirety when LEDs mounted on the PCB are inoperable.


Accordingly, the underwater light of the present disclosure addresses these and other needs.


SUMMARY

The present disclosure relates to an underwater light having a programmable controller and a replaceable light-emitting diode (LED) printed circuit board assembly (PCBA). The programmable controller includes a controller PCBA in communication with the LED PCBA, and a connector for connecting the controller PCBA to the LED PCBA. An optically-transparent potting compound encapsulates the LED PCBA, and the LED PCBA can be safely replaced by removing a rear housing of the underwater light.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features of the present disclosure will be apparent from the following Detailed Description of the Invention, taken in connection with the accompanying drawings, in which:



FIG. 1 is a block diagram of the underwater light of the present disclosure, illustrating connection of the controller PCBA to the LED PCBA via the connector;



FIG. 2 is a block diagram of the controller PCBA of FIG. 1;



FIG. 3 is a detailed block diagram of the power subsystem of the controller PCBA of FIG. 2;



FIG. 4 is a detailed block diagram of the microcontroller subsystem of the controller PCBA of FIG. 2;



FIG. 5 is a detailed block diagram of the LED driver subsystem of the controller PCBA of FIG. 2;



FIG. 6 is a detailed block diagram of the LED PCBA of FIG. 1;



FIG. 7 is a circuit diagram of an electromagnetic interference (EMI) filter of the controller PCBA power subsystem of FIG. 3;



FIG. 8 is a circuit diagram of a line frequency detector of the controller PCBA power subsystem of FIG. 3;



FIG. 9 is a circuit diagram of a bridge rectifier of the controller PCBA power subsystem of FIG. 3;



FIG. 10 is an oscillogram illustrating an output of the bridge rectifier of FIG. 9;



FIG. 11 is a graph illustrating a switching frequency of an oscillator of a power correction controller of the controller PCBA power subsystem of FIG. 3;



FIG. 12 is a circuit diagram of a high temperature shutdown circuit of the LED PCBA of FIG. 6; and



FIG. 13 is a circuit diagram of an electrically erasable programmable read-only memory (EEPROM) of the LED PCBA of FIG. 6.





DETAILED DESCRIPTION

The present disclosure relates to an underwater light having a programmable controller and a replaceable light-emitting diode (LED) printed circuit board assembly (PCBA), as described in detail below in connection with FIGS. 1-13.


Referring to FIGS. 1-6, the underwater light 10 of the present disclosure includes a controller PCBA 12 connected to the LED PCBA 16 via a surface mount technology (SMT) connector 14. For example, the controller PCBA 12 can connect to the LED PCBA 16 via a vertical SMT connector having a 16 pin double row configuration. The pins of the connector 14 can be gold plated and have a power rating of 405 volts alternating current (VAC) or 572 volts direct current (VDC) and a current rating of 5.2 amperes (A). The controller PCBA 12 includes a power subsystem 20, a microcontroller subsystem 22 and an LED driver subsystem 24.


The power subsystem 20 of the controller PCBA 12 powers the LED PCBA 16 with a rectified voltage. The LED driver subsystem 24 of the controller PCBA 12 connects to and drives a plurality of LED strings 74 of the LED PCBA 16. The LEDs of the LED strings 74 could include red, royal blue, green and white LEDs. In addition, the controller PCBA microcontroller subsystem 22 can control the LED PCBA 16 based on signals from at least one of a plurality of thermistors 70 (e.g., LED temperature signals), a high temperature shutdown circuit 76 (e.g., shutdown) and an electrically erasable programmable read-only memory (EEPROM) 72 (e.g., control signals) of the LED PCBA 16.


The underwater light 10 can monitor the temperature of the controller PCBA 12 and the LED PCBA 16 and prevent a temperature of the LED PCBA 16 from exceeding a temperature threshold by dimming a light output of the LED strings 74 of the LED PCBA 16. The underwater light 10 can also monitor an input voltage of the microcontroller subsystem 22 and dim the light output of the LED PCBA 16 if the input voltage falls below a temperature threshold.



FIG. 2 is a block diagram of the controller PCBA 12 of FIG. 1. As mentioned above, the controller PCBA 12 includes the power subsystem 20, the microcontroller subsystem 22 and the LED driver subsystem 24. The controller PCBA 14 can connect to the LED PCBA 16 via the SMT connector 14.



FIG. 3 is a detailed block diagram of the power subsystem 20 of the controller PCBA of FIG. 2. The power subsystem 20 includes an electromagnetic interference (EMI) filter 30; a bridge rectifier circuit 32 which produces a rectified voltage signal; a power factor correction (PFC) controller 34; a bus line (VBUS); a VBUS monitor 36; a line voltage monitor 38; a linear voltage regulator 40; and a line frequency detection circuit 42. These components are discussed in further detail below.


The controller PCBA 12 is configured to receive an input voltage of 14 VAC at a frequency of 50 hertz (Hz) from a European power grid or 60 Hz from a North American power grid. The input voltage is received in single phase and can be provided by a 14 V tap of an isolated, low-voltage step-down transformer. The controller PCBA 12 is configured to receive the 14 VAC input voltage via a low-voltage AC input connection such as two pins (not shown) mounted on the controller PCBA 12. The pins can be received by two barrel receptacles (not shown) that can be connected to a power cord of the underwater light. The pins and barrels can have a current rating of 15 A.



FIG. 4 is a detailed block diagram of the microcontroller subsystem 22 of the controller PCBA of FIG. 2. The microcontroller subsystem 22 can include any suitable microcontroller 50 capable of executing firmware for controlling operation of the underwater light. The microcontroller 50 can have a clock speed of 20.97 megahertz (MHz) and can operate within a 1.71 V to 3.6 V range when power is applied by the 3.3 V linear voltage regulator 40. When power is removed, the microcontroller 50 can enter a low power mode such that 3.3 V linear voltage regulator 40 can be required to power the microcontroller 50 for at least 15 seconds.


The microcontroller 50 can control a temperature of the LED PCBA 16 by monitoring signals from at least one of the plurality of 100 kΩ thermistors 70 (e.g., LED Temperature Signals) of the LED PCBA 16. In addition, the microcontroller 50 can also control a temperature of the controller PCBA 12 by monitoring a 100 kΩ thermistor (not shown) of the controller PCBA 12. For example, the underwater light firmware can react when a temperature threshold is exceeded by at least one of the controller PCBA 12 and the LED PCBA 16 by gradually reducing a light output of the LED strings 74 such that the reduced light output is not perceptible to a user.


As discussed below, the PFC controller 34 has a high-temperature fail-safe protection feature that causes the PFC controller 34 to enter the standby mode when the LED PCBA 16 exceeds a temperature threshold (e.g., 95° C.). Specifically, the PFC controller 34 enters the standby mode (thereby turning off the buck current regulators 60) when a voltage compensation (VCOMP) pin is pulled low. The VCOMP pin is pulled low via an n-channel FET that is connected to an open drain pin of a high temperature shutdown circuit 76. The open drain pin of the high temperature shutdown circuit 76 can also be connected to a pin of the microcontroller 50, and the microcontroller 50 can monitor the pin to provide options for additional responses when the LED PCBA 16 exceeds the temperature threshold.


The microcontroller 50 can also control a sequence of the light shows and the colors therein via a hall sensor integrated circuit (IC). The hall sensor IC can be any suitable sensor capable of functioning as an open drain, omnipolar switch wherein the sensor can toggle through light shows and colors of the LED strings 74 with a magnetic field in the same manner as toggling power. The hall sensor IC can be powered by a 3.3 V signal from a pin of the microcontroller 50 such that when a signal on the pin is pulled low, the microcontroller 50 responds by switching to the next light show in a sequence and/or LED string color.



FIG. 5 is a detailed block diagram of the LED driver subsystem 24 of the controller PCBA of FIG. 2. The LED driver subsystem 24 can include a plurality of 1.5 amp (A) step-down (buck) current regulators 60 wherein each buck current regulator 60 has an integrated high side switching metal-oxide-semiconductor field-effect transistor (MOSFET) to drive a respective LED string 74 (e.g., red, blue, green, and white LED strings).


The input voltage to the buck current regulators 60 is provided by the 28 V output voltage of the PFC controller 34. The input supply voltage range is 4.5 V-42 V. The buck current regulators 60 require a minimum voltage (VIN) of 26 V to start and therefore an adjustable under voltage lockout (UVLO) pin can be set with a resistor divider to the required 26 V input voltage. It is noted that the UVLO protection feature is for device protection and does not contain hysteresis. The buck current regulators 60 can enter low-power mode, thereby removing an input voltage to the LED strings 74, when the input voltage falls to 25 V due to the PFC controller 34 entering the standby mode. The following equations can be used to set the UVLO hysteresis (1) and the start voltage (2):

R1=(VHYS(VEN−(IRESD))−IHYS×RESD×VSTART)/IHYS×VEN; and  (1)
R2=R1(VEN−(RESD×(I1+IHYS)))/(VSTOP−VEN)+(I1+IHYS)×(R1+RESD)   (2)

wherein

    • VHYS=VSTART−VSTOP
    • RESD=10 kΩ
    • I1=1 μA
    • IHYS=2.9 μA


A switching frequency of the buck current regulators 60 can be set to approximately 400 kHz wherein a 301 kΩ resistor is connected to a resistor timing pin and ground. The required resistance can be calculated with the following equation:

RRT(kΩ)=206033/(fSW)1.092 (kHz)

    • wherein
    • fSW=(206033/RRT(kΩ)(1/1.092)


Current provided to the LED strings 74 can be set and controlled by an analog current adjustment pin (IADJ). The IADJ pin is driven by a digital to analog converter (DAC) output from the microcontroller 50. The following equation illustrates the relationship between (a) the voltage applied from the DAC output to the IADJ pin input and (b) the current regulation set point voltage across the sense resistor that is coupled to a current sense (ISENSE) pin:

VISENSE=VIADJ/6

The following equation illustrates a calculation for the sense resistor value:

RISENSE=VISENSE/ILED


The red LED string can be provided with a maximum current of 0.7 A while the green, royal blue and white LED strings can be provided with a maximum current of 1.0 A.


Each buck current regulator 60 can have separate inputs for analog dimming and pulse width modulation (PWM) dimming and is configured to operate at a user selected fixed frequency. The buck current regulators 60 receive, at respective dimming input pins (PDIM), PWM input signals from the microcontroller 50 that control a brightness level of the LED strings 74 and the moving light shows. The red and blue LED PWM input signals can be left justified and the green and white PWM input signals can be right justified to prevent all four MOSFETs from turning on at the same time and thereby causing a reduction of the VBUS voltage which powers the buck current regulators 60. The signals are not inverted such that the LED strings 74 will be on during the ton portion of the duty cycle.


The PWM frequency can be between 100 Hz and 1 kHz and the signal duty cycle will vary based on color, brightness and the moving light show. The PDIM pin has a 1 μA internal pull-up current source which creates a default on state when the PDIM pin is floating. Accordingly, the PDIM pin has a 10 kΩ pull down resistor to ground to ensure the LED strings 74 are in an off state when they are intended to be turned off. Frequency compensation components can be coupled to the compensation (COMP) pin of each buck current regulator 60 for stabilization. For example, a 0.1 μF capacitor can be coupled from the COMP pin to ground for stabilization. If an application requires a faster response to input voltage transients, then a 0.01 μF capacitor can be used.


In addition, each buck current regulator 60 can also include cycle-by-cycle overcurrent protection and thermal shutdown protection. An overcurrent situation can occur if the sense resistor shorts, or a direct short occurs between the output and ground. If an overcurrent situation occurs, the voltage on the ISENSE pin will fall to 0 V, which, in turn, causes the voltage on the COMP pin to rise. When the voltage on the COMP pin reaches approximately 2.2 V, the voltage is internally clamped and functions as a MOSFET current limit. The internal MOSFET current can be limited to 6 A. If the overcurrent situation continues, a temperature of a junction of the buck current regulator will rise. The thermal shutdown circuit protects the buck current regulators 60 by causing the buck current regulators 60 to enter an off state if the temperature reaches 165° C. The buck current regulators 60 can enter the on state after the temperature falls below 20° C.



FIG. 6 is a detailed block diagram of the LED PCBA 16 of FIG. 1. The LED PCBA 16 can include a plurality of thermistors 70; the high temperature shutdown circuit 76; an electrically erasable programmable read-only memory (EEPROM) 72; and the LED strings 74. Specifically, the LED PCBA 16 can include three 100 k Ohm (Q) thermistors that the firmware will use to monitor a temperature of the LED PCBA 16. If the firmware detects that a temperature of the LED PCBA 16 exceeds a temperature threshold, a control loop algorithm can adjust an intensity of the LED strings 74 to maintain a maximum LED PCBA 16 temperature of 90° C. The LEDs of the LED strings 74 can include red, blue, green and white LEDs. The LED PCBA 16 can connect to the controller PCBA 12 via the SMT connector 46. The pins of the connector can be gold plated and have a power rating of 405 VAC or 572 VDC and current rating of 5.2 A. The components are discussed in further detail below.



FIG. 7 is a circuit diagram of the EMI filter 30 of the controller PCBA power subsystem 20 of FIG. 3. The EMI filter 30 includes capacitors 80a and 80b and a common mode choke 82. The capacitors 80a and 80b can be two line to neutral 1.0 mircofarad (μF) ceramic capacitors and comply with electromagnetic compatibility (EMC) class B regulations for residential use. As mentioned above, the input voltage to the controller PCBA 12 is received in single phase and can be provided by the 14 V tap of the isolated low voltage step down transformer. The isolated low voltage step down transformer protects the controller PCBA 12 from power surges.



FIG. 8 is a circuit diagram of the line frequency detection circuit 42 of the controller PCBA power subsystem 20 of FIG. 3. The line frequency detection circuit 42 includes 10 kΩ resistors 90a and 90b; a 0.1 ρF capacitor 92; 100 kΩ resistors 94a and 94b; a 402 kΩ resistor 96; and an n-channel MOSFET 98. The line frequency detection circuit 42 receives the 14 VAC input voltage before it is rectified. The 50 Hz or 60 Hz input signal is reduced by half and controls the gate of the n-channel MOSFET 98. The drain of the MOSFET 98 is tied to the 3.3 V linear voltage regulator 40 via the 100 kΩ resistor 94b (i.e., pull up resistor 94b). The drain voltage is inverted to match a phase of the gate voltage and is received by the microcontroller 40 as a digital input signal. The microcontroller 50 can use the digital input signal to determine an amount of time that the input voltage has been removed and a timing of light shows by the underwater light.



FIG. 9 is a circuit diagram of the bridge rectifier circuit 32 of the controller PCBA power subsystem 20 of FIG. 3. The bridge rectifier circuit 32 includes 2 kΩ resistors 100a-100e, p-channel MOSFETS 102a and 102b, n-channel MOSFETS 104a and 104b and diodes 106a-106d. The bridge rectifier circuit 32 produces a rectified voltage signal. At the start of an AC cycle, the diodes 106a-106d conduct current until the voltage meets a threshold to turn on the p-channel MOSFETS 102a and 102b and n-channel MOSFETS 104a and 104b. Specifically, each half-cycle of the alternating input voltage turns on an alternating pair of the p-channel MOSFETS 102a and 102b and the n-channel MOSFETS 104a and 104b to produce a pulsating 120 Hz DC voltage signal. FIG. 10 is an oscillogram illustrating an output of the bridge rectifier circuit 32 of FIG. 9.


As shown in FIG. 3, the PFC controller 34 receives the rectified voltage signal from the bridge rectifier circuit 32 and can be any suitable PFC controller configured to achieve high power factor, low current distortion, and voltage regulation of boost pre-regulators. For example, the PFC controller 34 can be an active PFC controller that operates under continuous conduction mode (CCM) and at a programmable fixed frequency. For example, FIG. 11 is a graph illustrating a switching frequency of an oscillator of the PFC controller 34 set at 105 kHz.


The rectified voltage signal (PFC controller 34 input voltage) can be monitored by the microcontroller 50 wherein the microcontroller 50 could reduce a lumen output of the LED strings 74 if a voltage condition regarding the 14 VAC input of the underwater light occurs. For example, a voltage condition could occur when the PFC controller 34 input voltage falls below 9.0 V because any one of an abnormally low line voltage to the transformer input, the transformer output being wired to the incorrect tap, the transformer being overloaded or the transformer being improperly wired. The lumen output of the LED strings 74 can be reduced when the PFC controller 34 input voltage falls below 9.0 V to prevent high, and potentially dangerous, input currents into the underwater light as the PFC controller 34 attempts to compensate for the lower voltage with a higher current. The rectified voltage signal is received by the microcontroller 50 before the signal is boosted to 28 V by the PFC controller 34. Specifically, the rectified voltage signal passes through a blocking diode and filter before being reduced by a resistor divider circuit and received by the microcontroller 50. The PFC controller 34 output voltage is set with a resistor divider to the voltage sense (VSENSE) pin. The resistor values can be selected by the following equation:

RFB2=(VREFRFB1)/(VOUT−VREF) wherein VREF=5 V.


The PFC controller 34 is powered by the VBUS, wherein the maximum input voltage for the PFC controller 34 is 22 V and the VBUS provides a 28 V output signal. Therefore, the voltage common collector (VCC) of the PFC controller 34 is protected with a bipolar junction transistor (BJT) wherein the base is clamped to 15.7 V (i.e., the VCC voltage to the regulator can not exceed 15.7 V). The PFC controller 34 can use two voltage control loops including an inner current loop and an outer loop. The inner control loop can include an external boost inductor and a current sensing resistor in addition to an internal current averaging amplifier and a PWM comparator. The inner control loop shapes an average input current to match an input sinusoidal voltage thereby placing the input current in phase with the input voltage. External compensation for the inner control loop can be applied to the PFC controller 34 current compensation (ICOMP) pin such that the output of the current averaging amplifier is coupled to the ICOMP pin. The outer control loop can include an external resistor divider sensing stage, an internal voltage error amplifier and a non-linear gain generator. An internal error amplifier and a 5 V reference can be used to provide the outer loop to control the output voltage. External compensation for the outer loop can be applied by the PFC controller 34 voltage compensation (VCOMP) pin.


The PFC controller 34 can include several fault protection features including, but not limited to, a VCC under voltage lockout (UVLO); an output overvoltage protection (OVP); an open loop protection (OLP); current sense (ISENSE) open-pin protection (ISOP); an ICOMP open-pin protection (ICOMPP); and a high temperature fail-safe.


The UVLO maintains the PFC controller 34 in an off state until the VCC voltage exceeds an 11.5 V turn on threshold. The PFC controller 34 shuts down when the VCC voltage falls below a 9.5 V threshold. The typical hysteresis for the UVLO is 1.7 V. The PFC controller 34 provides two levels of output OVP. For example, the PFC controller 34 enters a standby mode when the output voltage on the VSENSE pin exceeds 107% of the 5 V reference voltage such that the VCOMP pin is rapidly discharged through an internal 4 kΩ resistor to ground. If the voltage on the VSENSE pin exceeds 109% of the reference voltage, the PFC controller 34 gate is disabled (thereby turning off the MOSFET) until the voltage on the VSENSE pin drops below 102% of the 5 V reference voltage.


Under the OLP protection feature, the PFC controller 34 would also enter the standby mode (which would stop the PWM switching), if output voltage feedback components to the VSENSE pin were to fail (e.g., the voltage on the VSENSE pin falls below 0.82 V) or the components are not installed. The ISOP protection feature causes the PFC controller 34 to enter the standby mode (which would stop the PWM switching), if current feedback components to the ISENSE pin were to fail or not be installed. Specifically, if the components were to fail or not be installed, an internal pull up source would drive the voltage on the ISENSE pin above 0.085 V such that the PFC controller 34 would enter the standby mode. The ICOMPP protection feature also causes the PFC controller 34 to enter the standby mode. Specifically, when the voltage on the ICOMP pin falls below 0.2 V (e.g., the pin shorts to ground), the PWM switching is halted and the PFC controller 34 enters the standby mode.


The high-temperature, fail-safe protection feature causes the PFC controller 34 to enter the standby mode when LED PCBA 16 exceeds a temperature threshold (e.g., 95° C.). The PFC controller 34 enters the standby mode when the VCOMP pin is pulled low via an n-channel FET that is connected to an open drain pin of the high temperature shutdown circuit 76. The PWM switching is halted and the VBUS voltage falls from the 28 V boosted voltage to a peak voltage of the 120 Hz rectified voltage (˜20 V) when the PFC controller 34 is in the standby mode. The VBUS voltage can power the current buck regulators 60. When the VBUS voltage falls from the 28 V boosted voltage, the VBUS voltage falls below the UVLO threshold thereby causing the current buck regulators 60 to turn off which in turn causes the LED strings 74 to turn off.


The VBUS voltage can also be monitored by the microcontroller 50 via the VBUS voltage monitor 38. For example, the microcontroller 50 can assert a low signal on a pin coupled to the VBUS voltage monitor 38 output when the microcontroller 50 detects a voltage drop of the VBUS voltage from the 28 V boosted voltage. This in turn causes the VCOMP pin to be pulled low. Accordingly, the current buck regulators 60 will turn off which in turn causes the LED strings 74 to turn off.


The 3.3 V linear voltage regulator 40 regulates the bridge rectifier circuit 32 rectified voltage output and can be any suitable 3.3 V linear voltage regulator. When power to the underwater light is applied, the input to the 3.3 V linear voltage regulator 40 is provided by the input rectified voltage via a blocking diode. When power is removed, the 3.3 V linear voltage regulator 40 can remained powered for 15 seconds via a charge stored on a 220 μF capacitor coupled to its input. The output of the 3.3 V linear voltage regulator 40 provides 3.3 V to the microcontroller 50, dual inverters, a 60 Hz line frequency signal to the microcontroller 50, a JTAG programming header, the EEPROM 72 clock and data lines, and a RESET pin of the microcontroller 40.



FIG. 12 is a circuit diagram of the high temperature shutdown circuit 76 of the LED PCBA 16 of FIG. 6. The high-temperature shutdown circuit 76 can include a 0.1 μF capacitor connected in series with a 3.3 V input voltage signal which are collectively coupled to the V+ pin of the high temperature shutdown circuit 76. The high temperature shutdown circuit 76 is a fail-safe that is implemented if the firmware is incapable of accurately monitoring and regulating the temperature of the LED PCBA 16. As mentioned above, the high temperature shutdown circuit 76 causes the PFC controller 34 to enter the standby mode when LED PCBA 16 exceeds a temperature threshold (e.g., 95° C.). The PFC controller 34 enters the standby mode when the VCOMP pin is pulled low via an n-channel FET that is connected to an open drain pin of the high temperature shutdown circuit 76. When the PFC controller 34 enters the standby mode, the buck current regulators 60 enter an off state causing the LED strings 74 to be turned off. The high temperature shutdown circuit 76 can be set to have a 10° C. hysteresis.



FIG. 13 is a circuit diagram of the EEPROM 72 of the LED PCBA of FIG. 6. The EEPROM 72 can include 3.32 kΩ resistors 120a and 120b and a 0.1 μF capacitor 122 coupled to its output pins. For example, the 0.1 μF capacitor 122 can be connected in series with a 3.3 V input voltage signal coupled to the VCC pin of the EEPROM 72. The color tables for the underwater light can be programmed into the EEPROM 72 on the LED PCBA 16 as opposed to being programmed into the microcontroller 50 on the controller PCBA 12. Accordingly, a predetermined set of color table values can be coded into the EEPROM 72. Alternatively, an automated test fixture can measure and then program color table values into the EEPROM 72 that are specific and unique to each LED PCBA 16 based on a lumen output of the LED strings 74.


Having thus described the present disclosure in detail, it is to be understood that the foregoing description is not intended to limit the spirit or scope thereof.

Claims
  • 1. An underwater light, comprising: a controller printed circuit board assembly (PCBA), including: a microcontroller subsystem including a microcontroller,a light-emitting diode (LED) driver subsystem in communication with the microcontroller subsystem and including a plurality of buck regulators, the LED driver subsystem receiving pulse-width modulated (PWM) signals from the microcontroller subsystem and being controlled by the PWM signals, anda power subsystem providing power to the microcontroller subsystem and the LED driver subsystem, the power subsystem including a filter, a bridge rectifier, a power factor correction controller, a line frequency detection subsystem, a linear voltage regulator, a line voltage monitor, and a bus voltage monitor;an LED printed circuit board assembly (PCBA) in communication with the controller PCBA, the LED PCBA including: a plurality of LED strings in communication with and driven by the LED driver subsystem of the controller PCBA,a plurality of thermistors in communication with the microcontroller subsystem of the controller PCBA, the plurality of thermistors measuring temperatures of the plurality of LED strings and communicating a plurality of LED temperature signals to the microcontroller subsystem, the microcontroller subsystem controlling operation of the LED driver subsystem in response to the plurality of LED temperature signals,an electrically-erasable, programmable, read-only memory (EEPROM) circuit in communication with the microcontroller subsystem, the EEPROM circuit storing a plurality of color table values for controlling colors of light emitted by the plurality of LED strings, the microcontroller subsystem reading the plurality of color table values from the EEPROM circuit and controlling the LED driver subsystem in response to the plurality of color table values,a high-temperature shutdown circuit in communication with the microcontroller subsystem of the controller PCBA, the high-temperature shutdown circuit issuing a shutdown signal to the microcontroller subsystem in response to a temperature threshold of the LED PCBA being exceeded, andan optically-transparent potting compound encapsulating the LED PCBA,the EEPROM circuit and the high-temperature shutdown circuit being powered by the power subsystem of the controller PCBA; anda connector connecting the controller PCBA to the LED PCBA, the connector communicating the LED temperature signals from the plurality of thermistors, control signals between the EEPROM circuit and the microcontroller subsystem, the shutdown signal from the high-temperature shutdown circuit, and LED drive signals between the LED driver subsystem and the plurality of LED strings.
  • 2. An underwater light, comprising: a controller printed circuit board assembly (PCBA), including: a microcontroller subsystem including a microcontroller,a light-emitting diode (LED) driver subsystem in communication with the microcontroller subsystem, the LED driver subsystem receiving pulse-width modulated (PWM) signals from the microcontroller subsystem and being controlled by the PWM signals, anda power subsystem providing power to the microcontroller subsystem and the LED driver subsystem, the power subsystem including: a bridge rectifier providing a rectified voltage signal to the LED driver subsystem, anda power factor correction controller for receiving, as an input voltage signal, the rectified voltage signal and providing a boosted voltage signal to power the LED driver subsystem,the microcontroller subsystem monitoring the rectified voltage signal and controlling operation of the LED driver subsystem based on the monitored rectified voltage signal;an LED printed circuit board assembly (PCBA) in communication with the controller PCBA, the LED PCBA including a plurality of LED strings in communication with and driven by the LED driver subsystem; anda connector connecting the controller PCBA to the LED PCBA, the connector communicating LED drive signals between the LED driver subsystem and the plurality of LED strings.
  • 3. The underwater light of claim 2, wherein the controller PCBA further includes a thermistor in communication with the microcontroller subsystem, the thermistor measuring a temperature of the controller PCBA and communicating a controller PCBA temperature signal to the microcontroller subsystem, the microcontroller subsystem controlling operation of the LED driver subsystem in response to the controller PCBA temperature signal.
  • 4. The underwater light of claim 3, wherein the microcontroller subsystem controls operation of the LED driver subsystem to reduce a light output of the plurality of LED strings when the controller PCBA temperature signal exceeds a predetermined temperature threshold.
  • 5. The underwater light of claim 2, wherein the power subsystem includes a bridge rectifier providing a rectified voltage signal to the LED driver subsystem.
  • 6. The underwater light of claim 2, wherein the microcontroller subsystem controls operation of the LED driver subsystem to reduce a light output of the plurality of LED strings when the rectified voltage signal is less than a predetermined voltage threshold.
  • 7. The underwater light of claim 2, wherein the LED driver subsystem includes a plurality of buck regulators, each buck regulator being associated with a respective LED string of the plurality of LED strings.
  • 8. The underwater light of claim 2, wherein the plurality of LED strings include red, blue, green and white LEDs.
  • 9. The underwater light of claim 2, wherein the LED PCBA is encapsulated in an optically-transparent potting compound and is replaceable by removing a rear housing of the underwater light.
  • 10. The underwater light of claim 2, wherein the LED PCBA further includes a plurality of thermistors in communication with the microcontroller subsystem, the plurality of thermistors measuring temperatures of the plurality of LED strings and communicating a plurality of LED temperature signals to the microcontroller subsystem via the connector, the microcontroller subsystem controlling operation of the LED driver subsystem in response to the plurality of LED temperature signals.
  • 11. The underwater light of claim 10, wherein the microcontroller subsystem controls the operation of the LED driver subsystem to reduce a light output of the plurality of LED strings when the plurality of LED temperature signals exceed a predetermined temperature threshold.
  • 12. The underwater light of claim 2, wherein the LED PCBA further includes a programmable memory in communication with the microcontroller subsystem and powered by the power subsystem, the programmable memory storing a plurality of color table values for controlling colors of light emitted by the plurality of LED strings, the microcontroller subsystem reading the plurality of color table values from the programmable memory and controlling the LED driver subsystem in response to the plurality of color table values.
  • 13. The underwater light of claim 2, wherein the LED PCBA further includes a high-temperature shutdown circuit in communication with the microcontroller subsystem and powered by the power subsystem, the high-temperature shutdown circuit issuing a shutdown signal to the microcontroller subsystem via the connector in response to a temperature threshold of the LED PCBA being exceeded.
  • 14. The underwater light of claim 2, wherein the connector is a surface mount connector.
  • 15. An underwater light, comprising: a controller printed circuit board assembly (PCBA) including a microcontroller, the microcontroller generating pulse-width modulated (PWM) signals;an LED printed circuit board assembly (PCBA) in communication with the controller PCBA, the LED PCBA being replaceable and including a plurality of LED strings in communication with and driven by the microcontroller;a connector connecting the controller PCBA to the LED PCBA, the connector communicating the PWM signals between the microcontroller and the plurality of LED strings;a bridge rectifier providing a rectified voltage signal; anda power factor correction controller for receiving the rectified voltage signal,wherein the microcontroller monitors the rectified voltage signal and reduces a light output of the plurality of LED strings when the rectified voltage signal is less than a predetermined threshold.
  • 16. The underwater light of claim 15, wherein the controller PCBA further includes a thermistor in communication with the microcontroller, the thermistor measuring a temperature of the controller PCBA and communicating a controller PCBA temperature signal to the microcontroller, the microcontroller reducing a light output of the plurality of LED strings when the controller PCBA temperature signal exceeds a predetermined threshold.
  • 17. The underwater light of claim 15, further including a plurality of buck regulators, each buck regulator being associated with a respective LED string of the plurality of LED strings.
  • 18. The underwater light of claim 15, wherein LEDs of the plurality of LED strings include red, blue, green and white LEDs.
  • 19. The underwater light of claim 15, wherein the LED PCBA is encapsulated in an optically-transparent potting compound and is replaceable by removing a rear housing of the underwater light.
  • 20. The underwater light of claim 15, wherein the LED PCBA further includes a plurality of thermistors in communication with the microcontroller, the plurality of thermistors measuring temperatures of the plurality of LED strings and communicating a plurality of LED temperature signals to the microcontroller via the connector, the microcontroller reducing, based on the communicated plurality of LED temperature signals, a light output of the plurality of LED strings when the plurality of LED temperature signals exceed a predetermined threshold.
  • 21. The underwater light of claim 15, wherein the LED PCBA further includes a memory in communication with the microcontroller, the memory storing a plurality of color table values for controlling colors of light emitted by the plurality of LED strings, the microcontroller controlling the plurality of LED strings based on the plurality of color table values read from the memory.
  • 22. The underwater light of claim 15, wherein the LED PCBA further includes a shutdown circuit in communication with the microcontroller, the shutdown circuit issuing a shutdown signal to the microcontroller via the connector in response to a threshold of the LED PCBA being exceeded.
  • 23. An underwater light, comprising: a controller printed circuit board assembly (PCBA), including: a microcontroller subsystem including a microcontroller,a light-emitting diode (LED) driver subsystem in communication with the microcontroller subsystem, the LED driver subsystem receiving pulse-width modulated (PWM) signals from the microcontroller subsystem and being controlled by the PWM signals, anda power subsystem providing power to the microcontroller subsystem and the LED driver subsystem;an LED printed circuit board assembly (PCBA) in communication with the controller PCBA, the LED PCBA including a plurality of LED strings in communication with and driven by the LED driver subsystem; anda connector connecting the controller PCBA to the LED PCBA, the connector communicating LED drive signals between the LED driver subsystem and the plurality of LED strings,wherein the LED PCBA further includes a programmable memory in communication with the microcontroller subsystem and powered by the power subsystem, the programmable memory storing a plurality of color table values for controlling colors of light emitted by the plurality of LED strings, the microcontroller subsystem reading the plurality of color table values from the programmable memory and controlling the LED driver subsystem in response to the plurality of color table values.
  • 24. The underwater light of claim 23, wherein the controller PCBA further includes a thermistor in communication with the microcontroller subsystem, the thermistor measuring a temperature of the controller PCBA and communicating a controller PCBA temperature signal to the microcontroller subsystem, the microcontroller subsystem controlling operation of the LED driver subsystem in response to the controller PCBA temperature signal.
  • 25. The underwater light of claim 24, wherein the microcontroller subsystem controls operation of the LED driver subsystem to reduce a light output of the plurality of LED strings when the controller PCBA temperature signal exceeds a predetermined temperature threshold.
  • 26. The underwater light of claim 23, wherein the LED driver subsystem includes a plurality of buck regulators, each buck regulator being associated with a respective LED string of the plurality of LED strings.
  • 27. The underwater light of claim 23, wherein the LED PCBA is encapsulated in an optically-transparent potting compound and is replaceable by removing a rear housing of the underwater light.
  • 28. The underwater light of claim 23, wherein the LED PCBA further includes a plurality of thermistors in communication with the microcontroller subsystem, the plurality of thermistors measuring temperatures of the plurality of LED strings and communicating a plurality of LED temperature signals to the microcontroller subsystem via the connector, the microcontroller subsystem controlling operation of the LED driver subsystem in response to the plurality of LED temperature signals.
  • 29. The underwater light of claim 28, wherein the microcontroller subsystem controls the operation of the LED driver subsystem to reduce a light output of the plurality of LED strings when the plurality of LED temperature signals exceed a predetermined temperature threshold.
  • 30. The underwater light of claim 23, wherein the LED PCBA further includes a high-temperature shutdown circuit in communication with the microcontroller subsystem and powered by the power subsystem, the high-temperature shutdown circuit issuing a shutdown signal to the microcontroller subsystem via the connector in response to a temperature threshold of the LED PCBA being exceeded.
  • 31. An underwater light, comprising: a controller printed circuit board assembly (PCBA) including a microcontroller, the microcontroller generating pulse-width modulated (PWM) signals;an LED printed circuit board assembly (PCBA) in communication with the controller PCBA, the LED PCBA being replaceable and including a plurality of LED strings in communication with and driven by the microcontroller; anda connector connecting the controller PCBA to the LED PCBA, the connector communicating the PWM signals between the microcontroller and the plurality of LED strings,wherein the LED PCBA further includes a memory in communication with the microcontroller, the memory storing a plurality of color table values for controlling colors of light emitted by the plurality of LED strings, the microcontroller controlling the plurality of LED strings based on the plurality of color table values read from the memory.
  • 32. The underwater light of claim 31, wherein the controller PCBA further includes a thermistor in communication with the microcontroller, the thermistor measuring a temperature of the controller PCBA and communicating a controller PCBA temperature signal to the microcontroller, the microcontroller reducing a light output of the plurality of LED strings when the controller PCBA temperature signal exceeds a predetermined threshold.
  • 33. The underwater light of claim 31, further including a plurality of buck regulators, each buck regulator being associated with a respective LED string of the plurality of LED strings.
  • 34. The underwater light of claim 31, wherein the LED PCBA is encapsulated in an optically-transparent potting compound and is replaceable by removing a rear housing of the underwater light.
  • 35. The underwater light of claim 31, wherein the LED PCBA further includes a plurality of thermistors in communication with the microcontroller, the plurality of thermistors measuring temperatures of the plurality of LED strings and communicating a plurality of LED temperature signals to the microcontroller via the connector, the microcontroller reducing, based on the communicated plurality of LED temperature signals, a light output of the plurality of LED strings when the plurality of LED temperature signals exceed a predetermined threshold.
  • 36. The underwater light of claim 31, wherein the LED PCBA further includes a shutdown circuit in communication with the microcontroller, the shutdown circuit issuing a shutdown signal to the microcontroller via the connector in response to a threshold of the LED PCBA being exceeded.
  • 37. An underwater light, comprising: a controller printed circuit board assembly (PCBA), including: a microcontroller subsystem including a microcontroller,a light-emitting diode (LED) driver subsystem in communication with the microcontroller subsystem, the LED driver subsystem receiving pulse-width modulated (PWM) signals from the microcontroller subsystem and being controlled by the PWM signals, anda power subsystem providing power to the microcontroller subsystem and the LED driver subsystem;an LED printed circuit board assembly (PCBA) in communication with the controller PCBA, the LED PCBA including a plurality of LED strings in communication with and driven by the LED driver subsystem; anda connector connecting the controller PCBA to the LED PCBA, the connector communicating LED drive signals between the LED driver subsystem and the plurality of LED strings,wherein the LED PCBA further includes a high-temperature shutdown circuit in communication with the microcontroller subsystem and powered by the power subsystem, the high-temperature shutdown circuit issuing a shutdown signal to the microcontroller subsystem via the connector in response to a temperature threshold of the LED PCBA being exceeded.
  • 38. The underwater light of claim 37, wherein the controller PCBA further includes a thermistor in communication with the microcontroller subsystem, the thermistor measuring a temperature of the controller PCBA and communicating a controller PCBA temperature signal to the microcontroller subsystem, the microcontroller subsystem controlling operation of the LED driver subsystem in response to the controller PCBA temperature signal.
  • 39. The underwater light of claim 38, wherein the microcontroller subsystem controls operation of the LED driver subsystem to reduce a light output of the plurality of LED strings when the controller PCBA temperature signal exceeds a predetermined temperature threshold.
  • 40. The underwater light of claim 37, wherein the LED driver subsystem includes a plurality of buck regulators, each buck regulator being associated with a respective LED string of the plurality of LED strings.
  • 41. The underwater light of claim 37, wherein the LED PCBA is encapsulated in an optically-transparent potting compound and is replaceable by removing a rear housing of the underwater light.
  • 42. The underwater light of claim 37, wherein the LED PCBA further includes a plurality of thermistors in communication with the microcontroller subsystem, the plurality of thermistors measuring temperatures of the plurality of LED strings and communicating a plurality of LED temperature signals to the microcontroller subsystem via the connector, the microcontroller subsystem controlling operation of the LED driver subsystem in response to the plurality of LED temperature signals.
  • 43. The underwater light of claim 42, wherein the microcontroller subsystem controls the operation of the LED driver subsystem to reduce a light output of the plurality of LED strings when the plurality of LED temperature signals exceed a predetermined temperature threshold.
  • 44. An underwater light, comprising: a controller printed circuit board assembly (PCBA) including a microcontroller, the microcontroller generating pulse-width modulated (PWM) signals;an LED printed circuit board assembly (PCBA) in communication with the controller PCBA, the LED PCBA being replaceable and including a plurality of LED strings in communication with and driven by the microcontroller; anda connector connecting the controller PCBA to the LED PCBA, the connector communicating the PWM signals between the microcontroller and the plurality of LED strings,wherein the LED PCBA further includes a shutdown circuit in communication with the microcontroller, the shutdown circuit issuing a shutdown signal to the microcontroller via the connector in response to a threshold of the LED PCBA being exceeded.
  • 45. The underwater light of claim 44, wherein the controller PCBA further includes a thermistor in communication with the microcontroller, the thermistor measuring a temperature of the controller PCBA and communicating a controller PCBA temperature signal to the microcontroller, the microcontroller reducing a light output of the plurality of LED strings when the controller PCBA temperature signal exceeds a predetermined threshold.
  • 46. The underwater light of claim 44, further including a plurality of buck regulators, each buck regulator being associated with a respective LED string of the plurality of LED strings.
  • 47. The underwater light of claim 44, wherein the LED PCBA is encapsulated in an optically-transparent potting compound and is replaceable by removing a rear housing of the underwater light.
  • 48. The underwater light of claim 44, wherein the LED PCBA further includes a plurality of thermistors in communication with the microcontroller, the plurality of thermistors measuring temperatures of the plurality of LED strings and communicating a plurality of LED temperature signals to the microcontroller via the connector, the microcontroller reducing, based on the communicated plurality of LED temperature signals, a light output of the plurality of LED strings when the plurality of LED temperature signals exceed a predetermined threshold.
RELATED APPLICATIONS

The present application claims benefit of priority to U.S. Provisional Patent Application No. 62/814,763, filed on Mar. 6, 2019, the entire disclosure of which is hereby incorporated by reference.

US Referenced Citations (221)
Number Name Date Kind
1874513 Hall Aug 1932 A
1991775 Spencer Feb 1935 A
2057186 Freeberg Oct 1936 A
2323793 Clark Jul 1943 A
2355607 Shepherd Aug 1944 A
2881409 Cook Apr 1959 A
2903674 Schwab Sep 1959 A
3020522 Lesher Feb 1962 A
3114127 Ramsey Dec 1963 A
3213377 Neale Oct 1965 A
3255433 Lesher Jun 1966 A
3257641 Campana et al. Jun 1966 A
3271734 Cabe et al. Sep 1966 A
3435213 Colbow et al. Mar 1969 A
3594720 Cane Jul 1971 A
3804049 Greer Apr 1974 A
4053758 Shaw Oct 1977 A
4054792 Brudy Oct 1977 A
4135144 Elmasian Jan 1979 A
4298868 Spurgeon Nov 1981 A
4392187 Bornhorst Jul 1983 A
4636036 Pasquali Jan 1987 A
4729076 Masami et al. Mar 1988 A
4814800 Lavinsky et al. Mar 1989 A
4890208 Izenour Dec 1989 A
4974133 Fujiki Nov 1990 A
5045983 Shields Sep 1991 A
5220464 Lin Jun 1993 A
5256948 Boldin et al. Oct 1993 A
5295054 Baader et al. Mar 1994 A
5528474 Roney et al. Jun 1996 A
5632551 Roney et al. May 1997 A
5649242 O'Brien et al. Jul 1997 A
5785418 Hochstein Jul 1998 A
5842771 Thrasher et al. Dec 1998 A
5893626 Poling Apr 1999 A
6002216 Mateescu Dec 1999 A
6016038 Mueller et al. Jan 2000 A
6045240 Hochstein Apr 2000 A
6081191 Green et al. Jun 2000 A
RE36790 Jincks et al. Jul 2000 E
6090484 Bergerson Jul 2000 A
6100791 Bader et al. Aug 2000 A
6152577 Rizkin et al. Nov 2000 A
6166496 Lys et al. Dec 2000 A
6175354 Blissett et al. Jan 2001 B1
6184628 Ruthenberg Feb 2001 B1
6196471 Ruthenberg Mar 2001 B1
6211626 Lys et al. Apr 2001 B1
6241361 Thrasher et al. Jun 2001 B1
6241362 Morrison Jun 2001 B1
6292901 Lys et al. Sep 2001 B1
6357889 Duggal et al. Mar 2002 B1
6367541 McCullough Apr 2002 B2
6379025 Mateescu et al. Apr 2002 B1
6435691 Macey et al. Aug 2002 B1
6441943 Roberts et al. Aug 2002 B1
6459919 Lys et al. Oct 2002 B1
6528954 Lys et al. Mar 2003 B1
6548967 Dowling et al. Apr 2003 B1
6554454 Kitano Apr 2003 B1
6585399 Kreutzer et al. Jul 2003 B2
6608453 Morgan et al. Aug 2003 B2
6616291 Love Sep 2003 B1
6622053 Hewlett et al. Sep 2003 B1
6624597 Dowling et al. Sep 2003 B2
6717376 Lys et al. Apr 2004 B2
6720745 Lys et al. Apr 2004 B2
6774584 Lys et al. Aug 2004 B2
6777891 Lys et al. Aug 2004 B2
6781329 Mueller et al. Aug 2004 B2
6798154 Sullivan et al. Sep 2004 B1
6801003 Schanberger et al. Oct 2004 B2
6811286 Mateescu et al. Nov 2004 B2
6831679 Olsson et al. Dec 2004 B1
6869204 Morgan et al. Mar 2005 B2
6883929 Dowling Apr 2005 B2
6886625 Sagal et al. May 2005 B1
6888322 Dowling et al. May 2005 B2
6896045 Panek May 2005 B2
6897624 Lys et al. May 2005 B2
6936978 Morgan et al. Aug 2005 B2
6965205 Piepgras et al. Nov 2005 B2
6967448 Morgan et al. Nov 2005 B2
6969954 Lys Nov 2005 B2
6971760 Archer et al. Dec 2005 B2
6975079 Lys et al. Dec 2005 B2
6981805 Miller et al. Jan 2006 B2
7023147 Colby et al. Apr 2006 B2
7031920 Dowling et al. Apr 2006 B2
7038398 Lys et al. May 2006 B1
7038399 Lys et al. May 2006 B2
7055988 Mateescu et al. Jun 2006 B2
7064498 Dowling et al. Jun 2006 B2
7097329 Mateescu et al. Aug 2006 B2
7113541 Lys et al. Sep 2006 B1
7125146 Willis et al. Oct 2006 B2
7128440 Mateescu et al. Oct 2006 B2
7132635 Dowling Nov 2006 B2
7132785 Ducharme Nov 2006 B2
7135824 Lys et al. Nov 2006 B2
7139617 Morgan et al. Nov 2006 B1
7161311 Mueller et al. Jan 2007 B2
7161556 Morgan et al. Jan 2007 B2
7178941 Roberge et al. Feb 2007 B2
7180252 Lys et al. Feb 2007 B2
7186003 Dowling et al. Mar 2007 B2
7202613 Morgan et al. Apr 2007 B2
7204602 Archer Apr 2007 B2
7204622 Dowling et al. Apr 2007 B2
7228190 Dowling et al. Jun 2007 B2
7231060 Dowling et al. Jun 2007 B2
7233115 Lys Jun 2007 B2
7233831 Blackwell Jun 2007 B2
7242152 Dowling et al. Jul 2007 B2
7248239 Dowling et al. Jul 2007 B2
7253566 Lys et al. Aug 2007 B2
7255457 Ducharme et al. Aug 2007 B2
7256554 Lys Aug 2007 B2
7278762 Schottland et al. Oct 2007 B2
7300192 Mueller et al. Nov 2007 B2
7303300 Dowling et al. Dec 2007 B2
7303301 Koren et al. Dec 2007 B2
7344279 Mueller et al. Mar 2008 B2
7352339 Morgan et al. Apr 2008 B2
7353071 Blackwell et al. Apr 2008 B2
7357525 Doyle Apr 2008 B2
7358679 Lys et al. Apr 2008 B2
7358706 Lys Apr 2008 B2
7358929 Mueller et al. Apr 2008 B2
7364488 Mueller et al. Apr 2008 B2
7396139 Savage Jul 2008 B2
7410268 Koren et al. Aug 2008 B2
7482764 Morgan et al. Jan 2009 B2
7488084 Potucek et al. Feb 2009 B2
7497595 Mateescu et al. Mar 2009 B2
7514884 Potucek et al. Apr 2009 B2
7520628 Sloan et al. Apr 2009 B1
7524086 Saieva Apr 2009 B1
7553040 Boothe et al. Jun 2009 B2
7591564 Ball et al. Sep 2009 B1
7628512 Netzel, Sr. et al. Dec 2009 B2
7705240 Armstrong et al. Apr 2010 B2
7722216 Amor et al. May 2010 B2
7914162 Huang Mar 2011 B1
8172434 Olsson May 2012 B1
10718507 Potucek et al. Jul 2020 B2
20020043938 Lys Apr 2002 A1
20020074559 Dowling et al. Jun 2002 A1
20020113555 Lys et al. Aug 2002 A1
20020130627 Morgan et al. Sep 2002 A1
20020149933 Archer et al. Oct 2002 A1
20020152045 Dowling et al. Oct 2002 A1
20020163316 Lys et al. Nov 2002 A1
20020171377 Mueller et al. Nov 2002 A1
20020176259 Ducharme Nov 2002 A1
20030048632 Archer Mar 2003 A1
20030057884 Dowling et al. Mar 2003 A1
20030133292 Mueller et al. Jul 2003 A1
20040047145 Koren Mar 2004 A1
20040052076 Mueller et al. Mar 2004 A1
20040085754 Koren et al. May 2004 A1
20040105261 Ducharme et al. Jun 2004 A1
20040141321 Dowling et al. Jul 2004 A1
20040184284 Buelow et al. Sep 2004 A1
20040208008 Mateescu et al. Oct 2004 A1
20040223320 Archer et al. Nov 2004 A1
20040252520 Martineau et al. Dec 2004 A1
20050040774 Mueller et al. Feb 2005 A1
20050041161 Dowling et al. Feb 2005 A1
20050047134 Mueller et al. Mar 2005 A1
20050047772 Hayami et al. Mar 2005 A1
20050088119 Potucek et al. Apr 2005 A1
20050088434 Potucek Apr 2005 A1
20050099824 Dowling et al. May 2005 A1
20050116665 Colby et al. Jun 2005 A1
20050128751 Roberge et al. Jun 2005 A1
20050168970 Mateescu et al. Aug 2005 A1
20050174473 Morgan et al. Aug 2005 A1
20050213352 Lys Sep 2005 A1
20050213353 Lys Sep 2005 A1
20050218870 Lys Oct 2005 A1
20050248299 Chemel et al. Nov 2005 A1
20050276044 Mateescu et al. Dec 2005 A1
20060002104 Willis et al. Jan 2006 A1
20060012987 Ducharme et al. Jan 2006 A9
20060022214 Morgan et al. Feb 2006 A1
20060023454 Koren Feb 2006 A1
20060072323 Poggi Apr 2006 A1
20060076908 Morgan et al. Apr 2006 A1
20060087850 Thompson et al. Apr 2006 A1
20060092636 Potucek et al. May 2006 A1
20060198128 Piepgras et al. Sep 2006 A1
20060215408 Lee Sep 2006 A1
20060238130 Hosoya Oct 2006 A1
20060291213 Mateescu et al. Dec 2006 A1
20070096134 Kim et al. May 2007 A1
20070097667 Armstrong et al. May 2007 A1
20070097675 Koren et al. May 2007 A1
20070139913 Savage Jun 2007 A1
20070159833 Netzel et al. Jul 2007 A1
20070230194 Vilarrasa Oct 2007 A1
20070263378 Koren Nov 2007 A1
20080112157 Boothe et al. May 2008 A1
20080165547 Amor et al. Jul 2008 A1
20080197788 Conover Aug 2008 A1
20080297068 Koren et al. Dec 2008 A1
20090013570 Grajcar Jan 2009 A1
20090109617 Grajcar Apr 2009 A1
20090180281 Ahland, III et al. Jul 2009 A1
20090180290 Grajcar Jul 2009 A1
20090185350 Grajcar Jul 2009 A1
20090185373 Grajcar Jul 2009 A1
20090204239 Netzel, Sr. et al. Aug 2009 A1
20100118511 Wegat May 2010 A1
20100157599 Carter et al. Jun 2010 A1
20110096548 Pickard Apr 2011 A1
20110267834 Potucek et al. Nov 2011 A1
20130182442 Potucek et al. Jul 2013 A1
20130264943 Bora Oct 2013 A1
20170343185 Fieberg Nov 2017 A1
Foreign Referenced Citations (49)
Number Date Country
2705700 Jun 2005 CN
1664439 Sep 2005 CN
101010234 Aug 2007 CN
10321992 Mar 2005 DE
102008056498 May 2010 DE
1016062 Jul 2000 EP
2 239 306 Jun 1991 GB
9931560 Jun 1999 WO
0001067 Jan 2000 WO
0105195 Jan 2001 WO
0124584 Apr 2001 WO
0136864 May 2001 WO
0182657 Nov 2001 WO
0199475 Dec 2001 WO
0210847 Feb 2002 WO
0211497 Feb 2002 WO
0212127 Feb 2002 WO
0213490 Feb 2002 WO
0218913 Mar 2002 WO
0225842 Mar 2002 WO
02040921 May 2002 WO
02045467 Jun 2002 WO
02061330 Aug 2002 WO
02069306 Sep 2002 WO
02091805 Nov 2002 WO
02098182 Dec 2002 WO
02098183 Dec 2002 WO
02099780 Dec 2002 WO
02101702 Dec 2002 WO
03024269 Mar 2003 WO
03026358 Mar 2003 WO
03055273 Jul 2003 WO
03067934 Aug 2003 WO
03096761 Nov 2003 WO
2004021747 Mar 2004 WO
2004023850 Mar 2004 WO
2004032572 Apr 2004 WO
2004094896 Nov 2004 WO
2004100624 Nov 2004 WO
2005012997 Feb 2005 WO
2005060309 Jun 2005 WO
2005084339 Sep 2005 WO
2005089293 Sep 2005 WO
2005089309 Sep 2005 WO
2006023149 Mar 2006 WO
2006031753 Mar 2006 WO
2006031810 Mar 2006 WO
2008067402 Jun 2008 WO
2010032062 Mar 2010 WO
Non-Patent Literature Citations (64)
Entry
International Search Report and Written Opinion of the International Searching Authority dated Jun. 19, 2020, issued in connection with International application No. PCT/US2020/021536 (7 pages).
Office Action (Restriction Requirement) dated May 9, 2011, issued in connection with U.S. Appl. No. 12/769,038 (9 pages).
Office Action dated Sep. 6, 2011, issued in connection with U.S. Appl. No. 12/769,038 (11 pages).
Office Action dated May 9, 2012, issued in connection with U.S. Appl. No. 12/769,038 (11 pages).
Office Action dated Dec. 3, 2013, issued in connection with U.S. Appl. No. 12/769,038 (10 pages).
Office Action dated Aug. 20, 2014, issued in connection with U.S. Appl. No. 12/769,038 (11 pages).
Office Action dated Apr. 2, 2015, issued in connection with U.S. Appl. No. 12/769,038 (15 pages).
Office Action dated Dec. 30, 2015, issued in connection with U.S. Appl. No. 12/769,038 (13 pages).
Office Action dated Nov. 17, 2016, issued in connection with U.S. Appl. No. 12/769,038 (13 pages).
Office Action dated Aug. 25, 2017, issued in connection with U.S. Appl. No. 12/769,038 (15 pages).
Examiner's Answer to Appeal Brief dated Nov. 27, 2018, issued in connection with U.S. Appl. No. 12/769,038 (10 pages).
Decision on Appeal dated Jan. 30, 2020, issued in connection with U.S. Appl. No. 12/769,038 (14 pages).
Office Action dated Dec. 4, 2013, issued in connection with U.S. Appl. No. 13/786,739 (11 pages).
Office Action dated Aug. 20, 2014, issued in connection with U.S. Appl. No. 13/786,739 (15 pages).
Office Action dated Apr. 1, 2015, issued in connection with U.S. Appl. No. 13/786,739 (20 pages).
Office Action dated Jan. 6, 2016, issued in connection with U.S. Appl. No. 13/786,739 (19 pages).
Office Action dated Nov. 22, 2016, issued in connection with U.S. Appl. No. 13/786,739 (21 pages).
Office Action dated Aug. 15, 2017, issued in connection with U.S. Appl. No. 13/786,739 (23 pages).
Examiner's Answer to Appeal Brief dated Dec. 10, 2018, issued in connection with U.S. Appl. No. 13/786,739 (12 pages).
Supplemental Examiner's Answer to Appeal Brief dated Jan. 16, 2019, issued in connection with U.S. Appl. No. 13/786,739 (2 pages).
Decision on Appeal dated Dec. 12, 2019, issued in connection with U.S. Appl. No. 13/786,739 (12 pages).
Notice of Allowance dated Mar. 9, 2020, issued in connection with U.S. Appl. No. 13/786,739 (7 pages.
Supplemental Notice of Allowability dated Mar. 25, 2020, issued in connection with U.S. Appl. No. 13/786,739 (4 pages).
U.S. Appl. No. 60/068,792 entitled “Multi-Color Intelligent Lighting” filed Dec. 24, 1997, Inventors: George G. Mueller and Ihor Lys (2 pages).
U.S. Appl. No. 60/071,281 entitled “Digitally Controlled Light Emitting Diode Systems and Methods” filed Dec. 17, 1997, Inventors: George G. Mueller and Ihor A. Lys (24 pages).
U.S. Appl. No. 60/078,861 entitled “Digital Lighting Systems” filed Mar. 20, 1998, Inventors: Ihor Lys (2 pages).
U.S. Appl. No. 60/079,285 entitled “Systems and Methods for Controlled Ilumination” filed Mar. 25, 1998, Inventors: George G. Mueller and Ihor Lys (34 pages).
U.S. Appl. No. 60/090,920 entitled “Method for Software Driven Generation of Multiple Simultaneous High Speed Pulse Width Modulated Signals” filed Jun. 26, 1998, Inventors: Ihor Lys (8 pages).
U.S. Appl. No. 60/199,333 entitled “Autonomous Color Changing Accessory” filed Apr. 24, 2000, Inventors: Al Ducharme, Ihor Lys and Kevin Dowling (19 pages).
U.S. Appl. No. 60/243,250 entitled “Illumination of Liquids” filed Oct. 25, 2000, Inventors: Frederick Morgan, Timothy Holmes, Chris Cantone, Ihor Lys and George Mueller (24 pages).
U.S. Appl. No. 60/290,101 entitled “Systems and Methods for Synchronizing Tlumination Systems” filed May 10, 2001, Inventors: Kevin Dowling and Eric K. Schanberger (27 pages).
U.S. Appl. No. 60/296,377 entitled “Systems and Methods for Controlling Lighting Systems” filed Jun. 6, 2001, Inventors: Mike Blackwell (11 pages).
U.S. Appl. No. 60/297,828 entitled “Systems and Methods for Controlling Lighting Systems” filed Jun. 13, 2001, Inventors: George Mueller, Frederick Morgan, Ihor Lys and Kevin Dowling (13 pages).
U.S. Appl. No. 60/515,090 entitled “Color Changing Image with Backlighting and Combination Localized Gray-Scale and Color Image” filed Oct. 28, 2003, Inventors: Kevin Potucek and Kevin Murphy (13 pages).
Bond-Ply 100—“Thermally Conductive, Fiberglass Reinfomced Pressure Sensitive Adhesive Tape,” The Bergquist Company, http://www.bergquistcompany.com, publicly available prior to Dec. 24, 2008 (3 pages).
CoolPoly® D5108 Thermally Conductive Polyphenylene Sulfide (PPS), Product Data Sheet dated Aug. 8, 2007 (2 pages).
IntelliBrite™ Underwater Color-Changing Lights (2007) (4 pages).
Underwater ColorLogic™ LED Lighting Fixtures SP0525(S) Owner's Manual (2004) (12 pages).
Underwater ColorLogic™ LED Lighting Fixtures SP0523(S) Owner's Manual (2004) (12 pages).
Underwater ColorLogic™ LED Lighting Fixtures SP0524(S), SP0525(S), SP0527(S), SP0532(S), SP0533(S) and SP0535(S) Owner's Manual (2004) (12 pages).
Sta-Rite Large Underwater Light Niche Owner's Manual (2004) (8 pages).
Aqua Logic Automation and Chlorination Operation Manual (2004) (40 pages).
American/Pentair Niche w/3/4 in. Side Hub, Concrete (78210400), printed from Internet website http://www.poolplaza.com/P-PEN-78210400-2282. html (Oct. 19, 2010) (1 page).
American/Pentair Niche w/1.0 in. Hub, Vinyl/Fbgls (10 Hole) (78232500), printed from Internet website http://www. poolplaza.com/P-PEN-78210400-2282. html (Oct. 19, 2010) (1 page).
Pentair 620004 AmerLite Quick Niche, printed from Internet website http://www.aqua-man.com/row_num.asp?lc=1892 (Oct. 19, 2010) (2 pages).
Pentair 79206700 AmerLite Large Plastic Niche, printed from Internet website http://www.aqua-man.com/row_num. asp?lc=1895 (Oct. 19, 2010) (2 pages).
QuickNiche Vinyl Pool Lighting Niche by Pentair Water Pool and Spa, product description (2006) (2 pages).
Product Specifications for Jandy ProNiche Pool and Spa Light Niches, printed from Internet website http7/www.jandy.com/html/products/lights/proniche/specs.php (Oct. 19, 2010) (2 pages).
Jandy ProNiche ˜ Pool & Spa Light Niches, product description (2007) (2 pages).
Jandy Installation Manual Jandy Housing for Wet Niche Fixtures (2007) (8 pages).
International Search Report of the International Searching Authority dated Jun. 12, 2008, issued in connection with International Patent Appl. No PCT/US07/85793 (3 pages).
Written Opinion of the International Searching Authority dated Jun. 12, 2008, issued in connection with International Patent Appl. No. PCT/US07/85793 (5 pages).
Extended European Search Report dated Aug. 22, 2011, issued in connection with European Patent Application No. 11164216.1 (7 pages).
Third Party Observations dated Apr. 11, 2015, submitted in connection with European Patent Applicartion No. 11164216.1 (2 pages).
Office Action dated Nov. 3, 2015, issued in connection with European Patent Application No. 11164216.1 (9 pages).
Office Action dated Nov. 18, 2016, issued in connection with European Patent Application No. 11164216.1 (6 pages).
Communication (Notice of Intetnion to Grant) dated Oct. 31, 2017, issued in connection with European Patent Application No. 11164216.1 (5 pages).
Patent Examination Report dated Mar. 18, 2014, issued in connection with Australian Patent Application No. 2011201916 (4 pages).
Patent Examination Report dated May 13, 2015, issued in connection with Australian Patent Application No. 2011201916 (4 pages).
Patent Examination Report dated Dec. 3, 2015, issued in connection with Australian Patent Application No. 2011201916 (4 pages).
Patent Examination Report dated Jul. 19, 2016, issued in connection with Australian Patent Application No. 2015271887 (3 pages).
Examination Report dated Feb. 20, 2017, issued by the Canadian Intellectual Property Office in connection with Canadian Patent Application No. 2,738,255 (7 pages).
English Translation of the First Office Action dated Jul. 31, 2014, issued in connection with Chinese Patent Application No. 201110152483.3 (11 pages).
English Translation of the Second Office Action dated May 21, 2015, issued in connection with Chinese Patent Application No. 201110152483.3 (4 pages).
Related Publications (1)
Number Date Country
20200284415 A1 Sep 2020 US
Provisional Applications (1)
Number Date Country
62814763 Mar 2019 US