The laws of quantum mechanics, in particular the no-cloning theorem, guarantee that any attempt at counterfeiting a credit card, bank note, bill, coin, or other type of payment-related object will fail if the object is embedded with quantum information. However, this security holds only under perfect conditions, whereas in real life quantum information is subject to noise, decoherence, and operational imperfections, all of which provide loopholes that dishonest users can exploit.
Because it is impossible to completely eliminate these imperfections, the development of secure “quantum money”—type protocols that can tolerate some noise and still remain secure is of practical importance.
The drawings disclose illustrative embodiments. They do not set forth all embodiments. Other embodiments may be used in addition or instead.
Illustrative embodiments are discussed in this application. It should be understood that the invention is not limited to the particular embodiments described. The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and systems similar or equivalent to those described herein can also be used in the practice or testing of the present invention, a limited number of the exemplary methods and systems are described herein.
In the present application, the terms “qticket” and “quantum ticket” have the same meaning, and are used interchangeably.
In the present application, the terms “qubit” and “quantum bit” have the same meaning, and are used interchangeably.
In the present application, the terms “quantum token” and “quantum ticket” have the same meaning, and are used interchangeably.
As known by the laws of quantum mechanics, the possession of an object carrying quantum information does not guarantee that the holder can extract a complete description. The reason is that, while measurements may provide partial access, they do not necessarily allow for a full reconstruction of the original quantum state, since the act of measurement itself may alter or perturb the quantum state per the Heisenberg uncertainty principle.
“Quantum money” protocols, originally developed by Wiesner, are based on the realization that such quantum properties might allow for the design of a quantum “bank note” which is intrinsically and fundamentally immune to counterfeiting. Recent extensions to Wiesner's original “quantum money” protocol, in particular an extended protocol that makes it possible for quantum tokens to be authenticated via classical public communication with a trusted verifier.
These extended protocols all assume that the verification process is noise-free and can occur perfectly. Practically, this is never the case, however. Any verification process has to condone a certain finite fraction of quantum bit (or qubit) failures, in actuality. With the addition of noise, the security itself of previous extended proposals is at issue.
In some embodiments of the present application, quantum tickets are disclosed that ensure security of the protocol, as well as ensuring tolerance to finite errors associated with encoding, storage and coding of individual quantum bits. Each one of these qtickets is issued by a mint, and consists of a unique serial number and N component quantum states, ρ=iρi, where each ρi is drawn uniformly at random from an orthogonal set of eigenstates.
As one example, in some embodiments p, may be drawn from a set Q of polarization eigenstates of the Pauli spin operators. In these embodiments, Q is given by:
Q={|+
·|−
·|+i
·|−i
·|0·|1
}.
It should be understood that in other embodiments, eigenstates other than the polarization eigenstates of the Pauli spin operators may be used, as long as the eigenstates are orthogonal.
The mint secretly stores a classical description of ρ, which is distributed only among one or more trusted verifiers. In order to redeem a qticket, the holder physically deposits it with a trusted verifier, who measures the qubits in the relevant basis. This verifier then requires a minimum fraction Ftol of correct outcomes, i.e. correct matchings with the previously stored qubits, in order to authenticate the qticket. Following successful authentication or validation, the only information returned by the verifier is whether the qticket has been accepted or rejected.
The soundness of the above-described qticket is the probability that an honest user is successfully verified or authenticated. Such a probability depends crucially on the experimental fidelities associated with single qubit encoding, storage, and decoding. For a given qubit ρi, a map Mi can be defined, which characterizes the overall fidelity, beginning with the mint's encoding and ending with the verifier's validation. The average channel fidelity for each qubit ρi is then given by:
F
i=1/|Q|Σρ, Tr[ρiMi(ρi)].
Using the above definition, the verification probability ρh of an honest user is:
In the above mathematical expression for Ph, Pacc represents the projector onto the subspace of valid qtickets, M=iMi, Fexp=1/NΣiFi is the per qubit average experimental fidelity, and the relative entropy D is a measure of distinguishability between two binary probability distributions.
In the above embodiments, as long as the average experimental fidelity Fexp associated with single qubit processes is greater than the tolerance fidelity Ftol, an honest user is exponentially likely to be verified. In particular, the likelihood of successful verification is exponential in N, the number of initial qubits.
In the above-described qticket, each qubit is considered to be in one of six possible states. In this case, more than one bit of information may be extracted by measuring the actual state, which is insufficient to recover the original classical description. As explained above, in other embodiments different sets of qubits or possible quantum states may be used or considered.
As further described below, any attempts to forge two copies from a single qticket will lead at least one of the copies to be sufficiently imperfect, ultimately yielding its rejection at the hands of a trusted verifier, both tickets being imperfect.
For a given tolerance fidelity Ftol, the qticket 110 having N qubits is only successfully authenticated if it contains at least FtolN valid qubits. However, for two counterfeit qtickets, not all valid qubits must coincide.
To determine a tight security threshold, the counterfeiting of a single qticket 110 is considered, as depicted in
In the event that a dishonest user attempts to generate two qtickets from a single valid original, each must contain a minimum of FtolN valid qubits to be authenticated, as shown in
So long as this fidelity is above a fidelity Fforg achievable for optimal qubit cloning, as allowed by the laws of quantum mechanics, a dishonest user is exponentially unlikely to succeed in getting his/her forged ticket authenticated:
where T represents any completely positive trace preserving (CPTP) qticket counterfeiting map. To ensure 2Ftol−1>2/3,the tolerance fidelity Ftol must be greater than ⅚, which is precisely the average fidelity of copies produced by an optimal qubit cloning map.
While in certain situations, an adversary may be able to sequentially engage in multiple verification rounds, the probability of successfully validating counterfeited qtickets grows at most quadratically in the number of such rounds, and hence, the likelihood of successful counterfeiting can remain exponentially small even for polynomially large numbers of verifications.
The qticket 110 in
It has been shown that it remains possible, even remotely, for a holder to prove the validity of a token by responding to a set of “challenge” questions; these questions can only be successfully answered by measuring an authentic token. Core to this approach is to ensure that the challenge questions reveal no additional information about the quantum state of the token. The holder of a valid token should be capable of answering any single challenge question correctly yet be restricted to an exponentially small probability of satisfactorily answering two of them.
In some embodiments of the present application, classical verification quantum tickets (or “cv-qtickets”) that are robust against noise and operational imperfections are implemented. In contrast to the case of bare qtickets, a cv-qticket holder will be expected to answer challenge questions and hence to measure qubits himself, or with a machine at a store. Alternatively, the cv-qticket holder or user may swipe his quantum credit card at a store, and the machine communicates via a classical channel to one or more trusted verifiers and may directly measure or answer the challenge questions.
The possibility of a dishonest holder participating simultaneously in multiple remote verifications is contemplated. This possibility could in principle offer the counterfeiter an additional advantage with respect to the qticket scenario. In particular, certain measurement strategies, which may be chosen posterior to receiving a set of challenge questions, may yield an increased likelihood for multiple successful authentications.
One example of a cv-qticket framework utilizes as a building block a set of eight possible two-qubit product states, each consisting of two polarization eigenstates (one along X and the other along Z):
S={0·+·|0·−
·|1·+
·|1·−
·|+·0
·|−·0
·|+·1
·|−·1
}
These states constitute a minimal set with the following properties: (1) Only preparation and measurement of qubit states is required; and (2) Each state enables the deterministic answering of either of two complementary challenge questions, for example, a request to measure both X polarizations or both Z polarizations, thereby automatically ensuring soundness in the case of perfect experimental fidelity. When attempting to use the state to answer two complementary challenges from independent verifiers, on average, only 1+1/√2 of replies is correct. Thus, it is possible for a dishonest user to emulate an experimental fidelity (per qubit) of no more than 1/2+1/√8≈0.85 with respect to each verifier.
It should be understood that in other embodiments, the number of two-qubit product states can be different from eight, and orthogonal eigenstates other than polarization eigenstates may be used.
In some embodiments, each cv-qticket may be envisioned as consisting of n blocks, each containing r qubit pairs, and thus, a total of n×r×2 qubits. Again, each of the qubit pairs is chosen uniformly at random from the set S. A challenge question consists of requesting the holder to measure each block (of qubits) along a basis chosen randomly among either X or Z.
As depicted in the table in
In turn, because any two verifiers choose the questions for each block independently and at random, the probability that there exist no complementary blocks scales exponentially with the number of blocks as 2−n. By contrast, if one were to dismiss this block structure, an adversary would be able to emulate a larger average experimental fidelity (3/4+2/√32≈0.93) by choosing a measurement basis for each pair dependent on whether the corresponding requests are coinciding or complementary.
By analogy to the direct-transfer qticket case described above, honest users of cv-qtickets are exponentially likely to be verified so long as Fexp>Fcvtol. In particular, because there now exist is blocks of qubits, each of which can be thought of as an individual qticket (with r qubits), the probability Pcvh that the honest user will be successfully verified is given by:
p
h
cv≧(1−e−rD(F
Mathematical proofs of cv-qticket security for the above-described cv-qticket based upon a generalized formalism of quantum retrieval games, in combination with a generalized Chernoff-Hoeffding bound, are provided in Exhibit II (the Supplemental information section) of the '805 provisional application, the contents of which have been incorporated by reference in their entireties.
So long as Ftolcv>1/2+1/√8, a dishonest user is exponentially unlikely to be authenticated by two independent verifiers. The threshold 1/2+1/√8 corresponds exactly to that achievable by either covariant cubit cloning or by measurement in an intermediate basis (as illustrated in
Likewise, by analogy to the direct-transfer qticket case described in conjunction with
where v represents the number of repeated verification attempts.
In the above equation, the factor of (v2)2 results from a combinatorial statement accounting for the possibility of choosing which challenge question to answer first and then waiting for feedback from the verifier. Thus, so long as the hierarchy of fidelities is such that: 1/2°1/√8<Vcvtol<Fexp, it is possible to mathematically prove both soundness and security of the cv-qtickets protocol. Further details of such proof is found in Exhibit II of the '805 provisional application, the contents of which are incorporated herein by reference in their entireties.
In some embodiments, the primitives described above may be applied to practically relevant protocols. As one example, one might imagine a composite cv-qticket that allows for multiple verification rounds while also ensuring that the ticket cannot be split into two independently valid subparts. Such a construction may be used to create a quantum-protected credit card.
The classical communication that takes place with the issuer (for example a bank) to verify the cv-qticket, via challenge questions, may be intentionally publicized to a merchant who needs to be convinced of the card's validity. By contrast to modern credit card implementations, such a quantum credit card would be unforgeable and hence immune to fraudulent charges, as illustrated in
Naively, each verifier (at gates 455 and 456, respectively) would be thought as being able to communicate with one another to prevent such abusive ticket cloning. However, such a safeguard can be overcome in the event that the communication among verifiers is either unsecured, unavailable, or severed (possibly by the dishonest user himself). The qticket is exempt from this type of attack because security is guaranteed even in the case of isolated verifiers.
A classical solution would involve gate verifiers communicating amongst one another to ensure that each ticket serial number is only allowed entry a single time. As shown in
The above embodiments have described quantum primitives based upon single tokens. Natural extensions to the case of multiple identical quantum tickets open up the possibility of even more novel applications.
In some embodiments of the present application, the above threshold results are extended to the case where c identical copies of the quantum ticket are issued. In this case, to ensure that the production of c+1 valid tokens is exponentially improbable, the required threshold fidelity must be greater than
The existence of such multiple identical tokens can provide a certain degree of anonymity for users and could be employed in primitives such as quantum voting.
Rigorous mathematical proofs of the soundness and security of direct-transfer qtickets, described in conjunction with
In some embodiments, a processing system may be configured and used to implement the methods, systems, and techniques described in the present application. The processing system may include, or may consist of, any type of microprocessor, nanoprocessor, microchip, or nanochip. The processing system may be selectively configured and/or activated by a computer program stored therein. It may include a computer-usable medium in which such a computer program may be stored, to implement the methods and systems described above. The computer-usable medium may have stored therein computer-usable instructions for the processing system. The methods and systems in the present application have not been described with reference to any particular programming language; thus it will be appreciated that a variety of platforms and programming languages may be used to implement the teachings of the present application.
In some embodiments, a computer-usable medium having stored therein computer-readable instructions for a processing system, wherein said instructions when executed by said processing system cause the processing system to measure a set of qubits in a quantum ticket and compare the measured values with stored values, and to authenticate the quantum ticket only if the correct outcomes are greater than a tolerance fidelity Ftol.
In sum, a novel class of secure “quantum money”-type primitives capable of tolerating realistic infidelities have been disclosed, and their tolerance to noise has been shown. The protocols proposed in the present application require only the ability to prepare, store, and measure single quantum bit memories, making their experimental realization accessible with current technologies.
Nothing that has been stated or illustrated is intended to cause a dedication of any component, step, feature, object, benefit, advantage, or equivalent to the public. While the specification describes particular embodiments of the present disclosure, those of ordinary skill can devise variations of the present disclosure without departing from the inventive concepts disclosed in the disclosure. While certain embodiments have been described, it is to be understood that the concepts implicit in these embodiments may be used in other embodiments as well. In the present disclosure, reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” All structural and functional equivalents to the elements of the various embodiments described throughout this disclosure, known or later come to be known to those of ordinary skill in the art, are expressly incorporated herein by reference.
The present application is based upon, and claims the benefit of priority under 35 U.S.C. §119, to co-pending U.S. Provisional Patent Application No. 61579,805 (the “'805 provisional application”), filed Dec. 23, 2011 and entitled “Unforgeable Noise-Tolerant Quantum Tokens.” The content of the '805 provisional application is incorporated herein by reference in its entirety as though fully set forth.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2012/701564 | 12/23/2012 | WO | 00 | 6/18/2014 |
Number | Date | Country | |
---|---|---|---|
61579805 | Dec 2011 | US |