The present disclosure relates to abatement of noise generated by sea-faring vessels and other natural or man-made sources of sound in water using a submerged panel having cavities containing a resonating gas volume therein.
This application claims the benefit and priority of U.S. Provisional Application 61/881,740, entitled “Reducing Underwater Noise Using Gas Trapped in Pockets on Submerged Objects”, filed on Sep. 24, 2013, which is hereby incorporated by reference.
Ships that operate in environmentally sensitive or highly regulated regions can be limited in the manner or time in which they can operate due to the noise generated by the ship. This occurs in the oil and gas field, where noise from mobile drilling ships limits drilling time due to the effect that the noise can have on migrating bowhead whales in Arctic regions. When bowhead whales are sighted, operations may be halted until they have safely passed, and this process can take many hours.
In addition, there is growing concern over the effect that shipping noise has on marine mammals. Some studies suggest that shipping noise can have a significant impact on the whale's stress hormone levels, which might affect their reproduction rates, etc.
Known attempts to reduce noise emissions from surface ships include the use of a so-called Prairie Masker, which uses bands of hoses that produce small freely-rising bubbles to mitigate ship's noise. However, small freely-rising bubbles are usually too small to effectively attenuate low-frequency noise. In addition, Prairie Masker systems require continuous pumping of air through the system, a process itself that produces unwanted noise, and also consuming energy and requiring a complex gas circulation system that is costly and cumbersome to the other operations of the ship. Finally, such systems cannot operate efficiently at large depths due to the challenges of delivering (e.g., pumping) sufficient amounts of air to significant depths.
One principle that is useful in approximating or understanding the acoustic effects of gas pockets in liquid (e.g., air pockets or bubbles or enclosures in water) is the behavior of spherical gas bubbles in liquid. The physics of gas bubbles is relatively well known and has been studied theoretically, experimentally and numerically.
The movement of gas volumes enclosed by liquid can absorb ambient underwater sound or sound in an environment generally. These phenomena have been studied by others and by the present inventors and exploited for various purposes. For example, U.S. Pat. No. 8,636,101 and similar works are directed to scattering and damping of acoustic energy by a system of encapsulated air bladders tied to an underwater rigging. U.S. Pat. No. 7,905,323 and similar works are directed to studying the mechanism for absorption of acoustic energy in a gas filled cavity, generally to affect the acoustics of a room. U.S. Pat. No. 7,126,875 and U.S. Pat. No. 6,571,906 and similar works are directed to generating sound dampening bubble clouds from a bubble producing apparatus submerged under water. While U.S. Pat. No. 6,567,341 is directed to a boom with a gas injection system forming gas bubbles placed around a waterborne noise source to reduce the propagation of noise from the source.
Each of the above type of systems are intended to either cause an acoustic impedance mismatch or to cause resonance in a gas bubble or bubble cloud or gas-filled balloon so as to absorb and/or scatter acoustic noise energy present in the vicinity of the bubbles or balloons. The mechanics of these systems generally rely on the bubble-to-water interface to offer a resonator as described above to as to attenuate sound energy. Each of the above systems is of a given effectiveness and practicality, which may be suitable for some applications and may remain options available to system designers in the field.
Gas trapped in the pockets under or around an object in the water will act as Helmholtz resonators and thus work to abate noise in much the same way as a resonant bubble. To give an example of how this would work in on a ship, a panel with hemispherical or cylindrical cavities could be attached to its hull, and while submerged the pockets could be filled with gas via an external mechanism or an internal manifold system, or the air could be trapped from when it was out of the water. The properties of these pockets would be chosen so that the gas trapped within each pocket resonates at or near the frequencies that we wish to attenuate, thus maximizing their efficacy.
The system is customizable and can attenuate noise to the amount desired. The system can also be produced to specifically target frequencies that are particularly loud.
This system may allow the operator to work for longer periods of time and in areas previously unavailable due to noise regulations. This system is also much more effective at reducing noise than current technology because each gas cavity is built so that the gas trapped inside will maximally reduce the targeted underwater noise. In addition it does not require power or expensive support equipment.
An embodiment is directed to a system for reducing underwater noise, comprising a solid panel having a thickness at any given location on the panel and having two generally opposing faces of said panel; a plurality of resonator cavities defined within said panel; each resonator cavity having a closed end within said panel and an open end through which an interior of said resonator cavity is in fluid communication with surrounding of said panel; each resonator cavity further defining a volume described by a geometry of said resonator cavity within said panel; and each resonator cavity configured and arranged within said panel so as to have at least a portion of said volume of the resonator cavity disposed higher than said open end so as to be capable of trapping an amount of gas within the resonator cavity.
Another embodiment is directed to a method for reducing underwater noise, comprising substantially filling a chamber of a Helmholtz resonator with a first fluid; and submerging said resonator in a second fluid being different from said first fluid so as to create a two-fluid interface between said first and second fluids proximal to an opening of said resonator. The resonator creating the two-fluid interface can be duplicated to make a multi-resonator arrangement and disposing one or more of said submerged resonators proximal to an object of interest such as a noise generating object or a noise-sensitive object at which we wish to reduce the noise.
For a fuller understanding of the nature and advantages of the present invention, reference is made to the accompanying drawings illustrating exemplary aspects and embodiments of the invention, in which:
Gas trapped in the pockets under or around an object in the water will act as Helmholtz resonators and thus work to abate noise in much the same way as a resonant bubble.
An air cavity can be accomplished in a number of ways for the purpose of causing resonance in the cavity to absorb acoustic energy.
where γ is the ratio of specific heats of the gas inside the resonator, ρl is the density of the liquid outside the resonator, P0 is hydrostatic pressure at the location of the resonator, S is the cross sectional area of the opening of the resonator, V is the volume of air inside the resonator, and L′ is the effective neck length of the resonator. The frequency is given here in units of radians per second. The idealized resonance frequency 230 (or Minnaert frequency) of an air bubble in water is given by:
where a is the radius of the spherical gas bubble. The frequency is given here in units of radians per second.
We now turn to other instances of Helmholtz resonators containing a gas (for example air, but not limited to air) submerged in a surrounding liquid (for example sea water, but not limited to that). In addition, we will examine sound attenuating systems comprising a plurality of such resonators in a shaped panel adapted for a given application.
The following figures illustrate exemplary panels that have a plurality of spaced indentations, pockets, or other volumetric cavities taken therefrom. The volumetric cavities can be of almost any size or shape suiting a given application. The panels may serve other functions. For example, the panels may be structural in nature and part of a design of a vessel, platform or other industrial, military or recreational device causing or proximal to acoustic noise sources of interest.
Note that in the present designs and embodiments, a panel (40, 50, 60) may be of almost any shape suited for a given application. Also, the panels do not necessarily need to be flat or square or rectangular in shape, but rather, they may have some overall contour or three-dimensional curvature to their face. In addition, the resonator cavities (410, 510, 610) do not necessarily have to be all of a same shape or size in a given panel. The sizes, shapes and locations of the individual resonator cavities on the panels may be chosen to suit a given application. The cavities are not limited in their placement to a grid or a regular spacing. For example, two different shapes or sizes of resonators may be included in a same panel design to address two particular anticipated noise components. For experimental purposes, testing and optimization of a design, a spherical acceleration source can be placed in a test tank with the inverted panels where the cavities each contain a trapped volume of air allowed to respond to acoustic stimuli.
As mentioned in other embodiments, the system 90 comprises a solid panel structure 900, which can be a sheet material of some thickness and density of construction. In an aspect, the density of the sheet material of panel structure 900 is greater than that of the fluid into which it is to be submerged (for example, water). In another aspect, the panel 900 is formable by pouring or injecting in one or more parts using a mold. In another aspect, the resonator cavities 910, 920, 930, 940 may be formed by machining, chemical etching, and so on.
As to the resonator cavities 910, 920, 930, 940, these are adapted so that they trap a volume of gas (for example air) therein during use when the panel 900 is submerged in a liquid (for example sea water). The cavities 910, 920, 930, 940 can be filled a priori when the panel 900 is above the surface of the water, or the cavities may be filled using a gas injection system such as an air pump that forces air into the cavities 910, 920, 930, 940 once the panel 900 is under water. The volume of air in the cavities may be refreshed from time to time (e.g., using forced injection or percolation) in case some of the trapped air in the cavities spills out or is dissolved in the surrounding liquid.
Some resonator cavities may have access from the face of the panel but an elevated volume within the panel so as to trap a volume of air therein when the panel 900 is oriented vertically (or having a vertical elevation to its position) as shown in
The relative height of the interior volume of the cavities and their volumes are configurable to suit the purpose at hand. The cavities can be considered as defined by the volume of gas trapped therein, which can vary and sometimes some liquid can push itself into at least part of the cavity. Given that static water pressure in the ocean or bay or river the panels are in varies with depth below the surface, the cavities' size and/or shape can vary according to their location with respect to the water line on the face of the panel. Meaning, the cavities may be designed to accommodate the change in water pressure felt at the neck of the cavities due to the depth to which they are submerged, as (in the analogy of
In some embodiments, a mesh or other solid screen such as a metal screen (e.g., copper screen) can be placed over the face of the panels. This can act to stabilize the air in the cavities. This can also act as a heat sink to dissipate thermal energy absorbed by the resonating volume of the cavity and improve its performance.
This invention is not limited to use in surface or sub-surface ships and vessels, but may be used by oil and gas companies drilling in the ocean (e.g., on rigs and barges), offshore power generation platforms (e.g., turbines and wind farms), as well as in bridge and pier construction or any other manmade noise-producing structures and other activities such as dredging.
As far as applications of the current system, one can prepare panels similar to those described above for attachment to submerged structures or vessels. The panels can include a plurality of gas (e.g., air) cavities where the buoyancy of the air in the water environment causes the air to remain within the cavities. The cavities can be filled by the act of inverted submersion of the panels or structure. Alternatively, the cavities can be actively filled using an air source disposed beneath the cavities so that the air from the source can rise up into and then remain in the cavities. The cavities may need to be replenished from time to time.
In some embodiments, gas other than air may be used to fill the cavities. The temperature of the gas in the cavities may also affect their performance and resonance frequencies, and so this can also be modified in some embodiments.
Various hull designs can accommodate separate panels like those described herein, or the hull can be manufactured with the cavities ready-made in its sides. It can be appreciated that the present designs are applicable to environments generally such as oil drilling rigs, underwater explosions, shock testing, off shore wind farms, or noise from other natural or man-made underwater sources.
Many other designs can be developed for noise abatement and damping purposes. In other embodiments, the resonating cavity may be filled with a liquid fluid instead of a gas fluid. For example, if the system is to be operated at extreme depths in the ocean, a liquid other than water having a compressibility different than that of sea water could also be used, as would be appreciated by those skilled in the art.
An embodiment of resonator 1100 has an outer body or shell 1110 with a main volume 1115 of fluid B contained therein. The body 1110 may be substantially spherical, cylindrical, or bulbous. A tapered section 1112 near one end brings down the walls of the body 1110 to a narrowed neck section 1114. The neck section 1114 has a mouth 1116 providing an opening that puts the fluids A and B in fluid communication with one another in or near the neck section 1114 at a two-fluid interface 1120. In operation, pressure oscillations (acoustic noise) present outside the resonator 1100 in fluid A will be felt in or near the neck section 1114 of the resonator. Expansion, contraction, pressure variations and other hydrodynamic variables can cause the fluid interface to move about within the area of the neck 1114 as illustrated by dashed line 1122.
The resonator of
A plurality of resonators 1100 may be disposed at or near an underwater noise source such as a ship or oil drilling rig or other natural or man-made noise source. Also, a plurality of resonators 1100 may be disposed at or near a location (e.g., underwater) that is to be shielded from external noise sources. That is, the resonators 1100 may be anywhere suitable so as to mitigate an effect of underwater noise, including in a noise reducing apparatus near the noise source and/or near an area to be shielded from such noise.
Those skilled in the art will appreciate upon review of the present disclosure that the ideas presented herein can be generalized, or particularized to a given application at hand. As such, this disclosure is not intended to be limited to the exemplary embodiments described, which are given for the purpose of illustration. Many other similar and equivalent embodiments and extensions of these ideas are also comprehended hereby.
Number | Date | Country | |
---|---|---|---|
61881740 | Sep 2013 | US |