Water-based, and in particular underwater-based, games are popular activities for people at or near bodies of water. Such bodies of water include ponds, lakes, pools, and even bathtubs. Different versions of time and/or non-time-based underwater retrieval games are known to the inventor.
One or more embodiments are illustrated by way of example, and not by limitation, in the figures of the accompanying drawings, wherein elements having the same reference numeral designations represent like elements throughout and wherein:
In at least some embodiments, vortex gun 100 is a vortex ring producing gun as described in U.S. patent application Ser. No. 12/570,798.
In at least some embodiments, a portion of either gun 100 or target 102 may protrude above water line 108.
In at least some embodiments, vortex ring 104 comprises a gas in addition to a moving volume of water. In at least some embodiments, the gas may be ambient air, carbon dioxide, etc.
In at least some embodiments, vortex ring 104 comprises a secondary fluid in addition to/in place of the moving volume of water. In at least some embodiments, the secondary fluid may be a colored fluid, a fluid having a predetermined specific gravity, a fluid having any specific detectable chemical composition, etc.
In accordance with a primarily force-based detection embodiment, target 102 comprises one or more surfaces configured to experience a force due to impact of the vortex ring 104 on the target. In response to the force of impact from vortex ring 104 impacting target 102, the target is transitioned to a hit indication state. In at least some embodiments, impact of vortex ring 104 causes a tipping action, a valve to open, or a latching mechanism to release, e.g., by leverage or twisting action, such that fluid enters/exits the target, gas is allowed to escape from the target, or the target is disconnected from another body, thereby releasing the target from a retained state.
In at least some embodiments, the retained state comprises target 102 as a buoyant target connected to an object or surface that causes the target to remain submerged until impact from vortex ring 104 causes disconnection from the object or surface, thereby releasing the target from the retained state. In at least some other embodiments, the retained state comprises target 102 as a non-buoyant target connected to an object or surface that causes the target to remain at some distance from the bottom of a body of water 106 until impact from vortex ring 104 causes disconnection from the object or surface, thereby releasing the target from the retained state. In at least some further embodiments, the retained state comprises target 102 as a variably buoyant target positioned within or floating upon a body of water 106 until impact from vortex ring 104 causes an increase or decrease of buoyancy, thereby releasing the target from the retained state.
In accordance with a primarily gas-based detection embodiment, impact of vortex ring 104 on one or more surfaces of target 102 causes a disruption of the vortex ring and a consequent release of the gas trapped within the ring. The released gas is detected by target 102 causing the target to transfer to a hit indication state. In at least one embodiment, target 102 comprises a cavity for collecting the released gas from the vortex ring 104 and preventing escape of the gas to the surface of the surrounding fluid, i.e., water 106. Said collected gas causes an upward buoyant force to be applied to target 102. In at least some embodiments, said cavity is aligned with a vertical line passing through the center of gravity of the target 102 such that when gas is collected in the cavity the whole target experiences a uniform upward buoyant force toward the surface of the surrounding fluid, e.g., waterline 108. In at least some other embodiments, the cavity is not vertically aligned with the center of gravity of target 102 such that when gas is collected in the cavity the target experiences a rotational buoyant force about its center of gravity. In at least some embodiments, said rotational buoyant force causes the target 102 to tip and thereby release a previously trapped quantity of buoyancy providing gas, and said loss of net buoyancy causes the target to sink.
In either of the above or other alternative embodiments, the hit indication state may be indicated by target 102 rising toward the water surface, sinking lower in the water, at least a portion of the target flipping over, at least a portion of the target spinning, at least a portion of the target moving laterally, displaying one or more numbers or letters on or through a surface of the target, or emitting sound or light. In at least some embodiments, one or more combinations of these indications may be performed by target 102.
In at least some embodiments, target 102 requires the impact of more than one vortex ring 104 in order to register a hit on the target.
In at least some embodiments, target 102 is automatically reset after registering a hit or impact of the vortex ring on the target. In at least some other embodiments, target 102 requires a manual reset after registering a hit.
In at least some embodiments, there may be more than one target 102 positioned for the user to shoot at. In accordance with such embodiments, the multiple targets may be separated from each other or attached to each other.
In at least some embodiments, one or more targets may be floating unattached or attached to a surface of the material surrounding the water, e.g. a side or bottom surface of a pool. In at least some other embodiments, one or more targets may be non-buoyant and suspended from either a buoyant device floating upon or within the water, or suspended from a device connected to, for example, the side of the pool.
In operation, one or more targets 102 are positioned within water 106. The user controls and aims the vortex gun 100 (also positioned within the water) at the target. The user then manipulates the vortex gun 100 to cause expulsion of the vortex ring 104 toward the target 102.
If the vortex ring 104 impacts the target 102, then the target transitions to a hit indication state signifying that the user has hit the target. In at least some embodiments, if the user hits the target, then the user has won. In at least some other embodiments, more than one hit of the target by the user is required in order for the user to win.
In at least some embodiments, more than one user may participate with the same or additional vortex gun(s) 100, and the same or additional target(s) 102.
In at least some embodiments, each hit of the target 102 by a vortex ring 104 causes the target to accumulate a point value based on the number of hits of the target. In at least some embodiments, the point accumulation may be carried out in conjunction with a timer mechanism associated with the target to record a number of hits over a given period of time.
In accordance with one or more embodiments, target 102 may comprise different size and/or material and/or functional configurations from those illustrated in the drawings and described in the specification and still fall within the scope and spirit of embodiments of the present invention. In particular, target 102 may comprise variations in size, materials, shape, form, function, manner of operation, assembly and use.
In at least some embodiments, in an optional step 206, the user activates the positioned targets prior to shooting at them. The flow then proceeds to step 204.
The flow then proceeds to step 208 wherein the target 102 detects whether the vortex ring 104 expelled by the gun 100 has impacted the target. If an impact is detected, the target moves to a hit indication state as described above. If no impact is detected, then the target remains in a non-hit indication state. After detection of an impact, the flow proceeds to step 210 and the target is reset to a non-hit indication state. Optionally, more than one hit is necessary to cause the target to require resetting, so the flow proceeds back to step 204 wherein the user shoots at the target again.
In at least some embodiments, the resetting of target 102 occurs either automatically or manually by the user.
The flow then proceeds to either step 202 for repositioning of the target, or (optionally) to step 204 for another shot at the target.
Target 300 comprises a body 302 coupled with three target panels 304 via a shaft 306. Body 302 is a hemispherically-shaped shell having a hollow interior and an opening on the lower face of the hemisphere. Body 302, in use, resembles an inverted bowl shape having shaft 306 extending downward out of the axial center of the bowl concavity. In at least some embodiments, shaft 306 is affixed to bowl 302 by a threaded fastener 308 inserted through the body from the outside and engaging a threaded receptacle in the shaft inside the body. In at least some other embodiments, different fasteners and methods of coupling shaft 306 and body 302 are usable and within the scope of the present embodiments.
In at least some embodiments, body 302 is triangular, rectangular, hexagonal, octagonal, or another polygonal or ellipsoid-shape in cross-section.
Target projections 304 are flat, rounded panels radially extending from shaft 306 along an axis ‘A’ of the shaft. Projections 304 (also referred to as panels or surfaces) interface with shaft 306 along a substantially straight edge of the projection. The three panels 304 are evenly, circumferentially spaced around shaft 306. In at least some embodiments, there may be greater or lesser number of panels 304 coupled with shaft 306. In at least some other embodiments, panels 304 and shaft 306 may be integrally formed as a single unit.
In at least some embodiments, body 302, shaft 306 and panels 304 may be formed of plastic, e.g., injection-molded plastic, metal, or other materials. In at least some embodiments, panels 304 are curvilinear-shaped. In at least some embodiments, panels 304 are formed of flexible material which is sufficiently rigid to disrupt an impacting vortex ring.
Body 302 also comprises a ring-shaped protrusion 310 at the top of the body distal from the cavity opening. In at least some embodiments, protrusion 310 comprises a hollow, sealed air-filled region to increase the buoyancy of the top of target 300 such that when the target is placed into a body of water, body 302 orients to be above panels 304. In at least some other embodiments, protrusion 310 comprises a material having a lesser density than body 302 in order to orient the target. In still further embodiments, ring-shaped protrusion 310 is integrated into body 302 or positioned within body 302. In at least some embodiments, protrusion 310 is omitted from target 300.
In at least some embodiments, panels 304 extend radially away from shaft 306 by a distance less than the radius of body 302 at the open edge. In at least some embodiments, panels 304 radially extend from shaft 306 by a distance greater than the maximum radius of body 302. In at least some embodiments, panels 304 are removably attached to shaft 306.
In use, target 300 is at least partially inverted with respect to the
A vortex ring such as vortex ring 104 (
In at least some embodiments, body 302 further comprises an air release mechanism, e.g., a valve or small hole, in an upper surface to enable release, either intermittently or continuously, of trapped air from within body 302 to obviate the need to invert target 300.
In at least some other embodiments, target 300 further comprises a flag or other vertically extending marker on an upper portion of body 302 which, when target 300 rises a sufficient distance from the initial placement, protrudes through the surface of the water to indicate completion of the game with respect to a particular target.
The flow then proceeds to step 806 wherein the user aims and shoots a vortex ring 104 from a vortex gun 100 toward the one or more targets.
The flow then proceeds to step 808 wherein target 300 captures at least a portion of gas released from vortex ring 104 by impact of the ring with a portion of target 300 below body 302, e.g., one of panels 304. After one or more impacts of rings 104 to the target, sufficient gas may be captured in the body to change the buoyancy of the target and cause the target to rise in the water, thereby transitioning the target to a hit indication state. If no impact occurs, i.e., the player's shot misses target 300, then the target remains in a non-hit indication state, i.e., on the bottom of the body of water or floating below the surface of the water. Additionally, in at least some embodiments, an impact of a ring 104 may impact target 300 without causing capture of released gas, for example, by impact of the ring with an outer, upper portion of body 302. After collection of sufficient gas by body 302 and surfacing of at least a portion of target 300 indicating one or more hits by a player shooting at the target, the flow proceeds to step 802 and the target is reset to a non-hit indication state.
In at least some embodiments, the flow proceeds to step 804 (via the dashed line of
One or more players can take turns positioning target 300 in a body of water and one or the other shooting vortex rings 104 at the target until the target collects sufficient gas released from the ring impact(s) to cause the target to surface. In at least some embodiments, a timer may be used or two players may shoot at separate targets in a race against each other to further heighten the sense of excitement of the game.
In at least some embodiments, a first player positions one or more targets 300 in a body of water and the second player shoots at the positioned targets. In at least some embodiments, the first player and the second player are the same player, i.e., a single player is positioning and shooting at the target(s). In at least some embodiments, the first player and the second player are different players. In at least some embodiments, there are two or more players using at least one gun and one target.
It will be readily seen by one of ordinary skill in the art that the disclosed embodiments fulfill one or more of the advantages set forth above. After reading the foregoing specification, one of ordinary skill will be able to affect various changes, substitutions of equivalents and various other embodiments as broadly disclosed herein. It is therefore intended that the protection granted hereon be limited only by the definition contained in the appended claims and equivalents thereof.
The present application is related to prior-filed U.S. Patent Application having application Ser. No. 12/570,798 titled, “Vortex Ring Producing Gun” filed on Sep. 30, 2009 having the same inventor, the entirety of which is incorporated herein by reference. The present application is a non-provisional application claiming priority to prior-filed U.S. Provisional Patent Application having Application Ser. No. 61/290,111 titled, “Underwater Target Game” filed on Dec. 24, 2009 having the same inventor, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
427480 | Paine | May 1890 | A |
2836927 | Warner | Jun 1958 | A |
3095197 | Weitzman | Jun 1963 | A |
3342171 | Ryan et al. | Sep 1967 | A |
3434716 | Schwartz | Mar 1969 | A |
3613097 | Daughenbaugh | Oct 1971 | A |
3652090 | Semmens | Mar 1972 | A |
3719048 | Arne et al. | Mar 1973 | A |
3755836 | Milazzo | Sep 1973 | A |
4034851 | Barksdale | Jul 1977 | A |
4082063 | Strickland | Apr 1978 | A |
4744565 | Newberger | May 1988 | A |
6092702 | Cassidy, IV | Jul 2000 | A |
6176047 | Morningstar | Jan 2001 | B1 |
6511074 | Fireman | Jan 2003 | B1 |
7247077 | Arias | Jul 2007 | B1 |
7264420 | Chang | Sep 2007 | B2 |
7775915 | McCarthy | Aug 2010 | B2 |
20070074712 | Fielding, Jr. | Apr 2007 | A1 |
20080143052 | Paslawski | Jun 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20100184523 A1 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
61290111 | Dec 2009 | US |