Unfolding joint for satellite solar generators

Information

  • Patent Grant
  • 6682020
  • Patent Number
    6,682,020
  • Date Filed
    Wednesday, October 9, 2002
    22 years ago
  • Date Issued
    Tuesday, January 27, 2004
    20 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Poon; Peter M.
    • Holzen; Stephen
    Agents
    • Crowell & Moring LLP
Abstract
A joint is provided for unfolding systems, e.g. for satellite solar generators that permits sufficiently large unfolding torque, low weight and small dimensions. A drive on one joint half acts on a small pulley to wind a cord on it. The other end of the cord is tautly connected to a large pulley that rotates on the hinge pin and is fixed to the second joint half. The large pulley rotates in the opposite direction of the small pulley when the cord is wound so that the second joint half folds away from the first joint half on the hinge pin into an unfolded state and is held In this state by a stop against the tension of the cord. The joint is used, for example, for unfolding joints for satellite solar generators that consist of two joint halves, a hinge pin and a drive.
Description




BACKGROUND AND SUMMARY OF THE INVENTION




The invention concerns a joint for unfolding systems such as satellite solar generators. Preferred embodiments include joints with two joint halves, a hinge pin and a drive.




Unfolding systems such as large-area satellite solar generators consist, for example, of individual flexible segments that unfold after being transported into space.




The unfolding can be brought about by spring or motor-actuated unfolding joints that can be directly connected to the individual segments or connected to rigid extension arms that act on the segments.




To unfold large-area segments by means of springs, unfolding joints must be used that have large springs to provide sufficient unfolding torque. Such unfolding joints weigh a great deal, are large, and are therefore not very useful or useless in extreme cases for satellite solar generators.




A problem of the invention is to create a joint for unfolding systems that has sufficient unfolding torque, does not weigh much, and has small dimensions.




The problem is solved according to the invention by providing a joint for an unfolding system, which joint includes first and second joint parts, a hinge pin pivotally connecting the first and second joint parts, a large pulley rotatably mounted at the hinge pin and fixed to the first joint part, a small pulley disposed on the second joint part at a spacing from the large pulley, a cord partially wound on both the large and small pulleys, and a drive. The drive, when in use, operates to rotate the small pulley to wind the cord thereon. The cord is operable to rotate the large pulley and unfold the first and second joint parts with respect to one another into an unfolded state with said joint parts held in the unfolded state by a stop.




The invention has the advantage that small and light springs or motors can be used to generate a large amount of torque to better exploit the available installation area of such unfolding systems.




An exemplary embodiment of the invention will be further described in the following with reference to the drawing. An example of an unfolding joint for satellite solar generators with a spring drive will be described.




Other objects, advantages and novel features of the present invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic sectional view of an unfolding joint in a folded state and constructed according to a preferred embodiment of the present invention;





FIG. 2

shows the unfolding joint of

FIG. 1

in an unfolded state;





FIG. 2A

is a schematic depiction of an alternative arrangement for the drive of the small pulley, including a drive toothed-belt and motor;





FIG. 2B

is a schematic depiction of an alternative arrangement for the drive of the small pulley, including a drive chain and motor; and





FIG. 2C

is a schematic depiction of an alternative arrangement for the drive of the small pulley, including a drive gear and motor.











DETAILED DESCRIPTION OF THE DRAWINGS




The unfolding joint in

FIG. 1

comprises two joint halves


1


,


2


, a hinge pin


3


, a drive spring


4


, a small pulley


5


, a large pulley


6


(the diameter of the small pulley


5


is less than that of the large pulley


6


), a cord


7


and a stop


8


.




The small pulley


5


is rotatably mounted to a joint half


1


and is connected to the drive spring


4


. After the pretensioned drive spring


4


is triggered by telecontrol, it exerts torque on the small pulley. The drive spring


4


is connected to the small pulley


5


so that the torque winds the cord


7


that is attached at one end to the perimeter of the small pulley


5


.




The large pulley


6


is mounted on the hinge pin


3


that connects the two joint halves


1


,


2


and is fixed to the second joint half


2


. The cord


7


is taut between the two pulleys, and its other end is anchored to the perimeter of the pulley


6


in such a manner that the two pulleys rotate in opposite directions.





FIG. 2

shows, that during the above-described spring-driven winding process onto the small pulley


5


, the large pulley


6


is driven by the cord


7


according to the invention so that the connected second joint half


2


opens away from the first joint half


1


in the direction of the arrow


9


an dis pulled open into an unfolded state. In the exemplary embodiment shown here, the unfolded state is attained when an open angle of 180 degrees is reached. The second joint half


2


is stopped by a stop


8


in its unfolded position against the tension generated by the drive spring


4


on the cord


7


. The stop


8


is fixed to the first joint half.




In the above-described unfolding joint, the two differently-sized pulleys connected by the cord serve to translate the torque generated by the drive spring


4


before its acts on the hinge pin


3


. In the exemplary embodiment, the diameters of the small and large pulleys


5


,


6


are adapted to each other so that they produce a transmission ratio of I=0.4, i.e., the drive spring


4


only has to exert 40% of the required torque on the hinge pin


3


so that it can be correspondingly small and light. The transmission ratio “I” can be adapted to deviate from the cited value, and the pulley diameters can be freely selected within wide limits.




In contrast to the above-described cord drive, a gear drive, chain drive or toothed-belt drive can be used to generate the transmission ratio.

FIG. 2A

schematically depicts a belt drive


4


B for rotating the small pulley


5


using a motor M.

FIG. 2B

schematically depicts a chain drive


4


C for rotating the small pulley


5


using a motor M.

FIG. 2C

schematically depicts a gear drive


4


G for rotating the small pulley


5


using a motor M.




The drive spring


4


is designed as a constant torque spring and generates nearly constant torque as the joint unfolds over the entire unfolding range (here the cited 180 degrees). Any kind of drive spring or drive can be used as the drive spring


4


, e.g. a spiral spring or a motor.




To save weight, the small and/or large pulleys


5


,


13


can have cutouts.




The joint halves


1


,


2


can be rigidly connected with extension arms A that unfold the flexible segments FS of the solar generator, or be directly integrated into a segment frame.




The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.



Claims
  • 1. A satellite solar generator assembly comprising:first and second joint parts connected with respective solar generator extension arms, a hinge pin pivotally connecting the first and second joint parts, a large pulley rotatably mounted at the hinge pin and fixed to the first joint part, a small pulley disposed on the second joint part at a spacing from the larger pulley, a cord partially wound on both the large and small pulleys, and a drive which in use operates to rotate the small pulley to wind the cord thereon, said cord being operable to rotate the large pulley and unfold the solar generator extension arms, wherein a ratio of a torque on the large pulley over a torque on the small pulley is equal to a ratio of the diameter of the large pulley over the diameter of the small pulley.
  • 2. An assembly according to claim 1,wherein the drive includes a spring member which can be triggered by telecontrol.
  • 3. An assembly according to claim 1,wherein the ratio of the sizes of the pulleys provides that less than one half of the torque required to unfold the joint part needs to be applied by the drive to the small pulley.
  • 4. An assembly according to claim 1, wherein the ratio of the sizes of the pulleys provides that less than one half of the torque required to unfold the joint parts needs to be applied by the drive to the small pulley.
  • 5. An assembly according to claim 2, wherein the spring member is configured to apply a substantially constant torque over the predetermined folding range of the joint part.
  • 6. An assembly according to claim 4, wherein the predetermined folding range is 180°.
  • 7. An assembly according to claim 5, wherein the ratio of the sizes of the pulleys provides that less than one half of the torque required to unfold the joint halves needs to be applied by the drive to the small pulley.
  • 8. An assembly according to claim 1, wherein the drive is a motor driven chain drive.
  • 9. An assembly according to claim 1, wherein the drive is a motor driven toothed-belt drive.
  • 10. An assembly according to claim 1, wherein the drive is a motor driven gear drive.
Priority Claims (2)
Number Date Country Kind
199 27 596 Jun 1999 DE
100 23 852 May 2000 DE
Parent Case Info

This application is a division of U.S. patent application Ser. No. 09/597,711, filed Jun. 19, 2000, and claims the priority of German Patent Document 199 27 596.3, filed Jun. 17, 1999, the disclosures of which applications are expressly incorporated by reference herein.

US Referenced Citations (19)
Number Name Date Kind
3525483 Van Alstyne Aug 1970 A
4014617 Meston Mar 1977 A
4068770 Boehringer Jan 1978 A
4116258 Slysh et al. Sep 1978 A
4373690 Stillman et al. Feb 1983 A
4393541 Hujsak et al. Jul 1983 A
4703907 Henry et al. Nov 1987 A
4880188 Roth et al. Nov 1989 A
5110301 Inoue et al. May 1992 A
5509747 Kiendl Apr 1996 A
5682795 Solomon et al. Nov 1997 A
5778730 Solomon et al. Jul 1998 A
5785280 Baghdasarian Jul 1998 A
5833176 Rubin et al. Nov 1998 A
6008447 Meurer et al. Dec 1999 A
6010096 Baghdasarian Jan 2000 A
6199617 Schweiss Mar 2001 B1
6488435 Janson Dec 2002 B1
20030031505 Janson Feb 2003 A1
Foreign Referenced Citations (3)
Number Date Country
3215431 Oct 1983 DE
1055573 Feb 1954 FR
01-282097 Nov 1989 JP
Non-Patent Literature Citations (1)
Entry
Kellermeier et al., “The Retractable Ultra-Lightweight (ULP) Solar Array for Retrievable Space Platforms”, Aircraft Engineering, pp. 2-5, Jan. 1984.