The present invention relates generally to underwater sound radiation apparatus for radiating sounds or acoustic energy in water of lakes, rivers, swimming pools, etc. The present invention also relates to underwater sound radiation apparatus for provision on water tanks and ships.
In swimming pools and other facilities that are used for training of synchronized swimming, underwater ballet, etc., there have been used underwater speakers to radiate background music sounds in water or give various instructions to persons performing in the water.
However, as will be detailed below, it is very difficult for the above-mentioned conventional underwater speakers to reproduce sounds of wide frequency bands (particularly, sounds of low frequency bands), and sounds output from these underwater speakers tend to greatly differ in frequency characteristics.
Further, to install the conventional underwater speakers in the swimming pool, extra means have to be provided for hanging the speakers, e.g. in a case where the swimming pool is a provisional facility) as illustrated in
In view of the foregoing, it is an object of the present invention to provide an underwater sound radiation apparatus which can reproduce sounds of wide frequency bands in the water.
To accomplish the above-mentioned object, the present invention provides an improved underwater sound radiation apparatus for radiating a sound in water, which comprises: a vibratable wall forming a boundary surface that contacts the water; a plurality of vibrating sections that are provided on a same surface of the wall and convert an input electric signal into a mechanical vibration signal to vibrate the wall; and a vibration control section that supplies each of the vibrating sections with an electric signal corresponding to a sound to be radiated in the water.
In the invention thus arranged, the plurality of vibrating sections, provided on the same surface of the vibratable wall, vibrate the wall upon receipt of an electric signal corresponding to a sound to be radiated in the water, to thereby radiate the sound in the water. Where the present invention is applied to a water tank, ship or the like including a vibratable wall, the plurality of vibrating sections directly vibrate the vibratable wall itself; therefore, the overall vibrating surface area of the wall thus vibrated is much greater than that of the diaphragms of underwater speakers employed in the conventionally-known technique. As a consequence, the present invention can appropriately reproduce sounds of over wide frequency bands (particularly, sounds of low frequency bands) in the water. Further, with the arrangement that the vibrating sections are provided on the vibratable wall, the wall can vibrate as a single unit, so that there would occur no sound reflection off the wall involving unwanted phase inversion. As a result, the present invention can clearly reproduce sounds under water without canceling sounds of low frequencies.
The present invention also provides an underwater sound radiation apparatus for provision on a water tank (swimming pool) having a plurality of walls to radiate a sound in water stored in the water tank, which comprises: a plurality of vibrating sections that are provided on a particular one of the walls and convert an input electric signal into a mechanical vibration signal to vibrate the particular one wall; and a vibration control section that supplies each of the vibrating sections with an electric signal corresponding to a sound to be radiated in the water.
In the invention thus arranged, the plurality of vibrating sections, provided on at least one of a plurality of walls constituting the water tank (swimming pool), vibrates the at least one wall upon receipt of an electric signal corresponding to a sound to be radiated in the water, to thereby radiate the sound in the water. It is generally known in the art that low-frequency sounds of long wavelengths can be reproduced appropriately by increasing the vibrating surface area of the speakers (as will be detailed later in connection with detailed description of the present invention). In the present invention, however, the plurality of vibrating sections directly vibrate the at least one wall itself; therefore, the overall vibrating surface area of the wall thus vibrated is much greater than that of the diaphragms of underwater speakers or the like employed in the conventionally-known technique. As a consequence, the present invention can appropriately reproduce sounds of wide frequency bands (particularly, sounds of low frequency bands) in the water. Further, with the arrangement that the vibrating sections are provided on the vibratable wall of the water tank (swimming pool), the wall can vibrate as a single unit, so that there would occur no sound reflection off the wall involving unwanted phase inversion. As a result, the present invention arranged as above can also clearly reproduce sounds under water without canceling sounds of low frequencies.
The present invention also provides an underwater sound radiation apparatus for provision on a ship to radiate a sound from the ship into water outside of the ship, which comprises: a vibrating section that is provided on a bottom portion of the ship and converts an input electric signal into a mechanical vibration signal to vibrate the bottom portion; and a vibration control section that supplies the vibrating section with an electric signal corresponding to a sound to be radiated in the water.
In the invention thus arranged, the plurality of vibrating sections, provided on the ship bottom portion, vibrate the wall of the ship bottom portion, to thereby radiate the sound in the water. Although it is generally known in the art that low-frequency sounds of long wavelengths can be reproduced appropriately by increasing the vibrating surface area of the speakers (as will be detailed later), the present invention causes the plurality of vibrating sections to directly vibrate the wall of the ship bottom portion itself; therefore, the overall vibrating surface area of the wall thus vibrated is much greater than that of the diaphragms of underwater speakers or the like employed in the conventionally-known technique. As a consequence, the present invention can appropriately reproduce sounds of wide frequency bands (particularly, sounds of low frequency bands) in the water.
For better understanding of the object and other features of the present invention, its preferred embodiments will be described hereinbelow in greater detail with reference to the accompanying drawings, in which:
The following will describe the present invention in relation to embodiments where the basic principles of the present invention are applied to a swimming pool to be used for synchronized swimming or the like. However, it should be appreciated that the present invention is not limited to the described embodiments and various modifications of the invention are also possible without departing from the basic principles. The scope of the present invention is therefore to be determined solely by the appended claims.
A. Primary Embodiment:
<Construction of Swimming Pool 1>
The pool 1, which is a provisional pool installed temporarily, for example, for a swimming championship tournament, comprises the side wall units 2, floor units 3, gutter units 4, etc. that are formed of an FRP (Fiberglass Reinforced Plastic) material. In the instant embodiment, wall members of the pool 1, forming boundary surfaces that contact the water in the pool 1, are arranged to function as vibrating plates for radiating sounds or acoustic energy in the water; thus, it is preferable that the above-mentioned units and the like of the pool 1 be made of a lightest possible material yet having sufficient rigidity. The preferable material may be other than the FRP material, such as stainless steel, aluminum or copper. The wall members, made of such a lightweight and rigid material, can vibrate as thin plates.
Each of the side wall units 2, as illustratively shown in
Each of the floor units 3, as shown in
In the instant embodiment, the swimming pool 1 is assembled by joining together, by means of coupling members like rivets or bolts, the above-mentioned units 2 to 4 each formed of the FRP material. The construction of the pool 1 itself is not directly pertinent to the present invention and hence will not be detailed any further. Examples of pools assembled by joining a plurality of FRP-made units (hereinafter also called “FRP pools”) as set forth above are detailed, for example, in Japanese Patent Laid-open Publication No.2001-98781.
<Construction of Underwater Sound Radiation Apparatus 100>
As illustrated in
Each of the actuators 200 is disposed substantially at the center of one of a plurality of reverse surface units 10 that are each formed by the above-mentioned vertical flanges 8 provided at uniform intervals on the reverse (outer) surface of the side wall units 2 and horizontal plate-shaped members 9 expending at right angles to the flanges 8. As an example, each of the reverse surface units 10 has a 500 mm width and 1,500 mm height. As illustrated in
<Construction of Actuator 200>
Each of the actuators 200 includes a cylindrical cover 210, and a frame 220 fixedly joined with the cylindrical cover 210 by screws or otherwise and capable of transmitted vibrations. The cylindrical cover 210 and frame 220 together constitute a closed container. As illustrated in
Further, in a substantially central portion of the cover 210, there are provided: an annular plate (first pole piece) 240; a permanent magnet 250 having one end surface fixed to the annular plate 240; a bottom member (second pole piece) 260 having one end surface fixed to the other end surface of the permanent magnet 250 and having a central column portion extending toward the frame 220; and a damper member 270 having one end surface fixed to the other end surface of the bottom member 260 and the other end surface fixed to the inner surface of a roof portion of the cover 210.
Here, magnetic flux produced from the permanent magnet 250 forms a closed magnetic path such that it intersects the voice coil 230 via the above-mentioned first pole piece 240 and second pole piece 260. Once an electric signal corresponding to a sound to be propagated in the water is supplied from the vibration control device 300 to the voice coil 230 via a cable 280, the electric signal is converted into a mechanical vibration signal by means of the first and second pole pieces 240 and 260 and voice coil 230, and the mechanical vibration signal vibrates the frame 220 capable of transmitting vibrations. Because the frame 220 is directly secured to the recessed portion 11 of the reverse unit 10 by an adhesive or otherwise as noted above, the vibrations produced in the frame 220 are transmitted to the whole of the thin plate-shaped reverse unit 10 disposed between the flanges 8, so that the vibrations can be radiated as a sound into the water stored in the pool 1 (see
In the illustrated example, the swimming pool 1 of
Similarly, there are provided a right upper row of 24 actuators 200 placed at uniform intervals to the right of the centerline, and a right lower row of 24 actuators 200 placed at uniform intervals to the right of the centerline; each of the right rows also extends over about 12 m. On the reverse surface of the predetermined actuator-installing side wall, there are provided a multiplicity of the reverse surface units 10 each having a 50 mm width and 1,500 mm height as noted above in relation to
<Construction of Vibration Control Device 300>
The mixer 310 receives sound signals input via a microphone (not shown) or the like, tone signals of background music generated or reproduced by a tone generation/reproduction device (also not shown), etc. then performs a mixing process on the received input signals, and outputs the thus-mixed signals to the compressors 320. This mixer 310, which has an equalizing function and level adjusting function, divides the mixed signal of each channel into signals of four channels and performs the equalizing and level-adjusting processes on each of the divided signals, so as to output the thus-processed signals to the compressors 320.
Each of the compressors 320 is constructed as a two-channel input/two-channel output compressor, which controls input signals from the mixer 310 so that signals to be supplied to the actuator 200 are prevented from becoming excessive and then supplies the thus-controlled signals to the corresponding amplifiers 330.
Each of the amplifiers 330 is constructed as a one-channel input/four-channel output amplifier, which amplifies a signal of one channel input from the mixer 310 via the corresponding compressor 320, divides the thus-amplified signal into signals of four channels and thereby outputs the divided signals to the corresponding actuators 200. Specifically, the amplifiers 330-1, 330-2, 330-3 and 330-4 are connected to the respective 24 actuators 200 of the left upper row, left lower row, right upper row and right lower row, respectively, shown in
Because one channel of the amplifier 330 is used for every six actuators 200, the 24 actuators 200 placed in the left upper row can be driven by the single amplifier 330-1. The other actuators 200 and the other amplifiers 330-2, 330-3 and 330-4 are connected with each other in the same manner as described above, although not specifically described here to avoid unnecessary duplication.
Once the vibration control device 300 arranged in the above-described manner receives a tone signal, representative for example of background music, from the above-mentioned tone generation/reproduction device or the like, it performs the equalizing and level-adjusting processes on the received tone signal and outputs the thus-amplified electric signal to the actuators 200. When, for example, the plurality of actuators 200 provided on the reverse surface of the predetermined actuator-installing side wall are to be driven synchronously in phase with each other, the individual signals of the first to fourth channels divided by the mixer 310 are subjected to similar equalizing and level-adjusting processes.
Thus, electric signals of a same level are supplied from the vibration control device 300 to the plurality of actuators 200 provided on the reverse surface of the predetermined actuator-installing side wall. As a consequence, all of the actuators 200 can be driven synchronously in phase with each other to radiate sounds in the water of the swimming pool 1. The following paragraphs describe various merits or benefits affordable by the underwater sound radiation apparatus 100 of the present invention, in comparison with the underwater speaker discussed earlier in the prior art section of the specification.
<First Benefit>
a) Experiment Conditions:
The underwater speaker, having a 20 cm diameter and 6 cm height, was installed on one of the side walls of the FRP pool, and an underwater microphone was installed at a distance of 3.5 m from the underwater speaker.
As apparent from the experiment results of
<Experiment Conditions>
In the experiment, the small speaker array SP1 was composed of 12 flat plate-shaped speakers (four in each vertical row×three in each horizontal row), while the large speaker array SP8 was composed of 96 flat plate-shaped speakers (four in each vertical row×24 in each horizontal row) (see
Further, in the experiment, sounds of various frequencies were reproduced through the speaker arrays SP1 and SP8, and sound pressure levels SPF1 and SPF8 were measured at measuring points at distances of 10 m, 20 m and 30 m, respectively, from the individual speaker arrays SP1 and SP8.
Referring back to
Directional characteristics of the underwater sound radiation apparatus 100 and underwater speaker are determined by a ratio between the diameter of the vibrating surface and the wavelength on the basis of a “circular flat-surface sound source theory” discussed in known literature, e.g. “Study of Electric Sound Vibration” (literally translated), p52–p54, edited by the Institute of Electronics and Communication and published by Corona Publishing Co. Ltd. Because the directional characteristics become sharper as the diameter of the vibrating surface increases, the underwater sound radiation apparatus 100 having a greater vibrating surface area presents sharper directional characteristics than the underwater speaker having a smaller vibrating surface area. Generally, sounds of low frequency bands present nondirectional characteristics while sounds of medium and high frequency bands present sharp directivity; thus, in a swimming pool where a plurality of underwater speakers are installed, frequency characteristic variations would greatly differ from one place to another. By contrast, in the instant embodiment of the present invention where a plurality of the actuators 200 are installed at uniform intervals on a practically entire reverse surface of the predetermined actuator-installing side wall of the swimming pool 1, uniform sound pressure and frequency characteristics can be achieved even in remote areas corresponding to the installed widths of the actuators 200.
<Second Benefit>
As shown in
On the other hand, in the case where the underwater speaker is installed near (at a distance L1 from) the FRP side wall surface of the FRP pool, a sound wave output from the underwater speaker is reflected off the FRP side wall surface. However, in this case, the side wall itself is free to vibrate because the FRP side wall is soft as compared to the concrete side wall and air layers are present, as a free space, adjacent the outer side of the FRP side wall. Therefore, when the sound wave is reflected off the FRP side wall surface, the side wall surface itself vibrates and thus functions as a free end, so that the sound wave reflected off the free end produces a phase shift due to the reflection; the phase shift amount is represented by π. More specifically, it may be assumed that there is installed, in a mirror image position of
In the instant embodiment of the underwater sound radiation apparatus 100, the actuators 200, installed on the practically entire reverse surface of the predetermined actuator-installing side wall of the swimming pool 1, positively vibrate the side wall itself to radiate sounds in the water (see
<Third Benefit>
As noted above, the actuators 200 in the instant embodiment are installed on the practically entire reverse surface of the predetermined actuator-installing side wall of the swimming pool 1. Namely, in the instant embodiment of the present invention, the actuators 200 need not be installed underwater, unlike the above-mentioned underwater speaker; this means that the instant embodiment can eliminate the needs for a space and facilities for installing an underwater speaker within the swimming pool 1 (e.g., facilities for hanging the underwater speaker, dedicated box and protecting member for the underwater speaker). Further, although there is a limitation on a maximum allowable depth of water (e.g., 10 m depth) up to which the underwater speaker can be installed, the actuators 200 can be applied suitably even to a very deep swimming pool having more than 10 m depth because they are installed on the reverse surface of the predetermined actuator-installing side wall of the pool 1.
<Fourth Benefit>
Further, where the underwater speaker is to be installed within the pool, it has heretofore been necessary to determine a proper installed position taking the directional characteristics of the underwater speaker. However, in the instant embodiment, it is only necessary that the actuators 200 be installed at uniform intervals on the practically entire reverse surface of the side wall of the pool 1, so that fine adjustment etc. are unnecessary.
<Fifth Benefit>
Furthermore, in the case where the underwater speaker is to be installed within the pool, it is necessary to install and remove the speaker for each of various intended events or uses, such as a swimming race and synchronized swimming. In contrast, the instant embodiment of the present invention, where the actuators 200 are installed on the outer side of the swimming pool 1, can appropriately deal with various events and uses by just individually turning ON/OFF the actuators 200. Therefore, the underwater sound radiation apparatus 100 can be installed permanently, which can thereby eliminate the need for troublesome operations to install and remove the components of the apparatus 100 for each of various intended events and uses.
<Sixth Benefit>
In addition, the conventional underwater speaker has been unsatisfactory in that available types of the underwater speaker are limited considerably due to its special specifications and the underwater speaker was also very costly. However, because conventional actuators, amplifiers, etc. may be used as the actuators 200, amplifiers 330, etc. in the instant embodiment, the underwater sound radiation apparatus 100 can be manufactured and installed at very low cost.
<Seventh Benefit>
Moreover, because the underwater speaker is installed under water, it has been necessary to provide a waterproofing structure for preventing entry of water into the underwater speaker and a safety circuit for detecting a short circuit or leakage of electricity in an amplifier and the like built in the underwater speaker to thereby automatically shut off the electricity, among other things.
B. Modifications:
It should be appreciated that the embodiment of the present invention having been described above is just illustrative and may be modified variously without departing from the basic principles of the invention. Examples of such modifications include the following.
<Modification 1>
Whereas the embodiment of the present invention has been described in relation to the swimming pool 1 assembled by joining together the plurality of FRP-made units, the present invention is also applicable to another type of swimming pool 1 formed of stainless steel plates, aluminum plates and/or the like. Namely, the present invention is applicable to all types of swimming pools formed of a material that can be vibrated by the actuators 200. Further, the present invention is of course applicable to a fixedly or permanently installed swimming pool, although it has been described above in relation to a provisional swimming pool.
Further, whereas the embodiment of the present invention has been described above as applied to a swimming pool composed of thin plate-shaped walls made of an FRP material (FRP pool), it is also applicable to a swimming pool composed of fixed concrete walls (concrete pool). Specifically, according to such a modification, FRP-made partitioning plates are provided in the concrete pool, and the actuators 200 are fixed in tight contact with the FRP partitioning plates to radiate sounds. More specifically, if the concrete pool has a 50 m length, 25 m width and 3 m depth, FRP partitioning plates having, for example, a 25 m width and 3 m height (depth) are provided in a suitable position (e.g., three meters from the predetermined side wall as measured in the longitudinal direction of the pool.
<Modification 2>
The embodiment has been described above in relation to the electrodynamic-type actuators. As a modification, the actuators 200 may be of a piezoelectric type, electromagnetic type, electrostatic type or the like depending on the design etc. of the underwater sound radiation apparatus 100. However, considering that a multiplicity of such actuators 200 are used in the apparatus 100, small-sized and high-power actuators, for example, of the piezoelectric type or electrodynamic type are desirable.
<Modification 3>
Furthermore, in the above-described embodiment, the actuators 200 are installed at uniform intervals across the practically entire reverse surface of the predetermined actuator-installing side wall of the pool 1. As a modification, the actuators 200 may be installed only on a predetermined area (e.g., 10 m ranges to the left and right of the centerline shown in
<Modification 4>
As seen in
Briefly speaking, the vibration pickup provided at point A mainly detects vibrations caused by the actuator 200-k. The vibration pickup provided at point D mainly detects vibrations caused by the actuators 200-k and 200-1. There is no great difference between the vibration acceleration levels detected by the vibration pickups at point A and point D. Therefore, arranging the actuators 200 at the uniform intervals L2 in a staggered fashion as illustrated in
By thus arranging the actuators 200 on the reverse surface of the actuator-installing side wall of the pool 1 at the uniform intervals L2 in a staggered layout, this fourth modification can reduce the necessary number of the actuator 200 without inviting deterioration of vibration characteristics. As a consequence, it is possible to minimize the manufacturing costs of the underwater sound radiation apparatus 100.
<Modification 5>
Whereas the embodiment has been described above in relation to the case where a plurality of the actuators 200 are installed on the reverse or outer surface of the predetermined actuator-installing side wall of the swimming pool 1, a plurality of the actuators 200 may be installed on the front, i.e. inner, surface of the predetermined actuator-installing side wall. In this fifth modification, however, there arises needs to provide a waterproofing structure for preventing entry of water into the actuators 200 and a safety circuit for detecting a short circuit or leakage of electricity in an amplifier and the like built in each of the actuators 200 to thereby automatically shut off the electricity. But, this the fifth modification can afford the benefit (first benefit) that uniform sound pressure and frequency characteristics can be achieved even in remote areas corresponding to the installed widths of the actuators 200, the second benefit that sounds of wide frequency bands can be reproduced clearly, and various other benefits. Namely, in a case where there is not a sufficient space for installing the actuators 200 on the reverse surface of the predetermined actuator-installing side wall of the pool 1, a plurality of the actuators 200 may be installed on the front or inner surface of the predetermined actuator-installing side wall.
<Modification 6>
Furthermore, the embodiment has been described above in relation to the case where all of the actuators 200, installed on the reverse surface of the predetermined actuator-installing side wall of the pool 1, are driven synchronously in phase with each other. As a modification, control may be performed so that sounds of lower frequencies are reproduced using, for example, the actuators 200 provided in the lower horizontal row on the reverse surface of the predetermined actuator-installing side wall while sounds of medium and high frequencies are being reproduced using, for example, the actuators 200 provided in the upper horizontal row, and/or that the timing to drive actuators 200 provided in the lower horizontal row is differentiated from the timing to drive actuators 200 provided in the upper horizontal row. Moreover, the vibration control device 300 in the above-described embodiment may be modified to have an effect function, sound quality adjusting function, etc. in order to impart various effects, such as a reverberation effect, to sounds to be radiated in the water via the predetermined actuator-installing side wall.
<Modification 7>
Furthermore, the embodiment has been described as arranged such that each (four-channel-output) amplifier 330 drives 24 actuators 200 (i.e., each amplifier channel drives six actuators 200). As a modification, the number of the actuators 200 to be driven by each amplifier 330 may be varied as necessary depending on the design of the vibration control device 300.
<Modification 8>
Whereas the embodiment has been described in relation to the case where the underwater sound radiation apparatus 100 is applied to the swimming pool 1, the underwater sound radiation apparatus 100 may be applied to tanks, containers, etc. containing liquid media, such as water tanks used to raise underwater plants, aquarium fish or the like, storage tanks, bath tabs, fish ponds and, containers used for brewing of alcoholic drinks, soy sauce, soy bean paste and the like. For example, when applied to a water tank having underwater plants immersed therein, sounds of background music or the like may be radiated within the water tank to raise the underwater plants with an enhanced efficiency. Note that the terms “water tank” used in the context of the present invention refer to any one of tanks capable of storing therein liquid media.
<Modification 9>
Furthermore, whereas the embodiment has been described in relation to the case where the actuators 200 are installed on the reverse surface of the predetermined actuator-installing side wall of the swimming pool 1, the actuators 200 may be installed on the reverse surface of the bottom wall of the swimming pool 1.
As illustrated in
The reason why the actuators 200 are installed on the reverse or lower surface of the bottom wall of the swimming pool 1, rather than the reverse surface of the side wall is as follows. Namely, a sound radiated in the water travels a certain distance while being repetitively reflected between the surface of the water and the upper surface of the bottom wall (so-called “shallow water propagation”). In such “shallow water propagation”, if the radiated sound has a low frequency and the water depth becomes substantially equal to the wavelength of the radiated sound, there would occur a phenomenon in which signals of frequencies not higher than a cut-off frequency f0, as represented by Equation (1) below, are not appropriately propagated—details of the cut-off frequency are set forth, for example, in I. Tolstoy and C. S. Clay, “OCEAN ACOUSTICS: Theory and Experiment in Underwater Sound”, 1987.
where ρ1 and ρ2 each represents a density of the medium and c1 and c2 each represent a propagation speed in the medium.
As illustrated in
The simulation showed that while attenuation of sounds having frequencies not higher than the cut-off frequency f0 (=128 Hz) determined on the basis of Equation (1) above is relatively small at points near the sound source, attenuation of sounds having frequencies not higher than the cut-off frequency f0 become greater at points remote from the sound source in proportion to increase in the distance from the sound source.
As illustrated in
The measurement showed that attenuation of sounds having frequencies not higher than the cut-off frequency f0 is greater at point b′ remote from the sound source than at point a′ close to the sound source. The measured results also showed a peak at or around 60 Hz in a variation curve of point b′ shown in
As apparent from the results of the simulation and measurement having been described above, sound attenuation become greater in proportion to increase in the distance from the sound source. Thus, in the case where the actuators 200 are installed on the reverse surface of the predetermined actuator-installing side wall as shown, for example, in
Therefore, this modification avoids the above-mentioned problem that sounds having frequencies in the neighborhood of the cut-off frequency f0 are not propagated to a player, competitor or the like, by mounting the actuators 200 on the reverse surface of the bottom wall of the swimming pool 1 to thereby radiate sounds from the bottom wall upwardly toward the surface of the water.
Namely, because the distance from the upper surface of the bottom wall to the surface of the water (water depth) is normally in a range of about 1 m to 3 m, the distance from any of the actuators 200 (sound sources) installed on the bottom wall to the player, competitor or the like can fall within substantially the same range as the water depth. By thus installing the actuators 200 on the reverse surface of the bottom wall of the swimming pool 1, the distance over which sounds have to be propagated can be decreased, so that this modification can effectively avoid the problem that sounds having frequencies in the neighborhood of the cut-off frequency f0 are not propagated to a player, competitor or the like because the sound source is not far from the player, competitor or the like.
Whereas the modification has been described as installing the actuators 200 on the reverse surface of the bottom wall, rather than the side wall, of the swimming pool 1, the actuators 200 may be installed on the reverse surface of both of the side wall and bottom wall. In such a case, the actuators 200 installed on the predetermined side wall may be arranged to radiate, in the water, sounds of medium and high frequencies presenting smaller attenuation, while the actuators 200 installed on the bottom wall may be arranged to radiate, in the water, sounds of low frequencies presenting greater attenuation in accordance with increase in the distance from the sound source.
Furthermore, the modification has been described as supporting the bottom wall of the swimming pool 1 on the plurality of ridges 500 formed of a rigid material like concrete and mounting the actuators 200 on the reverse or lower surface of the bottom wall of the swimming pool 1 between the ridges 500. In an alternative, a plurality of inward recessed portions 600 may be formed integrally on the bottom wall of the pool 1, as illustratively shown in
<Modification 10>
Furthermore, the embodiment has been described above in relation to the case where the actuators 200 are directly secured to the predetermined actuator-installing side wall by an adhesive or otherwise (see
<Modification 11>
Furthermore, whereas the embodiment has been described as applying the underwater sound radiation apparatus 100 to the swimming pool 1, the above-described underwater sound radiation apparatus 100 may be applied to large-sized and small-sized ships, submarines, etc.
Bottom section 410 of the ship 400 shown in
The captain who directs the navigation of the ship 400, or other person, uses a microphone (not shown) to give instructions to a diver conducting sea bottom investigations under water. Once the vibration control device 300 receives a voice signal etc. corresponding to the instructions via the microphone, the control device 300 performs an equalizing process, level adjusting process, etc. on the voice signal and then the resultant amplified electric signal to the actuators 200 installed at predetermined intervals on the inner flat surface 410a of the ship bottom section 410. The actuators 200 converts the received electric signal into a mechanical vibration signal to vibrate the flat surface 410a, so that the voices corresponding to the instructions can be radiated. When the diver, conducting the sea bottom investigations under water, hears the voices radiated from the flat surface 410a, he or she can, for example, change the area of the investigations on the basis of the instructing voices.
While the plurality of actuators 200 can be installed at predetermined intervals on the inner flat surface 410a of the ship bottom section 410, they may also be installed at predetermined intervals on an inner curved surface 410b or entire inner surface 410c of the ship bottom section 410. In the case where the plurality of actuators 200 are installed at predetermined intervals on the entire inner surface 410c of the ship bottom section 410, sounds of background music or voices can be radiated in all directions about the ship 400. It should be appreciated that any desired one or more of the above-described other modifications may be applied to this eleventh modification.
In summary, the present invention arranged in the above-described manner can reproduce sounds of wide frequency bands.
Number | Date | Country | Kind |
---|---|---|---|
2001-214367 | Jul 2001 | JP | national |
2002-118260 | Apr 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4058075 | Piper, Sr. | Nov 1977 | A |
4435794 | Marshall et al. | Mar 1984 | A |
4628490 | Kramer et al. | Dec 1986 | A |
4839871 | Massey | Jun 1989 | A |
5136547 | Laukien | Aug 1992 | A |
5142505 | Peynaud | Aug 1992 | A |
5143001 | Eriksson | Sep 1992 | A |
5271106 | McClish et al. | Dec 1993 | A |
5355351 | Yoshikawa et al. | Oct 1994 | A |
5532980 | Zarate et al. | Jul 1996 | A |
5546469 | Donahoe | Aug 1996 | A |
6467103 | Gardenier et al. | Oct 2002 | B1 |
Number | Date | Country |
---|---|---|
4241312 | Dec 1992 | DE |
63-100990 | Oct 1985 | JP |
04-089015 | Jul 1990 | JP |
06-061768 | Aug 1992 | JP |
06-221009 | Jan 1993 | JP |
08238285 | Mar 1995 | JP |
10-243491 | Feb 1997 | JP |
2000-92578 | Sep 1998 | JP |
2001-129245 | Nov 1999 | JP |
2001-157642 | Dec 1999 | JP |
2002-118260 | Oct 2000 | JP |
WO9827923 | Mar 1997 | WO |
WO9827923 | Feb 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20030053375 A1 | Mar 2003 | US |