This relates generally to touch sensor panels, and more particularly to compensating touch signals on a partially bootstrapped pixelated self-capacitance touch sensor panel.
Many types of input devices are presently available for performing operations in a computing system, such as buttons or keys, mice, trackballs, joysticks, touch sensor panels, touch screens and the like. Touch screens, in particular, are becoming increasingly popular because of their ease and versatility of operation as well as their declining price. Touch screens can include a touch sensor panel, which can be a clear panel with a touch-sensitive surface, and a display device such as a liquid crystal display (LCD) that can be positioned partially or fully behind the panel so that the touch-sensitive surface can cover at least a portion of the viewable area of the display device. Touch screens can allow a user to perform various functions by touching the touch sensor panel using a finger, stylus or other object at a location often dictated by a user interface (UI) being displayed by the display device. In general, touch screens can recognize a touch and the position of the touch on the touch sensor panel, and the computing system can then interpret the touch in accordance with the display appearing at the time of the touch, and thereafter can perform one or more actions based on the touch. In the case of some touch sensing systems, a physical touch on the display is not needed to detect a touch. For example, in some capacitive-type touch sensing systems, fringing electrical fields used to detect touch can extend beyond the surface of the display, and objects approaching near the surface may be detected near the surface without actually touching the surface.
Capacitive touch sensor panels can be formed by a matrix of substantially transparent conductive plates made of materials such as Indium Tin Oxide (ITO). It is due in part to their substantial transparency that capacitive touch sensor panels can be overlaid on a display to form a touch screen, as described above. Some touch screens can be formed by partially integrating touch sensing circuitry into a display pixel stackup (i.e., the stacked material layers forming the display pixels).
Some capacitive touch sensor panels can be formed by a matrix of substantially transparent conductive plates made of materials such as Indium Tin Oxide (ITO), and some touch screens can be formed by partially integrating touch sensing circuitry into a display pixel stackup (i.e., the stacked material layers forming the display pixels). Touch events can be sensed on the touch sensor panels by detecting changes in the self-capacitance of the conductive plates (touch pixels). Sometimes, a touch sensor panel can be a partially bootstrapped touch sensor panel in which some of the touch pixels can be driven and sensed, some of the touch pixels can be driven but not sensed, and some of the touch pixels can be grounded. However, in some examples, a user or object interacting with the touch sensor panel may not be fully grounded, which can cause attenuation of self-capacitance touch signals detected on the touch sensor panel. The examples of the disclosure provide various techniques for reducing the effects of such ungrounded interaction with the touch sensor panel, including with a partially bootstrapped touch sensor panel. In some examples, self-capacitance and mutual capacitance measurements can be obtained on the touch sensor panel, and the self-capacitance measurements can be scaled based on the self- and mutual capacitance measurements to effectively reduce the attenuation of the self-capacitance measurements.
In the following description of examples, reference is made to the accompanying drawings which form a part hereof, and in which it is shown by way of illustration specific examples that can be practiced. It is to be understood that other examples can be used and structural changes can be made without departing from the scope of the disclosed examples.
Some capacitive touch sensor panels can be formed by a matrix of substantially transparent conductive plates made of materials such as Indium Tin Oxide (ITO), and some touch screens can be formed by partially integrating touch sensing circuitry into a display pixel stackup (i.e., the stacked material layers forming the display pixels). Touch events can be sensed on the touch sensor panels by detecting changes in the self-capacitance of the conductive plates (touch pixels). Sometimes, a touch sensor panel can be a partially bootstrapped touch sensor panel in which some of the touch pixels can be driven and sensed, some of the touch pixels can be driven but not sensed, and some of the touch pixels can be grounded. However, in some examples, a user or object interacting with the touch sensor panel may not be fully grounded, which can cause attenuation of self-capacitance touch signals detected on the touch sensor panel. The examples of the disclosure provide various techniques for reducing the effects of such ungrounded interaction with the touch sensor panel, including with a partially bootstrapped touch sensor panel. In some examples, self-capacitance and mutual capacitance measurements can be obtained on the touch sensor panel, and the self-capacitance measurements can be scaled based on the self- and mutual capacitance measurements to effectively reduce the attenuation of the self-capacitance measurements.
In some examples, touch screens 124, 126 and 128 can be based on self-capacitance. A self-capacitance based touch system can include a matrix of small plates of conductive material that can be referred to as a touch pixel or a touch pixel electrode. For example, a touch screen can include a plurality of touch pixels, each touch pixel corresponding to a particular location on the touch screen at which touch or proximity (i.e., a touch or proximity event) is to be sensed. Such a touch screen can be referred to as a pixelated self-capacitance touch screen. During operation, the touch pixel can be stimulated with an AC waveform, and the self-capacitance of the touch pixel can be measured. As an object approaches the touch pixel, the self-capacitance of the touch pixel can change. This change in the self-capacitance of the touch pixel can be detected and measured by the touch sensing system to determine the positions of multiple objects when they touch, or come in proximity to, the touch screen.
Touch screen 220 can be a self-capacitance touch screen, and can include touch sensing circuitry that can include a capacitive sensing medium having a plurality of touch pixels 222 (e.g., a pixelated self-capacitance touch screen). Touch pixels 222 can be coupled to sense channels 208 in touch controller 206, can be driven by stimulation signals from the sense channels through drive/sense interface 225, and can be sensed by the sense channels through the drive/sense interface as well, as described above. Labeling the conductive plates used to detect touch (i.e., touch pixels 222) as “touch pixels” can be particularly useful when touch screen 220 is viewed as capturing an “image” of touch. In other words, after touch controller 206 has determined an amount of touch detected at each touch pixel 222 in touch screen 220, the pattern of touch pixels in the touch screen at which a touch occurred can be thought of as an “image” of touch (e.g., a pattern of fingers touching the touch screen).
Computing system 200 can also include a host processor 228 for receiving outputs from touch processor 202 and performing actions based on the outputs. For example, host processor 228 can be connected to program storage 232 and a display controller, such as an LCD driver 234. The LCD driver 234 can provide voltages on select (gate) lines to each pixel transistor and can provide data signals along data lines to these same transistors to control the pixel display image as described in more detail below. Host processor 228 can use LCD driver 234 to generate an image on touch screen 220, such as an image of a user interface (UI), and can use touch processor 202 and touch controller 206 to detect a touch on or near touch screen 220. The touch input can be used by computer programs stored in program storage 232 to perform actions that can include, but are not limited to, moving an object such as a cursor or pointer, scrolling or panning, adjusting control settings, opening a file or document, viewing a menu, making a selection, executing instructions, operating a peripheral device connected to the host device, answering a telephone call, placing a telephone call, terminating a telephone call, changing the volume or audio settings, storing information related to telephone communications such as addresses, frequently dialed numbers, received calls, missed calls, logging onto a computer or a computer network, permitting authorized individuals access to restricted areas of the computer or computer network, loading a user profile associated with a user's preferred arrangement of the computer desktop, permitting access to web content, launching a particular program, encrypting or decoding a message, and/or the like. Host processor 228 can also perform additional functions that may not be related to touch processing.
Note that one or more of the functions described herein, including the configuration and operation of electrodes and sense channels, can be performed by firmware stored in memory (e.g., one of the peripherals 204 in
The firmware can also be propagated within any transport medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In the context of this document, a “transport medium” can be any medium that can communicate, propagate or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The transport medium can include, but is not limited to, an electronic, magnetic, optical, electromagnetic or infrared wired or wireless propagation medium.
In some examples, touch screen 220 can be an integrated touch screen in which touch sensing circuit elements of the touch sensing system can be integrated into the display pixel stackups of a display. The circuit elements in touch screen 220 can include, for example, elements that can exist in LCD or other displays (e.g., OLED displays), such as one or more pixel transistors (e.g., thin film transistors (TFTs)), gate lines, data lines, pixel electrodes and common electrodes. In any given display pixel, a voltage between a pixel electrode and a common electrode can control a luminance of the display pixel. The voltage on the pixel electrode can be supplied by a data line through a pixel transistor, which can be controlled by a gate line. It is noted that circuit elements are not limited to whole circuit components, such as a whole capacitor, a whole transistor, etc., but can include portions of circuitry, such as only one of the two plates of a parallel plate capacitor.
In the example shown in
In general, each of the touch sensing circuit elements may be either a multi-function circuit element that can form part of the touch sensing circuitry and can perform one or more other functions, such as forming part of the display circuitry, or may be a single-function circuit element that can operate as touch sensing circuitry only. Similarly, each of the display circuit elements may be either a multi-function circuit element that can operate as display circuitry and perform one or more other functions, such as operating as touch sensing circuitry, or may be a single-function circuit element that can operate as display circuitry only. Therefore, in some examples, some of the circuit elements in the display pixel stackups can be multi-function circuit elements and other circuit elements may be single-function circuit elements. In other examples, all of the circuit elements of the display pixel stackups may be single-function circuit elements.
In addition, although examples herein may describe the display circuitry as operating during a display phase, and describe the touch sensing circuitry as operating during a touch sensing phase, it should be understood that a display phase and a touch sensing phase may be operated at the same time, e.g., partially or completely overlap, or the display phase and touch sensing phase may operate at different times. Also, although examples herein describe certain circuit elements as being multi-function and other circuit elements as being single-function, it should be understood that the circuit elements are not limited to the particular functionality in other examples. In other words, a circuit element that is described in one example herein as a single-function circuit element may be configured as a multi-function circuit element in other examples, and vice versa.
The common electrodes 352 (i.e., touch pixels) and display pixels 351 of
While the discussion in this disclosure focuses on touch screens, it is understood that some or all of the examples of the disclosure can similarly be implemented in a touch sensor panel (i.e., a panel having touch sensing circuitry without display circuitry). For brevity, however, the examples of the disclosure have been, and will be, described in the context of a touch screen.
In self-capacitance touch screens, any capacitance seen by a self-capacitance touch pixel can affect the total self-capacitance measured at that touch pixel, and can thus affect touch measurements at that touch pixel. Therefore, in some examples, it can be beneficial to “bootstrap” the touch screen in order to reduce or cancel any unwanted capacitances that may contribute to the total self-capacitance measured at a touch pixel. “Bootstrapping” the touch screen can entail driving one or more portions of a touch screen with a voltage at the same frequency and phase as is used to drive and sense a touch pixel (as described above), so that capacitances that may exist between the touch pixel and the one or more portions of the touch screen can be effectively canceled.
Each of touch pixels 402, 404, 406 and 408 can be driven and sensed (signified by “DS”) simultaneously (or driven simultaneously and sensed sequentially) with the same stimulation signal from stimulation source 414, which can be coupled to the system ground 416 of whichever device touch screen 400 can be included in (e.g., any of the devices illustrated in
Finger 418 can have capacitance Cbody between it and earth ground, where Cbody can represent a human body to earth ground capacitance, for example. Finger 418 can also have capacitance CF-SG between it and the device in which touch screen 400 can be included, where CF-SG can represent a finger-to-system (device) ground capacitance. The device in which touch screen 400 can be included can have capacitance CSG-EG between it and earth ground, where CSG-EG can represent a system (device) ground-to-earth ground capacitance. In some examples, Cbody can be much larger than CF-SG and CSG-EG. Thus, finger 418 can be considered to be effectively shorted to earth ground through Cbody. Therefore, CSG-EG can be considered to be between system (device) ground and finger 418 (which can be shorted to earth ground); and, from before, CF-SG can be another capacitance between system (device) ground and finger 418. As a result, CF-SG and CSG-EG can be parallel capacitances that can exist between finger 418 and system ground 416. Cg 420, a total capacitance between finger 418 and system ground, can then be expressed as:
Cg=CF-SGCSG-EG (1)
Current from touch pixels 402, 404, 406 and 408 can flow through finger 418 and Cg 420 to system ground 416. However, because an impedance associated with Cg 420 can at least partially isolate finger 418 from system ground 416, the voltage at finger 418 can move further and further away from system ground 416 as more current flows from touch pixels 402, 404, 406 and 408 through finger 418 to system ground 416. Because each of touch pixels 402, 404, 406 and 408 can be driven and sensed simultaneously, current from all four touch pixels can flow through finger 418 to system ground 422. As a result, the voltage at finger 418 can be relatively high with respect to system ground, and relatively little voltage can be dropped across C1 403, C2 405, C3 407 and C4 409—this can result in an reduction of charge coupling and attenuation of the capacitance sensed at each of the touch pixels associated with capacitances C1, C2, C3 and C4. This attenuation can be reflected in an attenuation factor by which the full C1 403, C2 405, C3 407 and C4 409 capacitances can be multiplied, which can be expressed as:
α=Cg/CTotal (2)
where α can represent the attenuation factor, and:
CTotal=Cg+C1+C2+C3+C4 (3)
Thus, the effective self-capacitance sensed at any one touch pixel can be expressed as:
CEff,X=α*CX (4)
where CX can be C1 403, C2 405, C3 407 or C4 409. This attenuation of the sensed self-capacitance of the touch pixels can make it difficult to sense touch on touch screen 400. In examples in which touch screen 400 includes more touch pixels that are all being driven and sensed simultaneously, and in which many parts of a user's hand (or other object) are in proximity to/touching the touch screen (e.g., the user's palm, thumb and many fingers touching the touch screen), the attenuation factor α can be as low as 4%. Detecting touch with so much touch signal attenuation can be difficult. In some examples, the amount of touch signal attenuation that can be exhibited can be reduced by partially, rather than fully, bootstrapping the touch screen.
Partially bootstrapped touch screen 401 can exhibit most if not all of the benefits of fully bootstrapped touch screen 400. Specifically, capacitances between touch pixel 402 (the touch pixel of interest—i.e., the touch pixel for which the total self-capacitance is being sensed) and touch pixels 404 and 406 can continue to be effectively canceled, because touch pixels 402, 404 and 406 can be driven with the same stimulation signal. Capacitances between touch pixel 402 and touch pixel 408 may not be canceled because touch pixel 408 can be coupled to system ground 416; however, because touch pixels 402 and 408 can be diagonally disposed with respect to one another, any capacitances that may exist between the two can be relatively small. Therefore, the total self-capacitance sensed at touch pixel 402 can be substantially free of capacitances that may exist between touch pixel 402 and the other touch pixels, which can be one benefit of a fully bootstrapped touch screen.
Partially bootstrapped touch screen 401 can also exhibit less touch signal attenuation than fully bootstrapped touch screen 400. Whereas in touch screen 400 the only current path from the touch pixels to ground could be through finger 418 and Cg 420, in touch screen 401, the current from the touch pixels to ground can flow through C4 409 to system ground 416 as well as through finger 418 and Cg 420. Therefore, the voltage at finger 418 can be brought down closer to system ground 416, which can result in more voltage being dropped across C1 403 than in touch screen 400; thus, more charge coupling and less attenuation of C1 403 can be sensed at touch pixel 402. The partially bootstrapped touch screen attenuation factor can be expressed as:
α=(Cg+C4)/CTotal (5)
Similar to before, the effective self-capacitance sensed at touch pixel 402 can be expressed as:
CEff,1=α*C1 (6)
In examples in which touch screen 401 includes more touch pixels that are being driven, sensed, and grounded in the illustrated pattern, and in which many parts of a user's hand are in proximity to/touching the touch screen (e.g., the user's palm, thumb and many fingers touching the touch screen), the attenuation factor can be increased from 4% in the fully bootstrapped touch screen to ˜25% in the partially bootstrapped touch screen. This increase can result from the additional C4 term that can be included in the numerator of equation (5), and can relax a signal-to-noise requirement of the touch screen sensing circuitry by more than six times as compared with touch screen 400, which can ease the difficulty of sensing touch on the touch screen.
Circuitry such as sense circuitry 514, stimulation buffer 516 and AC ground buffer 518 need not be permanently coupled to the touch pixels for proper touch screen operation. Instead, such circuitry can be coupled to the touch pixels through switch array 552 such that appropriate touch pixels can be coupled to appropriate circuitry only when needed. This can allow multiple touch pixels to share common circuitry, which can reduce the amount of circuitry needed for touch screen operation. For example, a first touch pixel that is to be driven and sensed (a first DS touch pixel) can be coupled to sense circuitry 514 using switch array 552. When a second touch pixel is to be driven and sensed (a second DS touch pixel), switch array can couple that same sense circuitry 514 to the second touch pixel to drive and sense the second touch pixel instead of the first touch pixel. Such switch array 552 operation can analogously apply to couple stimulation buffers 516 and AC ground buffers 518 to appropriate touch pixels. Switch array 552 can be any suitable switching network that can couple touch pixels to appropriate circuitry in amplifier circuitry section 554.
In some examples, touch pixels on touch screen 550 can be stimulated in a single stimulation configuration (e.g., a sense circuitry 514 in amplifier circuitry section 554 can stimulate and sense a single touch pixel at any moment in time). In some examples, touch pixels on touch screen 550 can be stimulated in a multi-stimulation configuration (e.g., a sense circuitry 514 in amplifier circuitry section 554 can stimulate and sense multiple touch pixels at any moment in time). In a multi-stimulation configuration, any suitable multi-stimulation scheme can be utilized, and can be implemented using switch array 552 as appropriate. For example, a Hadamard/Circulant matrix driving and sensing scheme can be utilized with receive-side coding in which the distribution of touch pixels that receive a positive phase stimulation signal and touch pixels that receive a negative phase stimulation signal can be equal for each touch scanning step, except for a common mode touch scanning step.
As illustrated in
A first self-capacitance scan can be performed during a first self-capacitance scan time period, the touch pixels can be driven and sensed as shown in configuration 602. Specifically, the top-left touch pixel can be driven and sensed (DS touch pixel), the top-right and bottom-left touch pixels can be driven but not sensed (D touch pixels), and the bottom-right touch pixel can be grounded (G touch pixel). The mechanisms for driving, sensing and/or grounding these touch pixels can be as described previously, and the details of which will not be repeated here for brevity.
After the first self-capacitance scan time period, a second self-capacitance scan can be performed during a second self-capacitance scan time period. During the second self-capacitance scan time period, the touch pixels can be driven and sensed as shown in configuration 604. Specifically, the top-right touch pixel can be driven and sensed, the top-left and bottom-right touch pixels can be driven but not sensed, and the bottom-left touch pixel can be grounded. In other words, the driving, sensing and grounding scheme of configuration 602 can be rotated in a clockwise direction to arrive at configuration 604. The driving, sensing and grounding scheme of configuration 604 can similarly be rotated in a clockwise direction to arrive at configuration 606 during a third self-capacitance scan time period, and again rotated in a clockwise direction to arrive at configuration 608 during a fourth self-capacitance scan time period. After the four self-capacitance scan time periods have elapsed, all of the touch pixels on the touch screen can have been driven and sensed—thus a full touch image can be captured—while the benefits of the partially bootstrapped driving and sensing scheme described previously can continue to be realized. It is understood that other driving and sensing configurations can be utilized to scan every touch pixel on the touch screen, and that the provided configurations are only one example. For example, the driving and sensing configurations can be rotated in a counter-clockwise direction instead of in a clockwise direction to achieve substantially the same result. Further, in some examples, the DS and G touch pixels need not be diagonally disposed, but rather can be adjacent touch pixels the techniques described in this disclosure can be appropriately adjusted for proper operation in such examples. Other spatial arrangement of DS, D and/or G touch pixels across the touch screen are similarly contemplated.
Each of the four driving and sensing configurations illustrated in
α1=(Cg+ΣC4)/CTotal (7)
where Cg can represent a capacitance between a finger (or other object) and system ground, ΣC4 can be the total self-capacitance associated with touch pixels in position 4 (i.e., bottom-right) across the entire touch screen, and CTotal can be Cg+ΣC1+ΣC2+ΣC3+ΣC4. ΣC1, ΣC2, and ΣC3 can be the total self-capacitance associated with touch pixels in positions 1 (top-left), 2 (top-right) and 3 (bottom-left), respectively, across the entire touch screen.
The attenuation factors for configurations 604, 606 and 608, respectively, can be analogously expressed as:
α2=(Cg+ΣC3)/CTotal (8)
α3=(Cg+ΣC2)/CTotal (9)
α4=(Cg+ΣC1)/CTotal (10)
While the attenuation factors for the partially bootstrapped touch screen of the disclosure can be greater than the attenuation factor for a fully bootstrapped touch screen as described with respect to
One way of canceling or correcting for the attenuation in the partially bootstrapped touch screen can be to scale the self-capacitance values measured at the touch screen by a scaling factor that can be the inverse of the above attenuation factors. In this way, the attenuation can be effectively completely canceled, and the unattenuated self-capacitance values for each touch pixel can be substantially recovered—or, the self-capacitance values associated with a well-grounded finger (or object) can be substantially determined. Exemplary scaling factors with which to scale the measured self-capacitance values for each of the driving and sensing configurations illustrated in
K1=1/α1=CTotal(Cg+ΣC4) (11)
K2=1/α2=CTotal(Cg+ΣC3) (12)
K3=1/α3=CTotal(Cg+ΣC2) (13)
K4=1/α4=CTotal(Cg+ΣC1) (14)
One difficulty in applying the above scaling can be that each of Cg, ΣC1. ΣC2, ΣC3 and ΣC4 can be unknown quantities, as ΣC1, ΣC2, ΣC3 and ΣC4 can represent the unattenuated total self-capacitances of touch pixels in those respective positions, not the measured (i.e., attenuated) self-capacitances of those touch pixels. Cg, the capacitance between a finger (or other object) and system ground can also be unknown. As a result, it can be necessary to perform further measurements in addition to the self-capacitance measurements discussed above to be able to determine the above scaling factors.
One way to determine the above scaling factors can be to perform one or more mutual capacitance measurements, in addition to the self-capacitance measurements, using the touch pixels of the disclosure.
A first mutual capacitance scan can be performed during a first mutual capacitance scan time period. During the first mutual capacitance scan time period, the touch pixels of the touch screen can be driven and sensed as shown in configuration 610. Specifically, the top-left touch pixel can be driven (D touch pixel), the bottom-right touch pixel can be sensed (S touch pixel), and the top-right and bottom-left touch pixels (G touch pixels) can be grounded. This configuration 610 can allow for measurement of a mutual capacitance between the D and S touch pixels. The first mutual capacitance measurement obtained during the first mutual capacitance scan time period can be a common mode measurement (i.e., all of the sensed mutual capacitance signals between D and S touch pixels across the touch screen can be added together). In some examples, this common mode measurement can be obtained by stimulating multiple D touch pixels with a single stimulation buffer, grounding multiple G touch pixels with a single AC ground buffer, and/or sensing multiple S touch pixels with a single sense amplifier (e.g., sense circuitry). In some examples, touch pixels can be driven, sensed and/or grounded by individual stimulation buffers, sense amplifiers and/or AC ground buffers, and the resulting sense outputs can be added together to obtain the common mode mutual capacitance measurement. The mechanisms for driving, sensing and/or grounding the touch pixels can be similar to the schemes described previously (e.g., with respect to
After the first mutual capacitance scan time period, a second mutual capacitance scan can be performed during a second mutual capacitance scan time period. During the second mutual capacitance scan time period, the touch pixels can be driven and sensed as shown in configuration 612. Specifically, the top-right touch pixel can be driven, the bottom-left touch pixel can be sensed, and the top-left and bottom-right touch pixels can be grounded. The second mutual capacitance measurement obtained during the second mutual capacitance scan time period can also be a common mode measurement (i.e., all of the sensed mutual capacitance signals between D and S touch pixels across the touch screen can be added together). After the two mutual capacitance scan time periods have elapsed, mutual capacitance measurements between each pair of diagonal touch pixels on the touch screen can have been obtained. It is understood that other driving and sensing configurations can be utilized to obtain the mutual capacitance measurements of the examples of the disclosure, and that the provided configurations are only one example. For example, in configuration 610, instead of driving the top-left touch pixel and sensing the bottom-right touch pixel, the bottom-right touch pixel can be driven, and the top-left touch pixel can be sensed to achieve substantially the same result. It is understood that “mutual capacitance,” as used in this disclosure, can refer to the nominal capacitance seen between multiple components (e.g., between D and S touch pixels) of the touch screen, or the change in the nominal capacitance seen between the multiple components of the touch screen, as appropriate.
Specifically, the total common mode through-finger mutual capacitance measured in configuration 610 between the D touch pixel and the S touch pixel can be expressed as:
ΣCM14=(ΣC1*ΣC4)/CTotal−ΣCNM14 (15)
where ΣC1 and ΣC4 can be the total self-capacitance between touch pixels in positions 1 (top-left) and 4 (bottom-right), respectively, and finger 618 across the entire touch screen. CTotal can be Cg+ΣC1+ΣC2+ΣC3+ΣC4, as before. Finally, ΣCNM14 can be the total direct mutual capacitance (“near mutual capacitance”) between touch pixels in positions 1 and 4.
Similarly, the total common mode through-finger mutual capacitance measured in configuration 612 between the D touch pixel and the S touch pixel can be expressed as:
ΣCM23=(ΣC2*ΣC3)CTotal−ΣCNM23 (16)
where ΣC2 and ΣC3 can be the total self-capacitance between touch pixels in positions 2 (top-right) and 3 (bottom-left), respectively, and finger 618 across the entire touch screen. ΣCNM23 can be the total direct mutual capacitance (“near mutual capacitance”) between touch pixels in positions 2 and 3.
Because ΣCNM14 and ΣCNM23 can be unwanted terms, approximations for those terms that can be based on electrical capacitance field simulation results can be determined and substituted into equations (15) and (16). These approximations can be based on one or more of the geometry/spacing of the touch pixels and the finger (object) position with respect to the touch pixels. Specifically, an approximate relationship between the self-capacitances and the mutual capacitance between diagonal touch pixels can be determined using electrical capacitance field simulations, and can be expressed as:
ΣCNM14=β*(ΣC1*ΣC4)/(ΣC1+ΣC4) (17)
ΣCNM23=β*(ΣC2*ΣC3)/(ΣC2+ΣC3) (18)
where β can be approximated as a constant. By substituting equations (17) and (18) into equations (15) and (16), expressions for ΣCM14 and ΣCM23 can be obtained that can be functions of C1, C2, C3, and C4. Additionally, actual measurements for ΣCM14 and ΣCM23 can be obtained using the above-discussed mutual capacitance measurements.
In addition to the above measurements for ΣCM14 and ΣCM23, four self-capacitance measurements can be obtained across the touch screen during the four self-capacitance scan time periods discussed previously. These four measurements can be expressed as:
ΣXC1=α1*ΣC1−ΣCNM14 (19)
ΣXC2=α2*ΣC2−ΣCNM23 (20)
ΣXC3=α3*ΣC3−ΣCNM23 (21)
ΣXC4=α4*ΣC4−ΣCNM14 (22)
where ΣXCy can represent the total self-capacitance measured at touch pixels at position y across the touch screen, αy can be as expressed in equations (7)-(10), ΣCy can be the total self-capacitance at touch pixels at position y across the touch screen, and ΣCNMxy can represent the total direct mutual capacitance (“near mutual capacitance”) between touch pixels at positions x and y across the touch screen. This near mutual capacitance term can affect the self-capacitance that can be measured at each touch pixel, because this mutual capacitance can exist between DS touch pixels and G touch pixels, and can behave in a manner opposite to that of the self-capacitance (i.e., the absolute value of the near mutual capacitance can increase when the self-capacitance increases, but the change in the mutual capacitance can be opposite in sign to that of the change in self-capacitance). Therefore, the near mutual capacitance term can be included in equations (19)-(22), as shown.
Equations (15)-(16) and (19)-(22) can be manipulated to obtain equations for ΣC1, ΣC2, ΣC3 and ΣC4—the unattenuated total self-capacitance at touch pixels at positions 1, 2, 3 and 4, respectively. Specifically, these equations can be determined to be:
In equations (23)-(26), the only unknown quantities can be Cg and β, though β can be approximated as an appropriate constant per an electrical capacitance field simulation result. The remaining terms can be known measurement quantities resulting from the four self-capacitance measurements and the two mutual capacitance measurements (e.g., ΣXC4, ΣCM14, etc.). Respective ones of equations (23)-(26) can be substituted into scaling factor equations (11)-(14) to obtain expressions for K1, K2, K3 and K4. For example, equation (26) can be substituted into equation (11) to obtain the following expression for K1:
where:
In equation (27), the only unknown quantity can be β, as Cg from equations (11) and (26) can cancel out of the numerator and the denominator. β can be approximated as an appropriate constant per an electrical capacitance field simulation result, and the remaining terms can be known measurement quantities (e.g., ΣXC4, ΣCM14, etc.). Thus, K1 can be determined based on the four self-capacitance and two mutual capacitance measurements obtained on the touch screen of the disclosure. A self-capacitance measurement obtained from a touch pixel at position 1 on the touch screen can then be scaled by K1 to effectively cancel the attenuation that can result from partially bootstrapping the touch screen. Self-capacitance measurements obtained from touch pixels at positions 2, 3 and 4 on the touch screen can analogously be scaled by the appropriate scaling factors represented by the following equations to effectively cancel their respective attenuation:
Alternatively to scaling touch pixels at respective positions with individual scaling factors, in some examples, all self-capacitance measurements obtained at all touch pixels on the touch screen can be scaled by an average scaling factor. The average scaling factor can provide sufficient accuracy such that individualized scaling factors may not be required. The average scaling factor of the partially bootstrapped touch screen can be expressed as:
As described above, attenuation of touch signals that may be detected on the touch screen of the disclosure can be effectively canceled by scaling the touch signals with scaling factors, which can be determined using four self-capacitance measurements and two mutual capacitance measurements.
Touch frame 630 can include four self-capacitance scan steps (SC1632, SC2634, SC3636 and SC4638) and two common mode mutual capacitance scan steps (MC1640 and MC2642). The four self-capacitance scan steps and two common mode mutual capacitance scan steps can correspond to the self-capacitance and mutual capacitance measurements described previously. Touch frame 630 can also include additional scan steps as needed (e.g., a spectrum analysis step to determine low noise touch screen operating frequencies). The lengths of time of the self-capacitance scan steps SC1632, SC2634, SC3636 and SC4638 can be substantially the same, and the lengths of time of the mutual capacitance scan steps MC1640 and MC2642 can be substantially the same. The lengths of time of the self-capacitance scan steps can be the same as the lengths of time of the mutual capacitance scan steps or can be different from the lengths of time of the mutual capacitance scan steps. The illustrated ordering of the self-capacitance and mutual capacitance scan steps is exemplary only, and it is understood that the illustrated order can be modified without departing from the scope of the disclosure (e.g., the mutual capacitance scan steps can be interspersed with the self-capacitance scan steps).
Thus, the examples of the disclosure provide one or more configurations for compensating a touch signal detected on a partially bootstrapped pixelated self-capacitance touch screen resulting from touch activity by an ungrounded user or object.
Therefore, according to the above, some examples of the disclosure are directed to a touch controller comprising: sense circuitry configured to: sense, during a self-capacitance portion of a touch frame, first one or more self-capacitances associated with a first plurality of touch pixels on a touch sensor panel, and sense, during a mutual capacitance portion of the touch frame, first one or more mutual capacitances associated with the first plurality of touch pixels; and a touch processor configured to, based on the first one or more self-capacitances and the first one or more mutual capacitances, sense a single touch event associated with the touch frame. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the first one or more self-capacitances comprise a first self-capacitance associated with a first touch pixel, and the first one or more mutual capacitances comprise a first mutual-capacitance associated with the first touch pixel and a second touch pixel. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the touch processor is further configured to adjust the first self-capacitance based on the first mutual capacitance. Additionally or alternatively to one or more of the examples disclosed above, in some examples, adjusting the first self-capacitance comprises scaling the first self-capacitance by a first scaling factor based on the first self-capacitance and the first mutual capacitance. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the first one or more self-capacitances further comprise a second self-capacitance associated with the second touch pixel, a third self-capacitance associated with a third touch pixel, and a fourth self-capacitance associated with a fourth touch pixel on the touch sensor panel, the first one or more mutual capacitances further comprise a second mutual capacitance associated with the third touch pixel and the fourth touch pixel, and adjusting the first self-capacitance comprises adjusting the first self-capacitance based on the first, second, third and fourth self-capacitances, and the first and second mutual capacitances. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the touch processor is further configured to: adjust the second self-capacitance based on the first, second, third and fourth self-capacitances, and the first and second mutual capacitances. Additionally or alternatively to one or more of the examples disclosed above, in some examples, adjusting the first self-capacitance comprises scaling the first self-capacitance by a first scaling factor, and adjusting the second self-capacitance comprises scaling the second self-capacitance by a second scaling factor, different from the first scaling factor. Additionally or alternatively to one or more of the examples disclosed above, in some examples, adjusting the first self-capacitance comprises scaling the first self-capacitance by an average scaling factor, and adjusting the second self-capacitance comprises scaling the second self-capacitance by the average scaling factor. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the sense circuitry is further configured to: sense second one or more self-capacitances associated with a second plurality of touch pixels on the touch sensor panel, different from the first plurality of touch pixels, and sense second one or more mutual capacitances associated with the second plurality of touch pixels, and the touch processor is further configured to, based on the second one or more self-capacitances and the second one or more mutual capacitances, sense the single touch event. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the sense circuitry is configured to concurrently sense the first one or more self-capacitances and the second one or more self-capacitances. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the sense circuitry is configured to sequentially sense the first one or more self-capacitances and the second one or more self-capacitances.
Some examples of the disclosure are directed to a method comprising: sensing, during a self-capacitance portion of a touch frame, first one or more self-capacitances associated with a first plurality of touch pixels on a touch sensor panel; sensing, during a mutual capacitance portion of the touch frame, first one or more mutual capacitances associated with the first plurality of touch pixels; and based on the first one or more self-capacitances and the first one or more mutual capacitances, sensing a single touch event associated with the touch frame. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the first one or more self-capacitances comprise a first self-capacitance associated with a first touch pixel, and the first one or more mutual capacitances comprise a first mutual-capacitance associated with the first touch pixel and a second touch pixel. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the method further comprises adjusting the first self-capacitance based on the first mutual capacitance. Additionally or alternatively to one or more of the examples disclosed above, in some examples, adjusting the first self-capacitance comprises scaling the first self-capacitance by a first scaling factor based on the first self-capacitance and the first mutual capacitance. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the first one or more self-capacitances further comprise a second self-capacitance associated with the second touch pixel, a third self-capacitance associated with a third touch pixel, and a fourth self-capacitance associated with a fourth touch pixel on the touch sensor panel, the first one or more mutual capacitances further comprise a second mutual capacitance associated with the third touch pixel and the fourth touch pixel, and adjusting the first self-capacitance comprises adjusting the first self-capacitance based on the first, second, third and fourth self-capacitances, and the first and second mutual capacitances. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the method further comprises adjusting the second self-capacitance based on the first, second, third and fourth self-capacitances, and the first and second mutual capacitances. Additionally or alternatively to one or more of the examples disclosed above, in some examples, adjusting the first self-capacitance comprises scaling the first self-capacitance by a first scaling factor, and adjusting the second self-capacitance comprises scaling the second self-capacitance by a second scaling factor, different from the first scaling factor. Additionally or alternatively to one or more of the examples disclosed above, in some examples, adjusting the first self-capacitance comprises scaling the first self-capacitance by an average scaling factor, and adjusting the second self-capacitance comprises scaling the second self-capacitance by the average scaling factor. Additionally or alternatively to one or more of the examples disclosed above, in some examples, the method further comprises: sensing second one or more self-capacitances associated with a second plurality of touch pixels on the touch sensor panel, different from the first plurality of touch pixels, and sensing second one or more mutual capacitances associated with the second plurality of touch pixels, and based on the second one or more self-capacitances and the second one or more mutual capacitances, sensing the single touch event. Additionally or alternatively to one or more of the examples disclosed above, in some examples, sensing the first one or more self-capacitances is concurrent with sensing the second one or more self-capacitances. Additionally or alternatively to one or more of the examples disclosed above, in some examples, sensing the second one or more self-capacitances is sequential to sensing the first one or more self-capacitances.
Some examples of the disclosure are directed to a touch sensor panel comprising: a plurality of touch pixels, the plurality of touch pixels including a first touch pixel, a second touch pixel, a third touch pixel, and a fourth touch pixel; and sense circuitry configured to: during a first time period, drive the first touch pixel, and ground the fourth touch pixel; during a second time period, drive the second touch pixel, and ground the third touch pixel; during a third time period, drive the third touch pixel, and ground the second touch pixel; during a fourth time period, drive the fourth touch pixel, and ground the first touch pixel; during a fifth time period, drive the first touch pixel, and ground the second and third touch pixels; and during a sixth time period, drive the second touch pixel, and ground the first and fourth touch pixels.
Some examples of the disclosure are directed to a touch sensor panel comprising: a plurality of touch pixels, the plurality of touch pixels including a first touch pixel, a second touch pixel, a third touch pixel, and a fourth touch pixel; and sense circuitry configured to: during a first time period, sense a first self-capacitance of the first touch pixel; during a second time period, sense a second self-capacitance of the second touch pixel; during a third time period, sense a third self-capacitance of the third touch pixel; during a fourth time period, sense a fourth self-capacitance of the fourth touch pixel; during a fifth time period, sense a first mutual capacitance of the first touch pixel and the fourth touch pixel; and during a sixth time period, sense a second mutual capacitance of the second touch pixel and the third touch pixel.
Although examples of this disclosure have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of examples of this disclosure as defined by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 15/507,722, filed Feb. 28, 2017 and published on Oct. 5, 2017 as U.S. Patent Publication No. 2017-0285804, which is a National Phase application under 35 U.S.C. § 371 of International Application No. PCT/US2014/056795, filed Sep. 22, 2014, the contents of which are hereby incorporated by reference in their entirety for all intended purposes.
Number | Name | Date | Kind |
---|---|---|---|
4087625 | Dym et al. | May 1978 | A |
4090092 | Serrano | May 1978 | A |
4304976 | Gottbreht et al. | Dec 1981 | A |
4475235 | Graham | Oct 1984 | A |
4550221 | Mabusth | Oct 1985 | A |
4659874 | Landmeier | Apr 1987 | A |
5194862 | Edwards | Mar 1993 | A |
5317919 | Awtrey | Jun 1994 | A |
5459463 | Gruaz et al. | Oct 1995 | A |
5483261 | Yasutake | Jan 1996 | A |
5488204 | Mead et al. | Jan 1996 | A |
5543590 | Gillespie et al. | Aug 1996 | A |
5631670 | Tomiyoshi et al. | May 1997 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5835079 | Shieh | Nov 1998 | A |
5841078 | Miller et al. | Nov 1998 | A |
5844506 | Binstead | Dec 1998 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
5914465 | Allen et al. | Jun 1999 | A |
5923997 | Miyanaga et al. | Jul 1999 | A |
6057903 | Colgan et al. | May 2000 | A |
6137427 | Binstead | Oct 2000 | A |
6163313 | Aroyan et al. | Dec 2000 | A |
6188391 | Seely et al. | Feb 2001 | B1 |
6239788 | Nohno et al. | May 2001 | B1 |
6310610 | Beaton et al. | Oct 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6329044 | Inoue et al. | Dec 2001 | B1 |
6452514 | Philipp | Sep 2002 | B1 |
6456952 | Nathan | Sep 2002 | B1 |
6690387 | Zimmerman et al. | Feb 2004 | B2 |
6730863 | Gerpheide et al. | May 2004 | B1 |
6970160 | Mulligan et al. | Nov 2005 | B2 |
7015894 | Morohoshi | Mar 2006 | B2 |
7030860 | Hsu et al. | Apr 2006 | B1 |
7129935 | Mackey | Oct 2006 | B2 |
7138686 | Banerjee et al. | Nov 2006 | B1 |
7180508 | Kent et al. | Feb 2007 | B2 |
7184064 | Zimmerman et al. | Feb 2007 | B2 |
7337085 | Soss | Feb 2008 | B2 |
7395717 | Deangelis et al. | Jul 2008 | B2 |
7412586 | Rajopadhye et al. | Aug 2008 | B1 |
7504833 | Seguine | Mar 2009 | B1 |
7538760 | Hotelling et al. | May 2009 | B2 |
7548073 | Mackey et al. | Jun 2009 | B2 |
7580030 | Marten | Aug 2009 | B2 |
7639234 | Orsley | Dec 2009 | B2 |
7663607 | Hotelling et al. | Feb 2010 | B2 |
7701539 | Shih et al. | Apr 2010 | B2 |
7719523 | Hillis | May 2010 | B2 |
7864503 | Chang | Jan 2011 | B2 |
7907126 | Yoon et al. | Mar 2011 | B2 |
7932898 | Philipp et al. | Apr 2011 | B2 |
8026904 | Westerman | Sep 2011 | B2 |
8040142 | Bokma et al. | Oct 2011 | B1 |
8040321 | Peng et al. | Oct 2011 | B2 |
8040326 | Hotelling et al. | Oct 2011 | B2 |
8045783 | Lee et al. | Oct 2011 | B2 |
8058884 | Betancourt | Nov 2011 | B2 |
8068097 | Guanghai | Nov 2011 | B2 |
8120371 | Day et al. | Feb 2012 | B2 |
8125312 | Orr | Feb 2012 | B2 |
8169421 | Wright et al. | May 2012 | B2 |
8223133 | Hristov | Jul 2012 | B2 |
8258986 | Makovetskyy | Sep 2012 | B2 |
8259078 | Hotelling et al. | Sep 2012 | B2 |
8283935 | Liu et al. | Oct 2012 | B2 |
8319747 | Hotelling et al. | Nov 2012 | B2 |
8339286 | Cordeiro | Dec 2012 | B2 |
8441464 | Lin et al. | May 2013 | B1 |
8479122 | Hotelling et al. | Jul 2013 | B2 |
8484838 | Badaye et al. | Jul 2013 | B2 |
8487898 | Hotelling | Jul 2013 | B2 |
8507811 | Hotelling et al. | Aug 2013 | B2 |
8508495 | Hotelling et al. | Aug 2013 | B2 |
8525756 | Kwon | Sep 2013 | B2 |
8537126 | Yousefpor et al. | Sep 2013 | B2 |
8542208 | Krah et al. | Sep 2013 | B2 |
8576193 | Hotelling | Nov 2013 | B2 |
8593410 | Hong et al. | Nov 2013 | B2 |
8593425 | Hong et al. | Nov 2013 | B2 |
8614688 | Chang | Dec 2013 | B2 |
8633915 | Hotelling et al. | Jan 2014 | B2 |
8680877 | Lee et al. | Mar 2014 | B2 |
8760412 | Hotelling et al. | Jun 2014 | B2 |
8773146 | Hills et al. | Jul 2014 | B1 |
8810543 | Kurikawa | Aug 2014 | B1 |
8884917 | Seo | Nov 2014 | B2 |
8902172 | Peng et al. | Dec 2014 | B2 |
8922521 | Hotelling et al. | Dec 2014 | B2 |
8957874 | Elias | Feb 2015 | B2 |
8976133 | Yao et al. | Mar 2015 | B2 |
8982096 | Hong et al. | Mar 2015 | B2 |
8982097 | Kuzo et al. | Mar 2015 | B1 |
9001082 | Rosenberg et al. | Apr 2015 | B1 |
9024913 | Jung et al. | May 2015 | B1 |
9035895 | Bussat et al. | May 2015 | B2 |
9075463 | Pyo et al. | Jul 2015 | B2 |
9086774 | Hotelling et al. | Jul 2015 | B2 |
9189119 | Liao et al. | Nov 2015 | B2 |
9261997 | Chang et al. | Feb 2016 | B2 |
9292137 | Kogo | Mar 2016 | B2 |
9329674 | Lee et al. | May 2016 | B2 |
9329723 | Benbasat et al. | May 2016 | B2 |
9372576 | Westerman | Jun 2016 | B2 |
9582131 | Elias | Feb 2017 | B2 |
9690397 | Shepelev et al. | Jun 2017 | B2 |
9785295 | Yang et al. | Oct 2017 | B2 |
9804717 | Schropp, Jr. | Oct 2017 | B2 |
9874975 | Benbasat et al. | Jan 2018 | B2 |
9880655 | O'connor | Jan 2018 | B2 |
9886141 | Yousefpor | Feb 2018 | B2 |
9904427 | Co et al. | Feb 2018 | B1 |
9996175 | Hotelling et al. | Jun 2018 | B2 |
10001888 | Hong et al. | Jun 2018 | B2 |
10061433 | Imai et al. | Aug 2018 | B2 |
10073562 | Mo et al. | Sep 2018 | B2 |
10254896 | Mori et al. | Apr 2019 | B2 |
10365764 | Korapati et al. | Jul 2019 | B2 |
10725591 | Maharyta et al. | Jul 2020 | B1 |
11157109 | Shorten et al. | Oct 2021 | B1 |
20020152048 | Hayes | Oct 2002 | A1 |
20030076325 | Thrasher | Apr 2003 | A1 |
20030164820 | Kent | Sep 2003 | A1 |
20030210235 | Roberts | Nov 2003 | A1 |
20040017362 | Mulligan et al. | Jan 2004 | A1 |
20040061687 | Kent et al. | Apr 2004 | A1 |
20040090429 | Geaghan et al. | May 2004 | A1 |
20040188151 | Gerpheide et al. | Sep 2004 | A1 |
20040189617 | Gerpheide et al. | Sep 2004 | A1 |
20040239650 | Mackey | Dec 2004 | A1 |
20040241920 | Hsiao et al. | Dec 2004 | A1 |
20050007353 | Smith et al. | Jan 2005 | A1 |
20050012724 | Kent | Jan 2005 | A1 |
20050069718 | Voss-Kehl et al. | Mar 2005 | A1 |
20050073507 | Richter et al. | Apr 2005 | A1 |
20050083307 | Aufderheide et al. | Apr 2005 | A1 |
20050104867 | Westerman et al. | May 2005 | A1 |
20050126831 | Richter et al. | Jun 2005 | A1 |
20050146509 | Geaghan et al. | Jul 2005 | A1 |
20050239532 | Inamura | Oct 2005 | A1 |
20050270039 | Mackey | Dec 2005 | A1 |
20050270273 | Marten | Dec 2005 | A1 |
20050280639 | Taylor et al. | Dec 2005 | A1 |
20060001640 | Lee | Jan 2006 | A1 |
20060017710 | Lee et al. | Jan 2006 | A1 |
20060038791 | Mackey | Feb 2006 | A1 |
20060132463 | Lee et al. | Jun 2006 | A1 |
20060146484 | Kim et al. | Jul 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060202969 | Hauck | Sep 2006 | A1 |
20060227115 | Fry | Oct 2006 | A1 |
20060238522 | Westerman et al. | Oct 2006 | A1 |
20060267953 | Peterson et al. | Nov 2006 | A1 |
20060278444 | Binstead | Dec 2006 | A1 |
20060279548 | Geaghan | Dec 2006 | A1 |
20060293864 | Soss | Dec 2006 | A1 |
20070008299 | Hristov | Jan 2007 | A1 |
20070012665 | Nelson et al. | Jan 2007 | A1 |
20070023523 | Onishi | Feb 2007 | A1 |
20070074914 | Geaghan et al. | Apr 2007 | A1 |
20070075982 | Morrison et al. | Apr 2007 | A1 |
20070216637 | Ito | Sep 2007 | A1 |
20070216657 | Konicek | Sep 2007 | A1 |
20070229468 | Peng et al. | Oct 2007 | A1 |
20070229470 | Snyder et al. | Oct 2007 | A1 |
20070247443 | Philipp | Oct 2007 | A1 |
20070262963 | Xiao-Ping et al. | Nov 2007 | A1 |
20070262969 | Pak | Nov 2007 | A1 |
20070268273 | Westerman et al. | Nov 2007 | A1 |
20070268275 | Westerman et al. | Nov 2007 | A1 |
20070279395 | Philipp et al. | Dec 2007 | A1 |
20070279619 | Chang | Dec 2007 | A1 |
20070283832 | Hotelling | Dec 2007 | A1 |
20070285365 | Lee | Dec 2007 | A1 |
20070296709 | Guanghai | Dec 2007 | A1 |
20080006454 | Hotelling | Jan 2008 | A1 |
20080007533 | Hotelling | Jan 2008 | A1 |
20080018581 | Park et al. | Jan 2008 | A1 |
20080024456 | Peng et al. | Jan 2008 | A1 |
20080036742 | Garmon | Feb 2008 | A1 |
20080042986 | Westerman et al. | Feb 2008 | A1 |
20080042987 | Westerman et al. | Feb 2008 | A1 |
20080042992 | Kim | Feb 2008 | A1 |
20080047764 | Lee et al. | Feb 2008 | A1 |
20080062140 | Hotelling et al. | Mar 2008 | A1 |
20080062147 | Hotelling et al. | Mar 2008 | A1 |
20080062148 | Hotelling et al. | Mar 2008 | A1 |
20080062151 | Kent | Mar 2008 | A1 |
20080074398 | Wright | Mar 2008 | A1 |
20080136787 | Yeh et al. | Jun 2008 | A1 |
20080136792 | Peng et al. | Jun 2008 | A1 |
20080158145 | Westerman | Jul 2008 | A1 |
20080158146 | Westerman | Jul 2008 | A1 |
20080158167 | Hotelling et al. | Jul 2008 | A1 |
20080158172 | Hotelling et al. | Jul 2008 | A1 |
20080158174 | Land et al. | Jul 2008 | A1 |
20080158181 | Hamblin et al. | Jul 2008 | A1 |
20080158182 | Westerman | Jul 2008 | A1 |
20080158185 | Westerman | Jul 2008 | A1 |
20080162996 | Krah et al. | Jul 2008 | A1 |
20080188267 | Sagong | Aug 2008 | A1 |
20080224962 | Kasai et al. | Sep 2008 | A1 |
20080231292 | Ossart et al. | Sep 2008 | A1 |
20080238871 | Tam | Oct 2008 | A1 |
20080264699 | Chang et al. | Oct 2008 | A1 |
20080277259 | Chang | Nov 2008 | A1 |
20080283175 | Hagood et al. | Nov 2008 | A1 |
20080303022 | Tai et al. | Dec 2008 | A1 |
20080303964 | Lee et al. | Dec 2008 | A1 |
20080309626 | Westerman et al. | Dec 2008 | A1 |
20080309627 | Hotelling et al. | Dec 2008 | A1 |
20080309629 | Westerman et al. | Dec 2008 | A1 |
20080309632 | Westerman et al. | Dec 2008 | A1 |
20080309633 | Hotelling et al. | Dec 2008 | A1 |
20080309635 | Matsuo | Dec 2008 | A1 |
20090002337 | Chang | Jan 2009 | A1 |
20090019344 | Yoon et al. | Jan 2009 | A1 |
20090020343 | Rothkopf et al. | Jan 2009 | A1 |
20090070681 | Dawes et al. | Mar 2009 | A1 |
20090073138 | Lee et al. | Mar 2009 | A1 |
20090085894 | Gandhi et al. | Apr 2009 | A1 |
20090091551 | Hotelling et al. | Apr 2009 | A1 |
20090114456 | Wisniewski | May 2009 | A1 |
20090128516 | Rimon et al. | May 2009 | A1 |
20090135157 | Harley | May 2009 | A1 |
20090160787 | Westerman et al. | Jun 2009 | A1 |
20090174676 | Westerman | Jul 2009 | A1 |
20090174688 | Westerman | Jul 2009 | A1 |
20090182189 | Lira | Jul 2009 | A1 |
20090184937 | Grivna | Jul 2009 | A1 |
20090194344 | Harley et al. | Aug 2009 | A1 |
20090205879 | Halsey et al. | Aug 2009 | A1 |
20090213090 | Mamba et al. | Aug 2009 | A1 |
20090236151 | Yeh et al. | Sep 2009 | A1 |
20090242283 | Chiu | Oct 2009 | A1 |
20090251427 | Hung et al. | Oct 2009 | A1 |
20090267902 | Nambu et al. | Oct 2009 | A1 |
20090267903 | Cady et al. | Oct 2009 | A1 |
20090273577 | Chen et al. | Nov 2009 | A1 |
20090303189 | Grunthaner et al. | Dec 2009 | A1 |
20090309850 | Yang | Dec 2009 | A1 |
20090315854 | Matsuo | Dec 2009 | A1 |
20090322702 | Chien et al. | Dec 2009 | A1 |
20100001973 | Hotelling et al. | Jan 2010 | A1 |
20100006350 | Elias | Jan 2010 | A1 |
20100007616 | Jang | Jan 2010 | A1 |
20100039396 | Ho et al. | Feb 2010 | A1 |
20100059294 | Elias et al. | Mar 2010 | A1 |
20100060608 | Yousefpor | Mar 2010 | A1 |
20100079384 | Grivna | Apr 2010 | A1 |
20100079401 | Staton | Apr 2010 | A1 |
20100102027 | Liu et al. | Apr 2010 | A1 |
20100110035 | Selker | May 2010 | A1 |
20100117985 | Wadia | May 2010 | A1 |
20100143848 | Jain et al. | Jun 2010 | A1 |
20100156810 | Barbier et al. | Jun 2010 | A1 |
20100156846 | Long et al. | Jun 2010 | A1 |
20100182278 | Li et al. | Jul 2010 | A1 |
20100194697 | Hotelling et al. | Aug 2010 | A1 |
20100194707 | Hotelling et al. | Aug 2010 | A1 |
20100245286 | Parker | Sep 2010 | A1 |
20100253638 | Yousefpor et al. | Oct 2010 | A1 |
20100259503 | Yanase et al. | Oct 2010 | A1 |
20100328248 | Mozdzyn | Dec 2010 | A1 |
20100328263 | Lin | Dec 2010 | A1 |
20110006832 | Land et al. | Jan 2011 | A1 |
20110007020 | Hong et al. | Jan 2011 | A1 |
20110025623 | Lin | Feb 2011 | A1 |
20110025629 | Grivna | Feb 2011 | A1 |
20110025635 | Lee | Feb 2011 | A1 |
20110074705 | Yousefpor et al. | Mar 2011 | A1 |
20110096016 | Mlmaz | Apr 2011 | A1 |
20110134050 | Harley | Jun 2011 | A1 |
20110157068 | Parker et al. | Jun 2011 | A1 |
20110193776 | Oda et al. | Aug 2011 | A1 |
20110199105 | Otagaki et al. | Aug 2011 | A1 |
20110227874 | Fahraeus et al. | Sep 2011 | A1 |
20110231139 | Yokota et al. | Sep 2011 | A1 |
20110234523 | Chang et al. | Sep 2011 | A1 |
20110234526 | Mi | Sep 2011 | A1 |
20110241907 | Cordeiro | Oct 2011 | A1 |
20110248949 | Chang et al. | Oct 2011 | A1 |
20110254795 | Chen et al. | Oct 2011 | A1 |
20110261005 | Joharapurkar et al. | Oct 2011 | A1 |
20110261007 | Joharapurkar et al. | Oct 2011 | A1 |
20110282606 | Ahed et al. | Nov 2011 | A1 |
20110298727 | Yousefpor et al. | Dec 2011 | A1 |
20110310033 | Liu et al. | Dec 2011 | A1 |
20110310064 | Keski-Jaskari et al. | Dec 2011 | A1 |
20120026099 | Harley | Feb 2012 | A1 |
20120044199 | Karpin et al. | Feb 2012 | A1 |
20120050206 | Welland | Mar 2012 | A1 |
20120050214 | Kremin et al. | Mar 2012 | A1 |
20120050216 | Kremin et al. | Mar 2012 | A1 |
20120050217 | Noguchi et al. | Mar 2012 | A1 |
20120054379 | Leung et al. | Mar 2012 | A1 |
20120056662 | Wilson et al. | Mar 2012 | A1 |
20120056851 | Chen et al. | Mar 2012 | A1 |
20120075239 | Azumi et al. | Mar 2012 | A1 |
20120092288 | Wadia | Apr 2012 | A1 |
20120098776 | Chen et al. | Apr 2012 | A1 |
20120113047 | Hanauer et al. | May 2012 | A1 |
20120146726 | Huang et al. | Jun 2012 | A1 |
20120146920 | Lin et al. | Jun 2012 | A1 |
20120146942 | Kamoshida et al. | Jun 2012 | A1 |
20120154324 | Wright et al. | Jun 2012 | A1 |
20120162121 | Chang et al. | Jun 2012 | A1 |
20120162133 | Chen et al. | Jun 2012 | A1 |
20120162134 | Chen et al. | Jun 2012 | A1 |
20120169652 | Chang | Jul 2012 | A1 |
20120169653 | Chang | Jul 2012 | A1 |
20120169655 | Chang | Jul 2012 | A1 |
20120169656 | Chang | Jul 2012 | A1 |
20120169664 | Milne | Jul 2012 | A1 |
20120182251 | Krah | Jul 2012 | A1 |
20120211264 | Milne | Aug 2012 | A1 |
20120249446 | Chen et al. | Oct 2012 | A1 |
20120262395 | Chan | Oct 2012 | A1 |
20120313881 | Ge et al. | Dec 2012 | A1 |
20120320385 | Mu et al. | Dec 2012 | A1 |
20130015868 | Peng | Jan 2013 | A1 |
20130021291 | Kremin et al. | Jan 2013 | A1 |
20130027118 | Ho et al. | Jan 2013 | A1 |
20130027346 | Yarosh et al. | Jan 2013 | A1 |
20130038573 | Chang et al. | Feb 2013 | A1 |
20130057511 | Shepelev et al. | Mar 2013 | A1 |
20130069911 | You | Mar 2013 | A1 |
20130076648 | Krah et al. | Mar 2013 | A1 |
20130093712 | Liu et al. | Apr 2013 | A1 |
20130100038 | Yilmaz et al. | Apr 2013 | A1 |
20130100071 | Wright et al. | Apr 2013 | A1 |
20130120303 | Hong et al. | May 2013 | A1 |
20130127739 | Guard et al. | May 2013 | A1 |
20130141383 | Woolley | Jun 2013 | A1 |
20130154996 | Trend et al. | Jun 2013 | A1 |
20130173211 | Hoch et al. | Jul 2013 | A1 |
20130176271 | Sobel et al. | Jul 2013 | A1 |
20130176273 | Li et al. | Jul 2013 | A1 |
20130215049 | Lee | Aug 2013 | A1 |
20130215075 | Lee et al. | Aug 2013 | A1 |
20130224370 | Cok et al. | Aug 2013 | A1 |
20130234964 | Kim et al. | Sep 2013 | A1 |
20130257785 | Brown et al. | Oct 2013 | A1 |
20130257797 | Wu et al. | Oct 2013 | A1 |
20130257798 | Tamura et al. | Oct 2013 | A1 |
20130265276 | Obeidat et al. | Oct 2013 | A1 |
20130278447 | Kremin | Oct 2013 | A1 |
20130278498 | Jung et al. | Oct 2013 | A1 |
20130278525 | Lim et al. | Oct 2013 | A1 |
20130278543 | Hsu et al. | Oct 2013 | A1 |
20130307821 | Kogo | Nov 2013 | A1 |
20130308031 | Theuwissen | Nov 2013 | A1 |
20130314342 | Kim et al. | Nov 2013 | A1 |
20130320994 | Brittain et al. | Dec 2013 | A1 |
20130321289 | Dubery et al. | Dec 2013 | A1 |
20130328759 | Al-Dahle et al. | Dec 2013 | A1 |
20130342479 | Pyo et al. | Dec 2013 | A1 |
20140002406 | Cormier, Jr. et al. | Jan 2014 | A1 |
20140009438 | Liu et al. | Jan 2014 | A1 |
20140022186 | Hong et al. | Jan 2014 | A1 |
20140022201 | Boychuk et al. | Jan 2014 | A1 |
20140043546 | Yamazaki et al. | Feb 2014 | A1 |
20140071084 | Sugiura | Mar 2014 | A1 |
20140078096 | Tan et al. | Mar 2014 | A1 |
20140098051 | Hong et al. | Apr 2014 | A1 |
20140104194 | Davidson et al. | Apr 2014 | A1 |
20140104225 | Davidson et al. | Apr 2014 | A1 |
20140104228 | Chen et al. | Apr 2014 | A1 |
20140111707 | Song et al. | Apr 2014 | A1 |
20140118270 | Moses et al. | May 2014 | A1 |
20140125628 | Yoshida et al. | May 2014 | A1 |
20140132560 | Huang et al. | May 2014 | A1 |
20140132860 | Hotelling et al. | May 2014 | A1 |
20140145997 | Tiruvuru | May 2014 | A1 |
20140152615 | Chang et al. | Jun 2014 | A1 |
20140160058 | Chen et al. | Jun 2014 | A1 |
20140168540 | Wang et al. | Jun 2014 | A1 |
20140192027 | Ksondzyk et al. | Jul 2014 | A1 |
20140204058 | Huang et al. | Jul 2014 | A1 |
20140210779 | Katsuta et al. | Jul 2014 | A1 |
20140232681 | Yeh | Aug 2014 | A1 |
20140232955 | Roudbari et al. | Aug 2014 | A1 |
20140240291 | Nam | Aug 2014 | A1 |
20140247245 | Lee | Sep 2014 | A1 |
20140253470 | Havilio | Sep 2014 | A1 |
20140267070 | Shahparnia et al. | Sep 2014 | A1 |
20140267146 | Chang et al. | Sep 2014 | A1 |
20140285469 | Wright et al. | Sep 2014 | A1 |
20140306924 | Lin et al. | Oct 2014 | A1 |
20140347574 | Tung et al. | Nov 2014 | A1 |
20140354301 | Trend | Dec 2014 | A1 |
20140362030 | Mo et al. | Dec 2014 | A1 |
20140362034 | Mo et al. | Dec 2014 | A1 |
20140368436 | Abzarian et al. | Dec 2014 | A1 |
20140368460 | Mo et al. | Dec 2014 | A1 |
20140375598 | Shen et al. | Dec 2014 | A1 |
20140375603 | Hotelling et al. | Dec 2014 | A1 |
20140375903 | Westhues et al. | Dec 2014 | A1 |
20150002176 | Kwon et al. | Jan 2015 | A1 |
20150002448 | Brunet et al. | Jan 2015 | A1 |
20150002464 | Nishioka et al. | Jan 2015 | A1 |
20150009421 | Choi et al. | Jan 2015 | A1 |
20150015528 | Vandermeijden | Jan 2015 | A1 |
20150026398 | Kim | Jan 2015 | A1 |
20150042600 | Lukanc et al. | Feb 2015 | A1 |
20150042607 | Takanohashi | Feb 2015 | A1 |
20150049043 | Yousefpor | Feb 2015 | A1 |
20150049044 | Yousefpor | Feb 2015 | A1 |
20150062063 | Cheng et al. | Mar 2015 | A1 |
20150077375 | Hotelling et al. | Mar 2015 | A1 |
20150077394 | Dai et al. | Mar 2015 | A1 |
20150091587 | Shepelev et al. | Apr 2015 | A1 |
20150091849 | Ludden | Apr 2015 | A1 |
20150103047 | Hanauer et al. | Apr 2015 | A1 |
20150116263 | Kim | Apr 2015 | A1 |
20150123939 | Kim et al. | May 2015 | A1 |
20150167177 | Choi | Jun 2015 | A1 |
20150227240 | Hong et al. | Aug 2015 | A1 |
20150242028 | Roberts et al. | Aug 2015 | A1 |
20150248177 | Maharyta | Sep 2015 | A1 |
20150253907 | Elias | Sep 2015 | A1 |
20150268789 | Liao et al. | Sep 2015 | A1 |
20150268795 | Kurasawa et al. | Sep 2015 | A1 |
20150309610 | Rabii et al. | Oct 2015 | A1 |
20150324035 | Yuan et al. | Nov 2015 | A1 |
20150338937 | Shepelev et al. | Nov 2015 | A1 |
20150370387 | Yamaguchi et al. | Dec 2015 | A1 |
20150378465 | Shih et al. | Dec 2015 | A1 |
20160018348 | Yau et al. | Jan 2016 | A1 |
20160041629 | Rao et al. | Feb 2016 | A1 |
20160048234 | Chandran et al. | Feb 2016 | A1 |
20160062533 | O'connor | Mar 2016 | A1 |
20160077667 | Chiang et al. | Mar 2016 | A1 |
20160117032 | Lin et al. | Apr 2016 | A1 |
20160139728 | Jeon et al. | May 2016 | A1 |
20160154505 | Chang et al. | Jun 2016 | A1 |
20160154529 | Westerman | Jun 2016 | A1 |
20160216808 | Hotelling et al. | Jul 2016 | A1 |
20160224177 | Krah | Aug 2016 | A1 |
20160224189 | Yousefpor et al. | Aug 2016 | A1 |
20160246423 | Fu | Aug 2016 | A1 |
20160253041 | Park et al. | Sep 2016 | A1 |
20160259448 | Guarneri | Sep 2016 | A1 |
20160266676 | Wang et al. | Sep 2016 | A1 |
20160266679 | Shahparnia et al. | Sep 2016 | A1 |
20160282980 | Chintalapoodi et al. | Sep 2016 | A1 |
20160283023 | Shin et al. | Sep 2016 | A1 |
20160299603 | Tsujioka et al. | Oct 2016 | A1 |
20160357344 | Benbasat et al. | Dec 2016 | A1 |
20170060318 | Gu et al. | Mar 2017 | A1 |
20170090599 | Kuboyama et al. | Mar 2017 | A1 |
20170090619 | Yousefpor et al. | Mar 2017 | A1 |
20170097703 | Lee | Apr 2017 | A1 |
20170139539 | Yao et al. | May 2017 | A1 |
20170168626 | Konicek | Jun 2017 | A1 |
20170229502 | Liu et al. | Aug 2017 | A1 |
20170269729 | Chintalapoodi | Sep 2017 | A1 |
20170285804 | Li et al. | Oct 2017 | A1 |
20170357371 | Kim et al. | Dec 2017 | A1 |
20180067584 | Zhu et al. | Mar 2018 | A1 |
20180224962 | Mori | Aug 2018 | A1 |
20180275824 | Li et al. | Sep 2018 | A1 |
20180307374 | Shah et al. | Oct 2018 | A1 |
20180307375 | Shah et al. | Oct 2018 | A1 |
20180367139 | Pribisic et al. | Dec 2018 | A1 |
20190034032 | Westerman | Jan 2019 | A1 |
20190138152 | Yousefpor et al. | May 2019 | A1 |
20190220115 | Mori et al. | Jul 2019 | A1 |
20190237963 | Wuerstlein et al. | Aug 2019 | A1 |
20200341585 | Li et al. | Oct 2020 | A1 |
20200387259 | Krah | Dec 2020 | A1 |
20220011920 | Shorten et al. | Jan 2022 | A1 |
Number | Date | Country |
---|---|---|
1246638 | Mar 2000 | CN |
1527274 | Sep 2004 | CN |
1672119 | Sep 2005 | CN |
1689677 | Nov 2005 | CN |
1711520 | Dec 2005 | CN |
1782837 | Jun 2006 | CN |
1818842 | Aug 2006 | CN |
1864124 | Nov 2006 | CN |
1945516 | Apr 2007 | CN |
101046720 | Oct 2007 | CN |
101071354 | Nov 2007 | CN |
101122838 | Feb 2008 | CN |
101349957 | Jan 2009 | CN |
101419516 | Apr 2009 | CN |
101840293 | Sep 2010 | CN |
102023768 | Apr 2011 | CN |
102411460 | Apr 2012 | CN |
102782626 | Nov 2012 | CN |
102968235 | Mar 2013 | CN |
103049148 | Apr 2013 | CN |
103052930 | Apr 2013 | CN |
103221910 | Jul 2013 | CN |
103258492 | Aug 2013 | CN |
103294321 | Sep 2013 | CN |
103365506 | Oct 2013 | CN |
103577008 | Feb 2014 | CN |
103809810 | May 2014 | CN |
103885627 | Jun 2014 | CN |
104020908 | Sep 2014 | CN |
104142757 | Nov 2014 | CN |
104252266 | Dec 2014 | CN |
105045446 | Nov 2015 | CN |
102648446 | Jan 2016 | CN |
105278739 | Jan 2016 | CN |
105474154 | Apr 2016 | CN |
105824461 | Aug 2016 | CN |
112008001245 | Mar 2010 | DE |
0853230 | Jul 1998 | EP |
1192585 | Apr 2002 | EP |
1455264 | Sep 2004 | EP |
1573706 | Sep 2005 | EP |
1573706 | Sep 2005 | EP |
1192585 | Dec 2005 | EP |
1644918 | Apr 2006 | EP |
1717677 | Nov 2006 | EP |
1455264 | Mar 2007 | EP |
1717677 | Jan 2008 | EP |
1986084 | Oct 2008 | EP |
2077489 | Jul 2009 | EP |
2256606 | Dec 2010 | EP |
1455264 | May 2011 | EP |
2495643 | Sep 2012 | EP |
1546317 | May 1979 | GB |
2144146 | Feb 1985 | GB |
2428306 | Jan 2007 | GB |
2437827 | Nov 2007 | GB |
2450207 | Dec 2008 | GB |
2000-163031 | Jun 2000 | JP |
2002-342033 | Nov 2002 | JP |
2003-66417 | Mar 2003 | JP |
2004-503835 | Feb 2004 | JP |
2005-84128 | Mar 2005 | JP |
2005-301373 | Oct 2005 | JP |
2007-18515 | Jan 2007 | JP |
2008-510251 | Apr 2008 | JP |
2008-225415 | Sep 2008 | JP |
2010-528186 | Aug 2010 | JP |
10-2004-0091728 | Oct 2004 | KR |
10-2007-0002327 | Jan 2007 | KR |
10-2008-0019125 | Mar 2008 | KR |
10-2012-0085737 | Aug 2012 | KR |
10-2013-0094495 | Aug 2013 | KR |
10-2013-0117499 | Oct 2013 | KR |
10-2014-0074454 | Jun 2014 | KR |
10-1609992 | Apr 2016 | KR |
200715015 | Apr 2007 | TW |
200826032 | Jun 2008 | TW |
200835294 | Aug 2008 | TW |
M341273 | Sep 2008 | TW |
M344522 | Nov 2008 | TW |
M344544 | Nov 2008 | TW |
M352721 | Mar 2009 | TW |
201115442 | May 2011 | TW |
201203069 | Jan 2012 | TW |
201401129 | Jan 2014 | TW |
201419071 | May 2014 | TW |
9935633 | Jul 1999 | WO |
9935633 | Sep 1999 | WO |
0073984 | Dec 2000 | WO |
0197204 | Dec 2001 | WO |
02080637 | Oct 2002 | WO |
03079176 | Sep 2003 | WO |
2004013833 | Feb 2004 | WO |
2004112448 | Dec 2004 | WO |
2004114265 | Dec 2004 | WO |
2005114369 | Dec 2005 | WO |
2005114369 | Jan 2006 | WO |
2006020305 | Feb 2006 | WO |
2006023147 | Mar 2006 | WO |
2006023147 | May 2006 | WO |
2006104745 | Oct 2006 | WO |
2006130584 | Dec 2006 | WO |
2007012899 | Feb 2007 | WO |
2007034591 | Mar 2007 | WO |
2006020305 | May 2007 | WO |
2006104745 | May 2007 | WO |
2006130584 | May 2007 | WO |
2007054018 | May 2007 | WO |
2007066488 | Jun 2007 | WO |
2007089766 | Aug 2007 | WO |
2007115032 | Oct 2007 | WO |
2007146785 | Dec 2007 | WO |
2007115032 | Jan 2008 | WO |
2008007118 | Jan 2008 | WO |
2008047990 | Apr 2008 | WO |
2007146785 | May 2008 | WO |
2008076237 | Jun 2008 | WO |
2008007118 | Aug 2008 | WO |
2008076237 | Aug 2008 | WO |
2007089766 | Sep 2008 | WO |
2008108514 | Sep 2008 | WO |
2008135713 | Nov 2008 | WO |
2009046363 | Apr 2009 | WO |
2009103946 | Aug 2009 | WO |
2009132146 | Oct 2009 | WO |
2009132150 | Oct 2009 | WO |
2010088659 | Aug 2010 | WO |
2010117882 | Oct 2010 | WO |
2011071784 | Jun 2011 | WO |
2011137200 | Nov 2011 | WO |
2013158570 | Oct 2013 | WO |
2014127716 | Aug 2014 | WO |
2015017196 | Feb 2015 | WO |
2015023410 | Feb 2015 | WO |
2015072722 | May 2015 | WO |
2015107969 | Jul 2015 | WO |
2015178920 | Nov 2015 | WO |
2016048269 | Mar 2016 | WO |
2016069642 | May 2016 | WO |
2016126525 | Aug 2016 | WO |
2016144437 | Sep 2016 | WO |
2017058415 | Apr 2017 | WO |
Entry |
---|
Advisory Action received for U.S. Appl. No. 11/818,498, dated May 17, 2013, 5 pages. |
Advisory Action received for U.S. Appl. No. 11/818,498, dated Oct. 14, 2011, 5 pages. |
Advisory Action received for U.S. Appl. No. 12/206,680, dated Apr. 16, 2012, 3 pages. |
Advisory Action received for U.S. Appl. No. 12/238,333, dated Dec. 17, 2013, 3 pages. |
Advisory Action received for U.S. Appl. No. 12/238,333, dated Oct. 21, 2015, 4 pages. |
Advisory Action received for U.S. Appl. No. 12/500,911, dated May 17, 2013, 3 pages. |
Advisory Action received for U.S. Appl. No. 12/642,466, dated May 23, 2013, 2 pages. |
Advisory Action received for U.S. Appl. No. 14/082,003, dated Mar. 10, 2016, 3 pages. |
Advisory Action received for U.S. Appl. No. 14/645,120, dated Nov. 25, 2016, 3 pages. |
Advisory Action received for U.S. Appl. No. 15/017,463, dated Aug. 8, 2018, 3 pages. |
Extended European Search report received for European Patent Application No. 08022505.5, dated Apr. 25, 2012, 12 pages. |
Extended European Search Report received for European Patent Application No. 10151969.2, dated Jul. 21, 2010, 6 pages. |
Extended European Search Report received for European Patent Application No. 12162177.5, dated Dec. 3, 2012, 7 pages. |
Extended European Search Report received for European Patent Application No. 12192450.0, dated Feb. 13, 2013, 6 pages. |
Extended European Search Report received for European Patent Application No. 15166813.4, dated Aug. 31, 2015, 8 pages. |
Final Office Action received for U.S. Appl. No. 11/818,498, dated Jan. 3, 2013, 17 pages. |
Final Office Action received for U.S. Appl. No. 11/818,498, dated Jun. 10, 2011, 16 pages. |
Final Office Action received for U.S. Appl. No. 12/206,680, dated Jan. 5, 2012, 16 pages. |
Final Office Action received for U.S. Appl. No. 12/206,680, dated Jan. 27, 2014, 20 pages. |
Final Office Action received for U.S. Appl. No. 12/206,680, dated May 22, 2013, 16 pages. |
Final Office Action received for U.S. Appl. No. 12/238,333, dated Apr. 22, 2015, 23 pages. |
Final Office Action received for U.S. Appl. No. 12/238,333, dated Aug. 12, 2013, 19 pages. |
Final Office Action received for U.S. Appl. No. 12/238,342, dated Aug. 13, 2013, 14 pages. |
Final Office Action received for U.S. Appl. No. 12/238,342, dated Oct. 22, 2014, 16 pages. |
Final Office Action received for U.S. Appl. No. 12/494,173, dated Apr. 30, 2013, 7 pages. |
Final Office Action received for U.S. Appl. No. 12/500,911, dated Feb. 5, 2013, 16 pages. |
Final Office Action received for U.S. Appl. No. 12/545,604, dated Jul. 16, 2014, 18 pages. |
Final Office Action received for U.S. Appl. No. 12/545,604, dated Jul. 19, 2013, 18 pages. |
Final Office Action received for U.S. Appl. No. 12/545,754, dated Jun. 21, 2013, 6 pages. |
Final Office Action received for U.S. Appl. No. 12/642,466, dated Feb. 1, 2013, 10 pages. |
Final Office Action received for U.S. Appl. No. 12/642,466, dated Jan. 29, 2016, 10 pages. |
Final Office Action received for U.S. Appl. No. 12/642,466, dated May 9, 2014, 13 pages. |
Final Office Action received for U.S. Appl. No. 12/847,987, dated Apr. 23, 2014, 16 pages. |
Final Office Action received for U.S. Appl. No. 13/448,182, dated Jun. 11, 2015, 13 pages. |
Final Office Action received for U.S. Appl. No. 13/448,182, dated Oct. 22, 2014, 12 pages. |
Final Office Action received for U.S. Appl. No. 13/899,391, dated Apr. 8, 2016, 10 pages. |
Final Office Action received for U.S. Appl. No. 14/082,003, dated Jan. 4, 2016, 26 pages. |
Final Office Action received for U.S. Appl. No. 14/082,003, dated Nov. 4, 2016, 19 pages. |
Final Office Action received for U.S. Appl. No. 14/082,074, dated Nov. 12, 2015, 23 pages. |
Final Office Action received for U.S. Appl. No. 14/318,157, dated Jul. 26, 2017, 10 pages. |
Final Office Action received for U.S. Appl. No. 14/318,157, dated May 9, 2016, 10 pages. |
Final Office Action received for U.S. Appl. No. 14/550,686, dated Aug. 21, 2017, 12 pages. |
Final Office Action received for U.S. Appl. No. 14/550,686, dated Jun. 14, 2016, 11 pages. |
Final Office Action received for U.S. Appl. No. 14/558,529, dated Sep. 29, 2016, 23 pages. |
Final Office Action received for U.S. Appl. No. 14/645,120, dated Aug. 10, 2017, 13 pages. |
Final Office Action received for U.S. Appl. No. 14/645,120, dated May 27, 2016, 13 pages. |
Final Office Action received for U.S. Appl. No. 14/993,017, dated Aug. 16, 2018, 35 pages. |
Final Office Action received for U.S. Appl. No. 15/006,987, dated Dec. 5, 2017, 19 pages. |
Final Office Action received for U.S. Appl. No. 15/006,987, dated May 14, 2018, 11 pages. |
Final Office Action received for U.S. Appl. No. 15/009,774, dated Feb. 6, 2019, 16 pages. |
Final Office Action received for U.S. Appl. No. 15/017,463, dated May 17, 2018, 22 pages. |
Final Office Action received for U.S. Appl. No. 15/090,555, dated Aug. 29, 2018, 18 pages. |
Final Office Action received for U.S. Appl. No. 15/097,179, dated Jul. 27, 2018, 12 pages. |
Final Office Action received for U.S. Appl. No. 15/313,549, dated Dec. 18, 2019, 24 pages. |
Final Office Action received for U.S. Appl. No. 15/507,722, dated Sep. 13, 2019, 18 pages. |
Final Office Action received for U.S. Appl. No. 15/522,737, dated Sep. 12, 2019, 15 pages. |
Final Office Action received for U.S. Appl. No. 16/152,326, dated Jan. 27, 2020, 10 pages. |
Final Office Action received for U.S. Appl. No. 16/201,730, dated Nov. 1, 2019, 11 pages. |
First Action Interview Office Action received for U.S. Appl. No. 15/686,969, dated Aug. 19, 2019, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2010/022868, completed on Jan. 27, 2011, 10 pages. |
International Search Report received for PCT Patent Application No. PCT/US2010/022868, dated Mar. 10, 2010, 3 pages. |
International Search Report received for PCT Patent Application No. PCT/US2010/029698, dated Jan. 14, 2011, 5 pages. |
International Search Report received for PCT Patent Application No. PCT/US2010/058988, dated May 2, 2011, 4 pages. |
International Search Report received for PCT Patent Application No. PCT/US2013/036662, dated Aug. 6, 2013, 3 pages. |
International Search Report received for PCT Patent Application No. PCT/US2014/047888, dated Jan. 29, 2015, 6 pages. |
International Search Report received for PCT Patent Application No. PCT/US2016/015479, dated May 9, 2016, 3 pages. |
International Search Report received for PCT Patent Application No. PCT/US2016/016011, dated May 11, 2016, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/818,498, dated Dec. 13, 2010, 16 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/818,498, dated May 25, 2012, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/206,680, dated Jun. 9, 2011, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/206,680, dated Sep. 26, 2012, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/206,680, dated Sep. 30, 2013, 19 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/238,333, dated Jan. 7, 2013, 21 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/238,333, dated May 3, 2012, 24 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/238,333, dated Sep. 18, 2014, 22 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/238,342, dated Feb. 15, 2013, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/238,342, dated Mar. 9, 2012, 27 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/238,342, dated Mar. 12, 2014, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/494,173, dated Nov. 28, 2012, 7 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/500,911, dated Jun. 7, 2012, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/545,557, dated Jan. 3, 2014, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/545,557, dated Nov. 23, 2012, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/545,604, dated Dec. 19, 2013, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/545,604, dated Jan. 7, 2013, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/545,754, dated Jan. 2, 2014, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/545,754, dated Oct. 5, 2012, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/545,754, dated Sep. 10, 2013, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/642,466, dated Aug. 28, 2012, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/642,466, dated May 4, 2015, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/642,466, dated Nov. 8, 2013, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/847,987, dated Sep. 6, 2013, 16 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/448,182, dated Jan. 31, 2014, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/737,779, dated Mar. 29, 2013, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/899,391, dated Oct. 5, 2015, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/055,717, dated Apr. 10, 2014, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/082,003, dated Mar. 13, 2017, 21 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/082,003, dated May 8, 2015, 26 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/082,003, dated May 25, 2016, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/082,074, dated Apr. 10, 2015, 24 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/318,157, dated Apr. 3, 2018, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/318,157, dated Dec. 19, 2016, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/318,157, dated Oct. 6, 2015, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/550,686, dated Aug. 20, 2015, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/550,686, dated Dec. 14, 2016, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/558,529, dated Apr. 14, 2016, 21 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/558,529, dated Jun. 26, 2017, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/615,186, dated Jun. 1, 2016, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/645,120, dated Dec. 16, 2016, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/645,120, dated Oct. 27, 2015, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/993,017, dated Dec. 22, 2017, 24 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/993,017, dated Jan. 18, 2019, 35 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/006,987, dated Jun. 14, 2017, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/009,774, dated Jun. 20, 2018, 19 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/009,774, dated Sep. 4, 2019, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/017,463, dated May 15, 2019, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/017,463, dated Sep. 14, 2017, 22 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/087,956, dated Jan. 18, 2019, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/097,179, dated Jan. 22, 2018, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/144,706, dated Apr. 7, 2017, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/313,549, dated Dec. 21, 2018, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/313,549, dated Jul. 10, 2019, 25 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/507,722, dated Feb. 11, 2019, 16 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/522,737, dated Jan. 2, 2019, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/152,326, dated Aug. 14, 2019, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/201,730, dated May 10, 2019, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 12/238,333, dated Dec. 1, 2015, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 12/494,173, dated Oct. 15, 2014, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 12/500,911, dated Aug. 19, 2013, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 12/545,557, dated Apr. 11, 2014, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 12/545,557, dated Jun. 10, 2013, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 12/545,604, dated Oct. 5, 2015, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 12/545,754, dated Aug. 21, 2014, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 13/448,182, dated Jan. 8, 2016, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 13/737,779, dated Sep. 3, 2013, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 14/055,717, dated Nov. 7, 2014, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 14/082,003, dated Oct. 3, 2017, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 14/082,003, dated Sep. 20, 2017, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 14/312,489, dated Mar. 16, 2015, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 14/318,157, dated Dec. 31, 2018, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 14/550,686, dated Feb. 9, 2018, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 14/558,529, dated Oct. 13, 2017, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 14/615,186, dated Dec. 2, 2016, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 14/645,120, dated Mar. 1, 2018, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 14/993,017, dated Jul. 12, 2019, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 15/087,956, dated Mar. 11, 2019, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 15/090,555, dated Feb. 12, 2019, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 15/144,706, dated Sep. 20, 2017, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 15/507,722, dated Feb. 27, 2020, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 15/686,969, dated Jan. 2, 2020, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 15/687,078, dated Apr. 3, 2019, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 15/691,283, dated Jun. 5, 2019, 10 pages. |
Office Action received for Australian Patent Application No. 2019200698, dated Nov. 23, 2019, 3 pages. |
Office Action received for Chinese Patent Application No. 201480081612.6, dated Jun. 4, 2019, 22 pages (11 of English Translation and 11 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201580058366.7, dated May 28, 2019, 19 pages (10 pages of English Translation and 9 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201680012966.4, dated Nov. 1, 2019, 19 pages (10 pages of English Translation and 9 pages of Official copy). |
Office Action received for European Patent Application No. 17183937.6, dated Dec. 16, 2019, 5 pages. |
Pre-Interview First Office Action received for U.S. Appl. No. 15/686,969, dated Apr. 4, 2019, 4 pages. |
Restriction Requirement received for U.S. Appl. No. 12/238,333, dated Mar. 8, 2012, 6 pages. |
Restriction Requirement received for U.S. Appl. No. 12/494,173, dated Aug. 8, 2012, 5 pages. |
Restriction Requirement received for U.S. Appl. No. 13/899,391, dated Apr. 8, 2015, 6 pages. |
Restriction Requirement received for U.S. Appl. No. 15/087,956, dated Feb. 13, 2018, 8 pages. |
Restriction Requirement received for U.S. Appl. No. 15/097,179, dated Sep. 28, 2017, 6 pages. |
Restriction Requirement received for U.S. Appl. No. 15/691,283, dated Mar. 5, 2019, 6 pages. |
Search Report received for Chinese Patent Application No. 201310042816.6, completed on May 18, 2015, 4 pages (2 pages of English Translation and 2 pages of Official copy). |
Search Report received for Chinese Patent Application No. ZL201020108330.X, completed on Dec. 14, 2011, 12 pages (English Translation only). |
Search Report received for European Patent Application No. 17183937.6, dated Jan. 31, 2018, 4 pages. |
Search Report received for Netherlands Patent Application No. 2001672, dated Apr. 29, 2009, 8 pages. |
Search Report received for Taiwanese Patent Application No. 103105965, dated Nov. 12, 2015, 2 pages (1 page of English Translation and 1 page of Official copy). |
Search Report received for Taiwanese Patent Application No. 103116003, dated Oct. 14, 2015, 2 pages (1 page of English Translation and 1 page of Official copy). |
Search Report received for Taiwanese Patent Application No. 104115152, dated May 3, 2016, 2 pages (1 page of English Translation and 1 page of Official copy). |
Supplementary European Search Report received for European Patent Application No. 14902458.0, dated Jul. 27, 2017, 4 pages. |
Written Opinion received for PCT Patent Application No. PCT/US2010/022868, dated Mar. 10, 2010, 4 pages. |
Cassidy Robin, “The Tissot T-Touch Watch—A Groundbreaking Timepiece”, Ezine Articles, Available online at: <http://ezinearticles.com/?The-Tissot-T-Touch-Watch---A-Groundbreaking-Timepiece&id=. . . >, Feb. 23, 2007, 2 pages. |
Gibilisco Stan, “The Illustrated Dictionary of Electronics”, Eighth Edition, 2001, p. 173. |
Lee et al., “A Multi-Touch Three Dimensional Touch-Sensitive Tablet”, CHI'85 Proceedings, Apr. 1985, pp. 21-25. |
Malik et al., “Visual Touchpad: A Two-Handed Gestural Input Device”, Proceedings of the 6th International Conference on Multimodal Interfaces, State College, PA, ICMI '04, ACM, Oct. 13-15, 2004, pp. 289-296. |
O'Connor Todd, “mTouch Projected Capacitive Touch Screen Sensing Theory of Operation”, Microchip TB3064, Microchip Technology Inc., 2010, pp. 1-16. |
Rekimoto J., “SmartSkin: An Infrastructure for Freehand Manipulation on Interactive Surfaces”, CHI 2002 Conference Proceedings, Conference on Human Factors in Computing Systems, Minneapolis, vol. 4, No. 1, Apr. 20-25, 2002, pp. 113-120. |
Rubine Dean, “Combining Gestures and Direct Manipulation”, CHI'92, May 3-7, 1992, pp. 659-660. |
Rubine Dean H., “The Automatic Recognition of Gestures”, CMU-CS-91-202, Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, Dec. 1991, 285 pages. |
Westerman Wayne, “Hand Tracking, Finger Identification, and Chordic Manipulation on a Multi-Touch Surface”, A Dissertation Submitted to the Faculty of the University of Delaware in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electrical Engineering, 1999, 363 pages. |
Wilson Andrew D., “Robust Computer Vision-Based Detection of Pinching for One and Two-Handed Gesture Input”, ACM, USIT '06, Montreux, Oct. 15-18, 2006, 4 pages. |
Yang et al., “A Noise-Immune High-Speed Readout Circuit for In-Cell Touch Screen Panels”, IEEE Transactions on Circuits and Systems-I: Regular Papers vol. 60, No. 7, Jul. 2013, pp. 1800-1809. |
Final Office Action received for U.S. Appl. No. 16/152,326, dated Dec. 4, 2020, 10 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 11/818,498, dated Dec. 20, 2013, 17 pages. |
Extended European Search Report received for European Patent Application No. 18197785.1, dated Apr. 5, 2019, 8 pages. |
Final Office Action received for U.S. Appl. No. 15/017,463, dated Feb. 13, 2020, 22 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/313,549, dated Apr. 23, 2020, 33 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/152,326, dated Jun. 29, 2020, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 15/009,774, dated Jul. 1, 2020, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 15/009,774, dated Mar. 20, 2020, 16 pages. |
Notice of Allowance received for U.S. Appl. No. 15/313,549, dated Oct. 21, 2020, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 15/522,737, dated Mar. 6, 2020, 8 pages. |
Patent Board Decision received for U.S. Appl. No. 11/818,498, dated Nov. 2, 2016, 8 pages. |
Search Report received for Chinese Patent Application No. 201680008313.9, dated Jul. 5, 2019, 4 pages (2 pages English Translation and 2 pages of Official copy). |
Supplemental Notice of Allowance received for U.S. Appl. No. 15/686,969, dated Feb. 21, 2020, 2 pages. |
Lowe, Doug, “Electronics Components: How to Use an Op Amp as a Voltage Comparator”, Dummies, Available online at: <https://www.dummies.com/programming/electronics/components/electronics-components-how-to-use-an-op-amp-as-a-voltage-comparator/>, 2012, 9 pages. |
International Search Report received for PCT Patent Application No. PCT/US2016/048750, dated May 4, 2017, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/152,326, dated Apr. 26, 2021, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/924,047, dated Sep. 24, 2021, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/003,133, dated Aug. 3, 2021, 22 pages. |
Notice of Allowability received for U.S. Appl. No. 16/152,326, dated Dec. 10, 2021, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 16/152,326, dated Nov. 26, 2021, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 17/003,133, dated Feb. 10, 2022, 6 pages. |
Search Report received for Chinese Patent Application No. 201910391469.5, dated Jan. 27, 2022, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Final Office Action received for U.S. Appl. No. 16/924,047, dated Apr. 13, 2022, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/448,879, dated Jun. 24, 2022, 19 Pages. |
Notice of Allowance received for U.S. Appl. No. 16/924,047, dated Sep. 21, 2022, 7 pages. |
Final Office Action received for U.S. Appl. No. 17/448,879, dated Jan. 9, 2023, 19 pages. |
Number | Date | Country | |
---|---|---|---|
20200333902 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15507722 | US | |
Child | 16921817 | US |