Claims
- 1. An underwater trenching system for forming a trench in a seabed under water, and installing a pipeline into said trench, comprising:
- a unit frame, said frame having upper and lower ends with a medial area therebetween, first and second sides, and a front and rear end, said medial area of said frame having formed longitudinally therethrough a pipeline conduit, said pipeline conduit also formed through said first side and said front and rear ends, said medial area further comprising upper and lower rollers configured to engage and roll along the pipeline to be installed;
- a trenching/drive mechanism situated generally at said lower front end of said unit frame, comprising a cutter housing having a front, open area tapering to a rear area of lesser width and height of said front, open area, said front, open area having disposed therein a cutter wheel on an axle generally transversely situated relative the longitudinal axis of said unit frame, said cutter wheel further comprising a cutting blade configured to cut and scoop out said seabed, said cutter wheel configured to rotate in a forward direction, driving the front end of said unit frame forward, and rolling said unit frame along the pipeline via said upper and lower rollers, as said cutter wheel's cutting blades cuts and scoops out said seabed and debris.
- 2. The underwater trenching system of claim 1, wherein said invention further includes suction means for providing suction to said rear area of said cutter housing, said suction means for collecting and diverting cut seabed and debris from said cutter housing front, open area through said cutter housing rear area.
- 3. The underwater trenching system of claim 2, wherein said suction means comprises a high pressure mud pump, and wherein there is further included jetting means for diverting said cut seabed and debris collected and diverted by said suction means from the cutter housing rear area to the rear of said unit frame, jetting said cut seabed and debris away from the rear of said unit frame in such a manner as to drive said unit frame forward, rolling said unit frame along the pipeline via said upper and lower rollers in said medial area of said frame.
- 4. The underwater trenching system of claim 1, wherein said cutter housing is pivotally connected to said front, lower end area of said unit frame.
- 5. The underwater trenching system of claim 4, wherein said cutter housing may be pivotally manipulated relative said unit frame via a reciprocating piston having first and second ends, said first end in communication with said frame, said second end in communication with said cutter housing.
- 6. The underwater trenching system of claim 1, wherein said medial area of said frame includes an upper support frame, and wherein there is further included first and second pivot support arms having first and second ends, said first ends of said pivot support arms affixed to the medial area of said upper support frame, said second ends of said pivot support arms each having affixed thereto an upper support roller, said pivot support arms configured to pivot in such a manner as to laterally adjust said upper rollers.
- 7. The underwater trenching system of claim 6, wherein there is further included lateral adjustment means for laterally adjusting said upper support rollers, said lateral adjustment means further comprising first and second lateral adjustment shafts having first and second ends, said first ends of said lateral adjustment shafts pivotally affixed to said first and second pivot support arms, respectively, said lateral adjustment means further comprising first and second screwjacks affixed to said unit frame, said first and screwjack configured to engage said second end of said first pivot support arm, said second screwjack configured to engage said second end of said second pivot support arm.
- 8. The underwater trenching system of claim 7, wherein there is further included a first and second proximity switches mounted in or near said medial area of said unit frame, said proximity switches configured to engage and become activated upon contact with an obstacle along said pipeline, said first proximity switch mounted near said front end of said unit frame, said second proximity switch mounted near said rear end of said unit frame, said first proximity switch configured to engage one of said screwjacks in such a manner as to raise at least one of said lateral adjustment shafts, raising at least one of said upper rollers, said second proximity switch configured to engage one of said screwjacks in such a manner as to lower at least one of said lateral adjustment shafts, lowering at least one of said rollers.
- 9. The underwater trenching system of claim 1, wherein there is further included a mud lift comprising a lateral column having first and second ends and upper and lower areas, and a medial area therebetween, said lateral column mounted to said unit frame, said first end of said of said lateral column having attached thereto a mud pump, said mud pump having a jetting orifice directed rearward of said unit frame, said second end of said lateral column having an intake opening adjacent to or below the lower end of said unit frame, said medial area of said lateral column configured to slidingly telescope into said upper or lower areas of said lateral column, forming an opening in the vicinity of the medial area of said unit frame.
- 10. The underwater trenching system of claim 1, wherein there is provided buoyancy/skid means for alternatively providing buoyancy or skids for said unit frame, said buoyancy/skid means further comprising first and second pivot arms each having first and second ends, said first ends pivotally affixed to said unit frame, said first and second pivot arms extending in opposing directions generally away from said unit frame, said second end of said first pivot arm attached to a first buoyancy chamber, said second end of said second pivot arm attached to a second buoyancy chamber, said first and second buoyancy chambers generally axially aligned with the longitudinal axis of said unit frame, said first and second buoyancy chambers extending in spaced relationship from opposing side walls of said unit frame, said first and second pivot arms being adjustable to position said pontoons from a generally upper position relative said pipeline, away from the seabed, providing buoyancy to the unit frame, said first and second pivot arms being adjustable to position said pontoons to a generally lower position wherein said pontoons are lowered to contact said seabed, providing skids for supporting said unit frame on or over said seabed.
- 11. The underwater trenching system of claim 1, wherein said cutter/drive mechanism is pivotally connected to said unit frame, and wherein there is provided maneuvering means for maneuvering said cutter-drive mechanism in pivotal fashion relative to said unit frame.
- 12. The underwater trenching system of claim 11, wherein there is further provided load sensing means to monitor the pivotal position of said cutter/drive mechanism relative to said user frame.
Parent Case Info
This application is a continuation-in-part of U.S. patent application Ser. No. 08/182,971, filed Jan. 13, 1994, entitled "Underwater Trenching System", listing as inventor Saint E. Saxon, which application will issue into U.S. Pat. No. 5,456,551 on Oct. 10, 1995.
US Referenced Citations (6)
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
182971 |
Jan 1994 |
|