Unfocused electrohydraulic lithotripter

Information

  • Patent Grant
  • 11559319
  • Patent Number
    11,559,319
  • Date Filed
    Wednesday, December 4, 2019
    4 years ago
  • Date Issued
    Tuesday, January 24, 2023
    a year ago
Abstract
Electrohydraulic lithotripters comprising a plurality of electrohydraulic probes are disclosed. Each probe of the plurality of probes comprise a first electrode and a second electrode positioned at a distal end of the probe such that when the probe is discharged, an electric arc between the first electrode and the second electrode produces a shockwave that radiates from the distal end of the probe. A first probe and a second probe of the plurality of probes may be configured to discharge simultaneously or sequentially.
Description
TECHNICAL FIELD

The present disclosure relates to electrohydraulic lithotripters, and in particular, an unfocused electrohydraulic lithotripter.


BACKGROUND

Electrohydraulic lithotripsy, both intracorporeal (“IEHL”) and extracorporeal (“ESWL”), has been used in the medical field, primarily for breaking concretions in the urinary or biliary track. Conventional ESWL lithotripsy produces a focused or reflected shockwave that radiates axially from a distal end of the lithotripsy electrode. This form of treatment has been adapted for generating a shockwave projected to a specific spot within an organism, or at the surface of an organism. Those adaptations utilize various wave shaping methods, usually in the form of elliptical reflection, to project the maximum power to a focal point inside an organism or on the surface of an organism. The focal point receives the largest impact from the shockwave, with degradation in the strength of the shockwave taking the form of an hourglass-type shape on both sides of the focal point, the largest impact occurring at the narrowest part of the hourglass shape.


Techniques for shaping shockwaves produced by electrohydraulic lithotripsy are complex and costly. Significant factors in the focusing and shaping of the shockwave include the shape and positioning of a lithotripsy electrode, as well as the power supplied to the electrodes. For these reasons, known ESWL electrohydraulic lithotripters utilize a single electrode to insure that the impact of the shockwave is maximized at the intended focal point. However, use of a single focused electrode has a number of performance limitations, including for example, the size of generated wave fronts. Known devices are therefore limited by complexity of design, cost, and performance capabilities. Accordingly, improved electrohydraulic lithotripters are desirable.


BRIEF SUMMARY

In one aspect an electrohydraulic lithotripter includes a plurality of electrohydraulic probes. Each probe of the plurality of probes has a first electrode and a second electrode positioned at a distal end of the probe such that when the probe is discharged in a fluid environment, an electric arc between the first electrode and the second electrode produces a shockwave that radiates from the distal end of the probe. A first probe and a second probe of the plurality of probes are configured to discharge simultaneously.


In another aspect, a distal end of the first probe and a distal end of the second probe may be positioned in a plane. Alternatively, a distal end of the first probe may be positioned in a first plane and a distal end of the second probe may be positioned in a second plane, where the first plane is different than the second plane.


In another aspect, the electrohydraulic lithotripter includes a third probe. A central axis of the first probe, a central axis of the second probe, and a central axis of the third probe may not all be positioned in a same plane. The first probe, the second probe, and the third probe may be configured to discharge simultaneously.


In another aspect, an electrohydraulic lithotripter includes a plurality of electrohydraulic probes. Each probe of the plurality of probes has a first electrode and a second electrode positioned at a distal end of the probe such that when the probe is discharged in a fluid environment, an electric arc between the first electrode and the second electrode produces a shockwave that radiates from the distal end of the probe. A first probe and a second probe of the plurality of probes are configured to discharge sequentially.


In another aspect, a distal end of the first probe and a distal end of the second probe may be aligned in a plane. Alternatively, a distal end of the first probe may be positioned in a first plane and a distal end of the second probe may be positioned in a second plane, where the first plane is different than the second plane.


In another aspect, the electrohydraulic lithotripter includes a third probe. A central axis of the first probe, a central axis of the second probe, and a central axis of the third probe may not all be positioned in a same plane. The first probe, the second probe, and the third probe may be configured to discharge sequentially.


In yet another aspect, an electrohydraulic lithotripter includes at least one electrohydraulic probe. Each probe of the at least one probe has a first electrode and a second electrode positioned at a distal end of the probe, such that when the probe is discharged in a fluid environment, an electric arc between the first electrode and the second electrode produces a shockwave that radiates from the distal end of the probe. A flexible encapsulating member at least partially surrounds the distal end of each probe of the at least one probe. A plate positioned relative to the distal end of each probe of the at least one probe receives the shockwave that radiates from the distal end of each probe.


In another aspect, the plate may be positioned within the flexible encapsulating member. Alternatively, the plate may be positioned outside the flexible encapsulating member, in which case, the plate may be coated with a medicament.


In another aspect, the plate may include at least one opening.


In another aspect, the plate may be formed of a rigid material. Alternatively, the plate may be formed of a flexible material.


In another aspect, the at least one probe includes two or more probes.


In yet another aspect, an electrohydraulic lithotripter for extracorporeal administration of electrohydraulic lithotripsy includes at least one electrohydraulic probe. Each probe of the at least one probe has a first electrode and a second electrode positioned at a distal end of the probe, such that when the probe is discharged in a fluid environment, an electric arc between the first electrode and the second electrode produces an unfocused shockwave that radiates from the distal end of the probe.


In another aspect, the electrohydraulic lithotripter may be characterized by the absence of a flexible encapsulating member at least partially surrounding the distal end of each probe of the at least one probe. Alternatively, the electrohydraulic lithotripter may further include a flexible encapsulating member extracorporeally positionable against a tissue, the flexible encapsulating member at least partially surrounding the distal end of each probe of the at least one probe.


In another aspect, the at least one probe comprises a first probe and a second probe. The first probe and the second probe may be configured to discharge simultaneously, or the first probe and the second probe are configured to discharge sequentially.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a perspective view of an electrohydraulic lithotripter having a single electrohydraulic probe;



FIG. 1B is a perspective view of the electrohydraulic lithotripsy probe of FIG. 1A, shown without the flexible encapsulating member;



FIG. 1C is a cross-sectional view of the tip of the electrohydraulic lithotripsy probe of FIG. 1B;



FIG. 2A is a perspective view of a second embodiment of an electrohydraulic lithotripter having two electrohydraulic probes;



FIG. 2B is a perspective view of the electrohydraulic lithotripsy probes of FIG. 2A, shown without the flexible encapsulating member;



FIG. 3A is a perspective view of a third embodiment of an electrohydraulic lithotripter having three electrohydraulic probes;



FIG. 3B is a perspective view of the electrohydraulic lithotripsy probes of FIG. 3A, shown without the flexible encapsulating member;



FIG. 4A is a perspective view of a fourth embodiment of an electrohydraulic lithotripter having four electrohydraulic probes;



FIG. 4B is a perspective view of the electrohydraulic lithotripsy probes of FIG. 4A, shown without the flexible encapsulating member;



FIG. 5A is a perspective view of a fifth embodiment of an electrohydraulic lithotripter having five electrohydraulic probes;



FIG. 5B is a perspective view of the electrohydraulic lithotripsy probes of FIG. 5A, shown without the flexible encapsulating member;



FIG. 5C is a side view of the electrohydraulic lithotripsy probes of FIG. 5B;



FIGS. 6A-D are illustrations of the wave shapes and patterns achievable by the disclosed embodiments;



FIGS. 7A-C are exemplary illustrations of a plate useable with any of the embodiments described herein;



FIGS. 8A-E are various perspective and side views of an alternatively shaped lithotripsy probe tip;



FIG. 9 is an illustration of another alternatively shaped lithotripsy probe tip; and,



FIG. 10 is an illustration of another alternatively shaped lithotripsy probe tip.





DETAILED DESCRIPTION

The present disclosure is directed to unfocused electrohydraulic lithotripsy (“EHL”) for use both intracorporeally and extracorporeally. Generally, EHL probes include a first electrode and a second electrode positioned at a distal end of the probe. A difference in voltage polarities between the first and second electrodes causes an electric arc, resulting in a shockwave that radiates from the lithotripsy probe. Depending on the shape and positioning of the electrodes, the shockwave may be focused toward a specific region of tissue.


As described herein, unfocused EHL is accomplished by using at least one, and in some cases two or more, EHL probes. The administration of unfocused EHL may be advantageous, for example, in the creation of various shockwave strengths, wave front sizes, wave shapes, or to vary the frequency of shockwaves, as desired, for the treatment of tissues. Such treatments could range, for example, from lightly “massaging” a tissue, to tissue oblation, or cellular disturbance, and potential cellular modification. Areas that may benefit from this treatment could include, for example, tumors, decubitus ulcers, wounds, bone spurs, calcium deposits, arthritic areas, etc.


In one implementation, the EHL probes described below may be delivered to a proper channel of a heart by threading (or pre-loading) the EHL probes through a center lumen of a catheter or balloon device. The catheter may be threaded through appropriate veins or arteries to address concretion either forming in vessels or even in the valves of the heart or other organs. In other implementations, the EHL probes described below may be delivered to a small lumen of a body organ for the purpose of disturbing or disrupting (distressing) tissue of the body organ in such a way as to cause a stricture or a “scarring” of the tissue for the purpose of creating a permanent stricture or blockage of the lumen. In other implementations, the EHL probes described below may be used extracorporeally, for example, by positioning a fluid-filled encapsulating member that encapsulates the EHL probe(s) in contact with the tissue to be treated, or by placing the target tissue (e.g., a bone spur on a foot) and the EHL probe(s) in a fluid-filled basin.


Referring to FIGS. 1A-C, a first embodiment of an electrohydraulic lithotripter 100 is shown. The electrohydraulic lithotripter 100 includes an EHL probe 110 having a lithotripsy probe tip 101, an insulating body 102, a first electrode 104, and a second electrode 106. In one implementation, the first electrode 104, the second electrode 106, or both, includes an electrically conductive material such as copper, silver, or stainless steel.


As shown in this embodiment, the first electrode 104 and the second electrode 106 of the EHL probe 110 are cylindrical, with the second electrode 106 concentrically aligned with first electrode 104. An insulating material 107 is disposed in the annular gap formed between the first electrode 104 and the second electrode 106. The distal end of the first electrode 104 is annular, whereas the distal end of the second electrode 106 is circular. However, it is envisioned that other EHL probes having electrodes of different shapes and orientations may also be used without departing from the concepts described herein. For example, changing the probe dimensions, particularly the annular gap between the first electrode 104 and the second electrode 106, can alter the strength and the size of the shockwave (e.g., the larger the annular gap, the greater the strength and the size of the shockwave). Alternatively, a probe may include an electrode comprised of an array of conductive elements.


The first electrode 104 is electrically coupled with a first electrically conductive structure (not shown) in the EHL probe 110. As known in the art, the first electrically conductive structure may be coupled with an electrical source, such as an electrohydraulic generator (Autolith, Supplied by Northgate Technologies Inc.), used to charge the first electrode 104 to a first polarity. The second electrode 106 is electrically coupled with a second electrically conductive structure 116 in the EHL probe 110. As known in the art, the second electrically conductive structure 116 may be coupled with an electrical source and used to charge the second electrode 106 to a second polarity, which is opposite to the first polarity of the first electrode 104.


In one implementation, the first electrode 104 is an anode and the second electrode 106 is a cathode, wherein in other implementations, the first electrode 104 is a cathode and the second electrode 106 is an anode. In implementations having more than one probe, it is envisioned that a single anode may be used with multiple cathodes, or conversely, a single cathode may be used with multiple anodes. When the first electrode 104 is charged to a first polarity via the first conductive structure and the second electrode 106 is charged to a second, opposite polarity via the second conductive structure 116, a discharge of electricity occurs between the first electrode 104 and the second electrode 106 (an electric arc) when the potential between the first electrode 104 and the second electrode 106 reaches the breakdown voltage for the media separating the electrodes.


As shown in this embodiment, at least a portion of the EHL probe tip 101 including the first electrode 104 and the second electrode 106 is surrounded by a flexible encapsulating member 118, such as a balloon, comprising a water-tight flexible material, such as Mylar. The flexible encapsulating member 118 encapsulates a liquid, such as saline. However, other liquids can be used. In general, the less ionic content of the fluid, the greater the breakdown voltage, and the stronger the shockwave, whereas the greater the ionic content, the less the breakdown voltage, and the weaker the shockwave.


When an electrical arc occurs between the first electrode 104 and the second electrode 106 as described above, the electrical arc causes a steam bubble in the liquid of the flexible encapsulating member 118. The steam bubble rapidly expands and contracts back on itself. As the steam bubble contracts, a pressure wave (a shockwave) is created in the liquid of the flexible encapsulating member 118 that radiates away from the EHL probe tip 101. In other implementations, a flexible encapsulating member 118 does not surround the EHL probe tip 101, for example, when the EHL probe 100 is used intracorporeally within a fluid-filled body cavity, or when the EHL probe 100 is used extracorporeally, such as in a fluid-filled basin.


Referring to FIGS. 2A-B, a second embodiment of an electrohydraulic lithotripter 200 is shown. The electrohydraulic lithotripter 200 includes a first EHL probe 210 and a second EHL probe 220. The first EHL probe 210 and the second EHL probe 220 may be constructed and operate in the same manner as describe above with regards to the EHL probe 110, although it is envisioned that other EHL probes having electrodes of different shapes and orientations may also be used without departing from the concepts described herein. The first EHL probe 210 and the second EHL probe 220 may be connected together by a band 205.


As shown in this embodiment, the distal ends of the first EHL probe 210 and the second EHL probe 220 are aligned, i.e., they lie in the same plane. In other implementations, the distal ends lie in different planes. As also shown in this embodiment, a flexible encapsulating member 218 surrounds a distal end of the electrohydraulic lithotripter 200. In other implementations, a flexible encapsulating member 218 does not surround a distal end of the electrohydraulic lithotripter 200.


Referring to FIGS. 3A-B, a third embodiment of an electrohydraulic lithotripter 300 is shown. The electrohydraulic lithotripter 300 includes a first EHL probe 310, a second EHL probe 320, and a third EHL probe 330. The first EHL probe 310, the second EHL probe 320, and the third EHL probe 330 may be constructed and operate in the same manner as describe above with regards to the EHL probe 110, although it is envisioned that other EHL probes having electrodes of different shapes and orientations may also be used without departing from the concepts described herein. The first EHL probe 310, the second EHL probe 320, and the third EHL probe 330 may be connected together by a band 305.


As shown in this embodiment, the distal ends of the first EHL probe 310, the second EHL probe 320, and the third EHL probe 330 are aligned, i.e., they lie in the same plane. In other implementations, the distal ends lie in different planes. Also as shown in this embodiment, the first EHL probe 310, the second EHL probe 320, and the third EHL probe 330 are arranged such that their axes lie in the same plane. In other implementations, their axis are offset, for example, in a triangular configuration. Furthermore, as shown in this embodiment, a flexible encapsulating member 318 surrounds a distal end of the electrohydraulic lithotripter 300. In other implementations, a flexible encapsulating member 318 does not surround a distal end of the electrohydraulic lithotripter 300.


Referring to FIGS. 4A-B, a fourth embodiment of an electrohydraulic lithotripter 400 is shown. The electrohydraulic lithotripter 400 includes a first EHL probe 410, a second EHL probe 420, a third EHL probe 430, and a fourth EHL probe 440. The first EHL probe 410, the second EHL probe 420, the third EHL probe 430, and the fourth EHL probe 440 may be constructed and operate in the same manner as describe above with regards to the EHL probe 110, although it is envisioned that other EHL probes having electrodes of different shapes and orientations may also be used without departing from the concepts described herein. The first EHL probe 410, the second EHL probe 420, the third EHL probe 430, and the fourth EHL probe 440 may be connected together by a band 405.


As shown in this embodiment, the distal ends of the first EHL probe 410, the second EHL probe 420, the third EHL probe 430, and the fourth EHL probe 440 are aligned, i.e., they lie in the same plane. In other implementations, the distal ends lie in different planes. Also as shown in this embodiment, the first EHL probe 410 and the fourth EHL probe 440 are arranged such that their axes lie in the same plane, while the second EHL probe 420 and the third EHL probe 430 are arranged such that their axes lie in the same plane. In other implementations, all axes may lie in the same plane, or they may be arranged, for example, in a square configuration. Furthermore, as shown in this embodiment, a flexible encapsulating member 418 surrounds a distal end of the electrohydraulic lithotripter 400. In other implementations, a flexible encapsulating member 418 does not surround a distal end of the electrohydraulic lithotripter 400.


Referring to FIGS. 5A-B, a fifth embodiment of an electrohydraulic lithotripter 500 is shown. The electrohydraulic lithotripter 500 includes a first EHL probe 510, a second EHL probe 520, a third EHL probe 530, a fourth EHL probe 540, and a fifth EHL probe 550. The first EHL probe 510, the second EHL probe 520, the third EHL probe 530, the fourth EHL probe 540, and the fifth EHL probe 550 may be constructed and operate in the same manner as describe above with regards to the EHL probe 110, although it is envisioned that other EHL probes having electrodes of different shapes and orientations may also be used without departing from the concepts described herein. The first EHL probe 510, the second EHL probe 520, the third EHL probe 530, the fourth EHL probe 540, and the fifth EHL probe 550 may be connected together by a band 505.


As shown in this embodiment, the distal ends of the first EHL probe 510 and the third EHL probe 530, are aligned, i.e., they lie in the same plane, whereas the distal ends of the second EHL probe 520, the fourth EHL probe 540, and the fifth EHL probe 550 are aligned. In other implementations, the distal ends of all probes lie in the same plane. Also as shown in this embodiment, the first EHL probe 510 and the third EHL probe 530 are arranged such that their axes lie in the same plane, whereas the second EHL probe 520, the fourth EHL probe 540, and the fifth EHL probe 550 are arranged such that their axes lie in the same plane. In other implementations, all axes may lie in the same plane, or they may be arranged, for example, in a circular configuration. Furthermore, as shown in this embodiment, a flexible encapsulating member 518 surrounds a distal end of the electrohydraulic lithotripter 500. In other implementations, a flexible encapsulating member 518 does not surround a distal end of the electrohydraulic lithotripter 500.


As also shown in this embodiment, the electrohydraulic lithotripter 500 may include a first channel (or lumen) 560 and a second channel (or lumen) 570 that are each in communication with an interior of the flexible encapsulating member 518. Although only shown in this embodiment, it should be appreciated that a first channel (or lumen) and a second channel (or lumen) in communication with an interior of a flexible encapsulating member may be included in any of the embodiments described herein. During operation, the first channel 520 may be utilized to infuse a liquid, such as saline, into an interior of the flexible encapsulating member 518 for the purpose of expanding the flexible encapsulating member 518 and providing a medium for creating electrohydraulic effect.


Additionally, the second channel 570 may be utilized to remove the liquid from the interior of the flexible encapsulating member 518 and collapse the flexible encapsulating member 518. In some implementations, the second channel 570 may further be utilized to degass the fluid within the flexible encapsulating member 518 after an electrohydraulic discharge between electrodes.


The circulation of fluid through the interior of the flexible encapsulating member 518 using the first and second channels 560, 570 may be done through manual means such as a syringe, mechanical means such as a pump, or any other means known in the art.


In some implementations, the first and/or second channels 560, 570 may include one or more valves, membranes, or cartridges to assist in injecting a fluid into the interior region of the flexible encapsulating member 518, removing a fluid from the interior region of the flexible encapsulating member 518, or degassing the fluid within the interior region of the flexible encapsulating member 518.


For example, a valve or membrane positioned in or adjacent to the first channel 560 may allow a fluid to flow into the interior region of the flexible encapsulating member 518 while preventing the fluid from entering the first channel 560 from the interior region of the flexible encapsulating member 518. Similarly, a valve or membrane positioned in or adjacent to the second channel 570 may allow a fluid to flow out of the interior region of the flexible encapsulating member 518 while preventing fluid from exiting the second channel 570 and flowing into the interior of the flexible encapsulating member 518. Further, a membrane or cartridge may be positioned in or adjacent to the second channel 570 to assist in degassing fluid within the interior region of the flexible encapsulating member 518. Examples of valves that may be utilized include one-way valves produced by Qosina Corp or Value Plastics. Examples of membranes, such as semipermeable membranes, that may be utilized include those produced by W.L. Gore & Associates, Inc.


Each of the previously described embodiments may be used to provide unfocused EHL. The activation of individual EHL probes creates unfocused shockwaves radiating from each probe. By positioning the probes in a cluster or a particular pattern, an almost infinite number of shockwave patterns may be generated. Such patterns can be used, for example, to create larger wave fronts than a single probe, stronger shockwaves, and different wave shapes. In addition, the probes may be fired or discharged simultaneously, or in sequences, or at various frequencies. Furthermore, the arrangement of probes may be such that distal ends of the probes are staggered, or arranged in different planes, thereby creating additional wave shapes or patterns.


A generator may be set to fire or discharge a particular EHL probe at varying power and at varying frequencies. One suitable generator is the Autolith, supplied by Northgate Technologies, Inc. Other suitable generators are shown and described in U.S. Provisional Patent Application No. 61/684,353, the entirety of which is herein incorporated by reference. The device could use different capacitors and switching techniques to change the output of a particular EHL probe, or probes. Redundant circuitry could be also be used if necessary to discharge a large number of probes simultaneously, or in specific sequences, or in patterns, depending on the desired treatment.


By way of example, FIGS. 6A-6D illustrate some of the wave shapes and patterns achievable by the previously described embodiments. As shown in FIG. 6A, the EHL probes of the electrohydraulic lithotripter 200 may be fired or discharged simultaneously, thereby producing a wave front having an increased sized. Alternatively, as shown in FIG. 6B, the probes of the electrohydraulic lithotripter 200 may be fired or discharged sequentially to create an alternating waveform. Similarly, as shown in FIG. 6C, the EHL probes of the electrohydraulic lithotripter 300 may be fired or discharged simultaneously, thereby producing a wave front having an even larger size. Likewise, as shown in FIG. 6D, the EHL probes of the electrohydraulic lithotripter 300 may be fired or discharged sequentially, thereby creating a cascading waveform. It will be appreciated that additional wave shapes and patterns may be achieved by applying the same firing or discharge concepts to the other embodiments described herein.


Furthermore, additional wave strengths, shapes, and patterns may be generated by altering the shapes and orientations of electrodes within individual EHL probes of a particular embodiment of an electrohydraulic lithotripter, for example, by changing the probe dimensions, such as the annular gap between the first electrode and the second electrode.


In embodiments having a flexible encapsulating member, the strength of the shockwave(s) delivered to a tissue may be selectively adjusted by changing the volume of fluid in the flexible encapsulating member. Because the strength of a shockwave delivered to a tissue is dependent on the distance from the distal end of the EHL probe(s) to the tissue, the strength of a shockwave may be increased or decreased by increasing or decreasing the volume of the fluid in the flexible encapsulating member. These embodiments may also include means for measuring the distance between the distal ends of individual EHL probe(s) and the flexible encapsulating member.


In other embodiments, the strength of the shockwave(s) delivered to a tissue may be selectively adjusted by axially repositioning particular EHL probes within the electrohydraulic lithotripter. For example, the electrohydraulic lithotripter 400 includes a first EHL probe 410, a second EHL probe 420, a third EHL probe 430, and a fourth EHL probe 440. The EHL probes are connected together by a band 405. As shown in FIG. 4B, the distal ends of the first EHL probe 410, the second EHL probe 420, the third EHL probe 430, and the fourth EHL probe 440 are aligned, i.e., they lie in the same plane. However, a user may axially advance, for example, the first EHL probe 410 and the fourth EHL probe 440, relative to the band 405, the second EHL probe 420, and the third EHL probe 430, such that the distal ends of the first EHL probe 410 and the fourth EHL probe 440 lie in a different plane than the distal ends of the second EHL probe 420 and the third EHL probe 430. These embodiments may also include means for locking the positions of the EHL probes relative to one another.


In other embodiments, the shockwave(s) may be discharged toward a conductive surface, such as a pad or a plate, for purposes of transferring the shockwave to particular tissues areas. For example, a plate may be used to distribute or spread the shockwave over the surface of the plate. Alternatively, a plate having a number of openings may be used to focus the discharged shockwave(s) through the openings to treat a targeted tissue area. Such a plate may be made of either flexible or rigid materials, depending on the desired shockwave deflection, absorption, or transfer characteristics, and can be positioned either inside or outside of the flexible encapsulating member. If positioned on the outside of the flexible encapsulating member, the plate may be coated or infused with a medication to assist in the tissue treatment.



FIGS. 7A-7C are exemplary illustrations of a plate 700 useable with any of the embodiments described herein. As shown in FIG. 7A, the plate 700 may have a single, centrally positioned opening 701 intended to allow the shockwave(s) discharged from the EHL probe(s) to pass therethrough. Or, as shown in FIG. 7B, the plate 700 may include a plurality of openings 701, aligned with the EHL probes of the associated electrohydraulic lithotripter, for example, the five EHL probes of the electrohydraulic lithotripter 500. As shown, in FIG. 7C, the plate 700 may include a plurality of openings in an arrangement, for example, intended to diffuse the shockwave(s) discharged from the EHL probe(s). Alternatively, the plate may not have any openings.


The recent introduction of endoscopes that are designed to reach more remote locations in the body has presented various difficulties in trying to reach these areas of the body. In order to fragment and destroy concretions at remote locations within the body, endoscopes and other instruments, such as electrohydraulic lithotripsy probes, may have to maneuver through extremely tortuous paths to conduct diagnostic and operating procedures. For example, bends as sharp as 90 degrees, and in some instances, as much as 120 degrees or more, must be traversed to reach the desired location. Because of frictional forces in the lumens of scopes or catheters, or tubes, and the creases or “wrinkles” that develop in the inner walls of these lumens, it is often very difficult to push delicate devices such as guide-wires, forceps, baskets, lasers, or electrohydraulic lithotripsy probes through the lumens to reach the desired site.


In the case of lasers and electrohydraulic lithotripsy probes, it is extremely difficult or impossible, partially because of the lack of stiffness in the laser fiber or lithotripsy probe. Furthermore, the tip of these devices is usually shaped as a square, or includes beveled edges, which have been insufficient to prevent lodging, kinking, or resistance caused from too much friction, to progress past or through the tortuous angles, thereby rendering it impossible in some cases for the laser fibers or electrohydraulic lithotripsy probes to reach the target area. Some approaches to obviate these problems have included increasing the size and stiffness of the fiber or probe, covering the probe with more lubricious materials (e.g., Teflon), applying a hydrophilic coating to the probe, and sever beveling of the fiber or probe tip. While these techniques have led to improvement, they have not solved the problem sufficiently.


Turning to FIGS. 8A-E, various perspective and side views of an alternatively shaped lithotripsy probe tip 718 are shown. Like the previously described lithotripsy probe tips, the lithotripsy probe tip 718 is disposed on the end of an insulating body 702 of an electrohydraulic lithotripter. The lithotripsy probe tip 718 may be utilized in place of any of the previously described lithotripsy probe tips, as well as in other electrohydraulic lithotripters.


The lithotripsy probe tip 718 is adapted to improve the delivery of an electrohydraulic lithotripter to a remote location in the body. As shown, the lithotripsy probe tip 718 is spherically shaped. Significantly, the distal surface of the lithotripsy probe tip 718 essentially presents a “round surface” to the structural areas it may contact. All of the previous improvements (e.g., stiffer shafts, slippery sheaths, hydrophilic coatings, etc.) could be included and used in conjunction with the improved tip shape. As shown, there would be an opening in the tip, close to tangent or tangent to the rounded surface, so that no edges would be presented to the lumen surfaces that would catch on the interior lumen bends or “wrinkles.” It should be appreciated that the shape of the tip does not have to be perfectly round, but that the surfaces presented to the lumen walls would have to have the circular radii necessary to approximate a round or circular surface.


In a preferred embodiment, the diameter of the spherically shaped lithotripsy probe tip 718 is approximately 1.5 mm (0.585 inches) or less, as that is approximately the largest lumen diameter currently in use in endoscopes used in urology or gastrointestinal applications. The diameter could be as small as 0.5 mm for some applications. The tip size, however, could be larger or smaller depending on the available lumen, endoscope, or body area being accessed. Ultimately, the size of the tip would be governed by the lumen size through which it is threaded.


In alternative embodiments, the shape of the tip could be any other rounded shape, including, for example, a “donut” shape, as shown in FIG. 9. The “donut” shaped tip could, for example, have a radius of about 0.018 inches, a diameter of 0.036 inches, an axial length of 0.025 inches, and an inner lumen diameter of 0.008 inches. Alternatively, the shape of the tip could be a bead shape having a spherical head with flat or cylindrical sides, as shown in FIG. 10. The bead shaped tip could, for example, have a radius of about 0.026 inches in the spherical head, a diameter of 0.05 inches in the cylindrical sides, an axial length of 0.052 inches, and an inner lumen diameter of 0.028 inches. General tolerances for these dimensions above could range between +/−0.003 to 0.005 inches. It should be appreciated that so long as the lead surfaces of the tip present a “round” surface for contacting the lumen, just about any shape may be used.


The various lithotripsy probe tips described above may be constructed of many types of materials, preferably metal, plastic, or glass. Depending on the material used, the tip may be integral to the function of the device (such as glass in a laser fiber, or metal in a lithotripsy probe tip), or could be added on to and/or bonded on an existing tip design.


It is intended that the foregoing detailed description e regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents, that are intended to define the spirit and scope of this invention.

Claims
  • 1. An invasive electrohydraulic lithotripter probe comprising: an invasive electrohydraulic lithotripter tip configured to be threaded through veins or arteries to address concretions, the invasive electrohydraulic lithotripter tip comprising: a first electrode and a second electrode positioned on the invasive electrohydraulic lithotripter tip such that an electric arc between the first and second electrode produces a shockwave that radiates from the electrohydraulic lithotripter tip;a third electrode and a fourth electrode positioned on the invasive electrohydraulic lithotripter tip such that an electric arc between the third and fourth electrode produces a shockwave that radiates from the electrohydraulic lithotripter tip; anda flexible encapsulating member surrounding at least the first, second, third, and fourth electrodes;wherein an electric arc between the first and second electrodes produces a shockwave at a different time than an electric arc between the third and fourth electrodes produces a shockwave.
  • 2. The invasive electrohydraulic lithotripter probe of claim 1, wherein the invasive electrohydraulic lithotripter tip comprises a first channel in communication with an interior of the flexible encapsulating member that is configured to infuse a liquid into the interior of the flexible encapsulating member.
  • 3. The invasive electrohydraulic lithotripter probe of claim 2, wherein the invasive electrohydraulic lithotripter tip comprises a second channel in communication with the interior of the flexible encapsulating member that is configured to remove at least a portion of the liquid from the interior of the flexible encapsulating member.
  • 4. The invasive electrohydraulic lithotripter probe of claim 2, wherein the invasive electrohydraulic lithotripter tip comprises a second channel in communication with the interior of the flexible encapsulating member that is configured to degas the liquid in the interior of the flexible encapsulating member.
  • 5. The invasive electrohydraulic lithotripter probe of claim 1, wherein at least one of the first electrode or the second electrode is substantially cylindrical, and at least one of the third electrode or the fourth electrode is substantially cylindrical.
  • 6. The invasive electrohydraulic lithotripter probe of claim 1, wherein at least one of the first electrode or the second electrode is curved, and at least one of the third electrode or the fourth electrode is curved.
  • 7. The invasive electrohydraulic lithotripter of claim 1, wherein an electric arc between the first and second electrodes and an electric arc between the third and fourth electrodes simultaneously produce shockwaves that radiate from the invasive electrohydraulic lithotripter tip.
  • 8. An invasive electrohydraulic lithotripter probe comprising: an invasive electrohydraulic lithotripter tip configured to be threaded through veins or arteries to address concretions, the invasive electrohydraulic lithotripter tip comprising: a first electrode and a second electrode positioned on the invasive electrohydraulic lithotripter tip such that an electric arc between the first and second electrode produces a shockwave that radiates from the electrohydraulic lithotripter tip;a third electrode and a fourth electrode positioned on the invasive electrohydraulic lithotripter tip such that an electric arc between the third and fourth electrode produces a shockwave that radiates from the electrohydraulic lithotripter tip; anda flexible encapsulating member surrounding at least the first, second, third, and fourth electrodes;wherein an electric arc between the first and second electrodes produces a shockwave at a different power than a shockwave produced by an electric arc between the third and fourth electrodes.
  • 9. An invasive electrohydraulic lithotripter probe comprising: an invasive electrohydraulic lithotripter tip comprising: a plurality of pairs of electrodes positioned on the invasive electrohydraulic lithotripter tip such that for each pair of electrodes, an electric arc between a first electrode and a second electrode of the pair of electrodes produces a shockwave that radiates from the lithotripter tip; anda flexible encapsulating member surrounding at least the plurality of pairs of electrodes;wherein a first pair of electrodes of the plurality of pairs of electrodes produces a shockwave at a different power than a shockwave produced by a second pair of electrodes of the plurality of pairs of electrodes.
  • 10. The invasive electrohydraulic lithotripter probe of claim 9, wherein the invasive electrohydraulic lithotripter tip comprises a first channel in communication with an interior of the flexible encapsulating member that is configured to infuse a liquid into the interior of the flexible encapsulating member.
  • 11. The invasive electrohydraulic lithotripter probe of claim 10, wherein the invasive electrohydraulic lithotripter tip comprises a second channel in communication with the interior of the flexible encapsulating member that is configured to remove at least a portion of the liquid from the interior of the flexible encapsulating member.
  • 12. The invasive electrohydraulic lithotripter probe of claim 10, wherein the invasive electrohydraulic lithotripter tip comprises a second channel in communication with the interior of the flexible encapsulating member that is configured to degas the liquid in the interior of the flexible encapsulating member.
  • 13. The invasive electrohydraulic lithotripter probe of claim 9, wherein at least one of the first electrode or the second electrode of each pair of electrodes is substantially cylindrical.
  • 14. The invasive electrohydraulic lithotripter probe of claim 9, wherein at least one of the first electrode or the second electrode of each pair of electrodes is curved.
  • 15. The invasive electrohydraulic lithotripter probe of claim 9, where the plurality of pairs of electrodes simultaneously produce shockwaves that radiate from the lithotripter tip.
  • 16. The invasive electrohydraulic lithotripter probe of claim 9, wherein the plurality of pairs of electrodes produce shockwaves at varying frequencies that radiate from the lithotripter tip.
RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/831,620, filed Dec. 5, 2017 (still pending) which is a continuation of U.S. application Ser. No. 14/852,051, filed Sep. 11, 2015 (now U.S. Pat. No. 9,861,377), which is a continuation of International Application No. PCT/IB2014/000275, filed on Mar. 10, 2014, expired, which claims the benefit of U.S. Provisional Application No. 61/775,907, filed on Mar. 11, 2013, all of which are incorporated herein by reference.

US Referenced Citations (148)
Number Name Date Kind
3785382 Schmidt-Kloiber et al. Jan 1974 A
4027674 Tessier et al. Jun 1977 A
4608983 Muller et al. Sep 1986 A
4610249 Makofski et al. Sep 1986 A
4662126 Malcolm May 1987 A
4685458 Leckrone Aug 1987 A
4905673 Pimiskern Mar 1990 A
4927427 Kriauciunas et al. May 1990 A
4955143 Hagelauer Sep 1990 A
4966132 Nowacki et al. Oct 1990 A
5009232 Hassler et al. Apr 1991 A
5044354 Goldhorn et al. Sep 1991 A
5046503 Schneiderman Sep 1991 A
5047685 Nowacki et al. Sep 1991 A
5057103 Davis Oct 1991 A
5065762 Ifflaender et al. Nov 1991 A
5072733 Spector et al. Dec 1991 A
5078717 Parins et al. Jan 1992 A
5102402 Dror et al. Apr 1992 A
5152767 Sypal et al. Oct 1992 A
5152768 Bhatta Oct 1992 A
5160336 Favre Nov 1992 A
5174280 Gruenwald et al. Dec 1992 A
5176675 Watson et al. Jan 1993 A
5178136 Wess et al. Jan 1993 A
5195508 Muller et al. Mar 1993 A
5246447 Rosen et al. Sep 1993 A
5281231 Rosen et al. Jan 1994 A
5295958 Shturman Mar 1994 A
5324255 Passafaro et al. Jun 1994 A
5368591 Lennox et al. Nov 1994 A
5395335 Janq Mar 1995 A
5400267 Denen et al. Mar 1995 A
5417208 Winkler May 1995 A
5419767 Eggers et al. May 1995 A
5420473 Thomas May 1995 A
5425735 Rosen et al. Jun 1995 A
5472406 de la Torre et al. Dec 1995 A
5603731 Whitney Feb 1997 A
5609606 O'Bovle Mar 1997 A
5662590 de la Torre et al. Sep 1997 A
5700243 Narciso, Jr. Dec 1997 A
5722980 Schulz et al. Mar 1998 A
5741272 Kuhne Apr 1998 A
5836898 Schwieker Nov 1998 A
5846218 Brisken et al. Dec 1998 A
5893840 Hull et al. Apr 1999 A
6033371 Torre et al. Mar 2000 A
6083232 Cox Jul 2000 A
6113560 Simnacher Sep 2000 A
6146358 Rowe Nov 2000 A
6186963 Schwarze et al. Feb 2001 B1
6193715 Wrublewski Feb 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217531 Reitmajer Apr 2001 B1
6217588 Jerger et al. Apr 2001 B1
6261298 Irion et al. Jul 2001 B1
6277138 Levinson et al. Aug 2001 B1
6287272 Brisken et al. Sep 2001 B1
6367203 Graham et al. Apr 2002 B1
6371971 Tsuqita et al. Apr 2002 B1
6398792 O'Connor Jun 2002 B1
6406486 de la Torre et al. Jun 2002 B1
6440061 Wenner et al. Aug 2002 B1
6440123 Enqel Aug 2002 B1
6511485 Hirt et al. Jan 2003 B2
6514203 Bukshpan Feb 2003 B2
6520968 Bates et al. Feb 2003 B2
6524251 Rabiner et al. Feb 2003 B2
6533792 Menne et al. Mar 2003 B2
6558397 Hirt et al. May 2003 B2
6572733 Banerjee Jun 2003 B1
6589253 Cornish et al. Jul 2003 B1
6607003 Wilson Aug 2003 B1
6638246 Naimark et al. Oct 2003 B1
6652547 Rabiner et al. Nov 2003 B2
6689089 Tiedtke et al. Feb 2004 B1
6689122 Yamamoto Feb 2004 B2
6736784 Menne et al. May 2004 B1
6740081 Hilal May 2004 B2
6740096 Teague et al. May 2004 B2
6755821 Fry Jun 2004 B1
6758842 Irion et al. Jul 2004 B2
6770039 Zhong et al. Aug 2004 B2
6780161 Faraqalla et al. Aug 2004 B2
6939320 Lennox Sep 2005 B2
6989009 Lafontaine Jan 2006 B2
7066904 Rosenthal et al. Jun 2006 B2
7101380 Khachin et al. Sep 2006 B2
7241295 Maguire Jul 2007 B2
7569032 Naimark et al. Aug 2009 B2
8162859 Schultheiss et al. Apr 2012 B2
9579114 Mantell Feb 2017 B2
10426500 Lipowski Oct 2019 B2
20020177889 Brisken et al. Nov 2002 A1
20030004434 Greco et al. Jan 2003 A1
20030135223 Teague Jul 2003 A1
20030163081 Constantz et al. Aug 2003 A1
20030176769 Soble et al. Sep 2003 A1
20030229370 Miller Dec 2003 A1
20040044308 Naimark et al. Mar 2004 A1
20040082859 Schaer Apr 2004 A1
20040097996 Rabiner et al. May 2004 A1
20040249401 Rabiner et al. Dec 2004 A1
20040254570 Hadiicostis et al. Dec 2004 A1
20050015953 Keidar Jan 2005 A1
20050021013 Visuri et al. Jan 2005 A1
20050090846 Pederson et al. Apr 2005 A1
20050113815 Ritchie et al. May 2005 A1
20050171527 Bhola Aug 2005 A1
20050245866 Azizi Nov 2005 A1
20060004286 Chanq et al. Jan 2006 A1
20060074484 Huber Apr 2006 A1
20060078265 Loeb Apr 2006 A1
20060184076 Gill et al. Aug 2006 A1
20060190022 Beyar et al. Aug 2006 A1
20060264904 Kerby Nov 2006 A1
20070123851 Alejandro et al. May 2007 A1
20070129667 Tiedtke et al. Jun 2007 A1
20070239082 Schultheiss et al. Oct 2007 A1
20070239253 Jaaaer et al. Oct 2007 A1
20070244423 Zummeris et al. Oct 2007 A1
20070299481 Syed et al. Dec 2007 A1
20080077165 Murphy Mar 2008 A1
20080097251 Babaev Apr 2008 A1
20080247508 Harrington et al. Oct 2008 A1
20090254114 Hirszowics et al. Oct 2009 A1
20090312768 Hawkins et al. Dec 2009 A1
20100016862 Hawkins et al. Jan 2010 A1
20100036294 Mantell et al. Feb 2010 A1
20100094209 Drasler et al. Apr 2010 A1
20100114020 Hawkins et al. May 2010 A1
20100114065 Hawkins et al. May 2010 A1
20100121322 Swanson May 2010 A1
20100044596 Jaafar Nov 2010 A1
20100305565 Truckai et al. Dec 2010 A1
20100324554 Giffard et al. Dec 2010 A1
20110034832 Cioanta Feb 2011 A1
20110118634 Golan May 2011 A1
20110166570 Hawkins et al. Jul 2011 A1
20110295227 Hawkins et al. Dec 2011 A1
20120071889 Mantell et al. Mar 2012 A1
20120116289 Hawkins et al. May 2012 A1
20120203255 Hawkins et al. Aug 2012 A1
20120221013 Hawkins et al. Aug 2012 A1
20130030431 Adams Jan 2013 A1
20130030447 Adams Jan 2013 A1
20130116714 Adams et al. May 2013 A1
Foreign Referenced Citations (27)
Number Date Country
101043914 Sep 2007 CN
3038445 May 1982 DE
0442199 Aug 1991 EP
571306 Nov 1993 EP
62275446 Nov 1987 JP
0363059 Mar 1991 JP
06125915 May 1994 JP
0747135 Feb 1995 JP
1099444 Apr 1998 JP
10314177 Dec 1998 JP
2002538932 Nov 2002 JP
2004357792 Dec 2004 JP
2005515825 Jun 2005 JP
2006516465 Jul 2006 JP
2008506447 Mar 2008 JP
2011528963 Dec 2011 JP
2004069072 Aug 2004 WO
2006006169 Jan 2006 WO
2006127158 Nov 2006 WO
2007088546 Aug 2007 WO
2007149905 Dec 2007 WO
2009121017 Oct 2009 WO
2009152352 Dec 2009 WO
2010014515 Feb 2010 WO
2011069025 Jun 2011 WO
2011143468 Nov 2011 WO
2013070750 May 2013 WO
Non-Patent Literature Citations (10)
Entry
Rosenschein, et al, “Shock-Wave Thrombus Ablation, a New Method for Noninvasive Mechanical Thrombolysis”, The American Journal of Cardiology, vol. 70, Nov. 15, 1992, pp. 1358-1361.
Zhong, et al., “Transient Oscillation of Cavitation Bubbles Near Stone Surface During Electrohydraulic Lithotripsy”, Journal of Endourology, vol. 11, No. 1, Feb. 1997, pp. 55-61.
http://www.as.miami.edu/chemsitry/2086/Chapter_21/NEW-Chap21_class_part1.htm, Chapter 21: Blood Vessels and Circulation, p. 3 of 10.
McCall, Ruth and Tankersley, Cathee,“Phlebotomy Essentials 4th edition”, Copyright 2008 Lippincott Williams and Wilkins, p. 188.
Walker, Richard, “Guide to the Human Body”, Copyright 2004 Firefly Books Ltd., p. 68.
U.S. Appl. No. 61/061,170, filed Jun. 13, 2008 (Expired).
International Search Report dated Jan. 19, 2010, for International Patent Application No. PCT/US2009/047070, 4 pages.
International Search Report dated Jun. 11, 2010, for International Patent Application No. PCT/US2009/063354, 3 pages.
International Search Report dated Apr. 21, 2010, for International Application No. PCT/IB 09/05519.
Written Opinion of the International Searching Authority dated Apr. 21, 2010, for International Application No. PCT/IB 09/05519.
Related Publications (1)
Number Date Country
20200100803 A1 Apr 2020 US
Provisional Applications (1)
Number Date Country
61775907 Mar 2013 US
Continuations (3)
Number Date Country
Parent 15831620 Dec 2017 US
Child 16702730 US
Parent 14852051 Sep 2015 US
Child 15831620 US
Parent PCT/IB2014/000275 Mar 2014 US
Child 14852051 US