1. Field of the Invention
This invention relates generally to devices and methods for shielding and deflecting missiles, mortars, and other projectiles launched from a ground launch location across a border toward a ground target location.
2. Background Art
Helium is much lighter-than-air. The difference is not as great as it is between water and air (a liter of water weighs about 1,000 grams, while a liter of air weighs about 1 gram), but it is significant. Helium weighs 0.1785 grams per liter. Nitrogen weighs 1.2506 grams per liter, and since nitrogen makes up about 80 percent of the air we breathe, 1.25 grams is a good approximation for the weight of a liter of air. There are about 28.2 liters in each one cubic foot. Thus, the lift of one cubic foot of helium in the air is about 28.2 grams.
One can determine the lifting capacity of the helium based upon the volume of the balloon. Assuming a lighter than air device (generally referred to herein as a “balloon”) is spherical, the volume may be determined from the radius of the balloon. The volume of a sphere is 4/3·π·r3, where r is the radius of the balloon. The radius of the sphere is half the diameter. Cube the radius (multiply it by itself twice: r3=r·r·r), multiply by π (approximately 3.14) and then multiply by 4/3. By measuring the balloon, in feet, the volume of the balloon is calculated in cubic feet. One cubic foot of helium will lift about 28.2 grams, so multiplying the volume of the balloon by 28.2 will give the lift force. Divide by 448—the number of grams in a pound—to determine the number of pounds it can lift.
Consider, for example, a 20-foot balloon has a radius of 10 feet. The calculation of the volume is 10 ft·10 ft·10 ft·3.14·4/3=4,186 cubic feet of volume. The calculation of lifting force (or buoyancy) is 4,186 cubic feet×28.2 grams/cubic feet=118,064 grams. This is converted into pounds of lifting force as 118,064 grams/448 grams per pound=263 pounds of lifting force. In another example, a 100-foot-diameter balloon can lift about 33,000 pounds! A 100 foot diameter balloon has a radius of 50 feet. 50·50·50·3.14·4/3=523,333.34 cubic feet of volume. 523,333.34 cubic feet×28.2 grams/cubic foot=14,758,000 grams/448 grams per pound=32,942 pounds of lifting force. Other lighter-than-air balloons, aerostats, and airships may come in different shapes for which the volume may be calculated or measured to provide the desired amount of lifting force. Unless otherwise indicated by the context, or unless otherwise specifically indicated, the term “balloon” may be used in this application to refer to any type of lighter-than-air devices whether gas filled balloons, hot air balloons, weather balloons, aerostats, blimps, dirigibles, or other lighter-than-air airships.
According to one or more embodiments, the inventor has discovered a novel device and a method for defending against ground launched unguided missiles, rockets, mortars, projectiles, and other flying ordnance (that may be generally referred to herein as “missiles”), by blocking, shielding, intercepting and/or deflecting such missiles, from an intended target area by providing a defense shield system and method that includes suspending a shielding screen supported vertically in the air by balloons positioned generally along and above a border or perimeter boundary interposed between a launch sight and a target sight on either side of the border or perimeter boundary.
According to one or more embodiments, of the present invention, there is provided a defense shield system comprising a shielding screen supported in the air by balloons that are positioned and tethered in position along and above a border, or along and above an area perimeter, to intercept and deflect missiles, mortars, projectiles or other flying ordnance that may be launched across the border or perimeter.
According to one or more embodiments, the balloons may be positioned at the top of the shielding screen. According to one or more alternative embodiments the supporting balloons need not be at the top of the shielding screen. They may be significantly higher than the top of the shielding screen to reduce the opportunity to be shot down. They could be a mile or higher than the top of the blocking material to avoid being shot down and/or to make them less able to be targeted.
According to one or more embodiments, self sealing materials can be used for the “skin” of these balloons in case of puncture and to make them more durable.
According to one or more embodiments, an air supported defense shield system comprises a lightweight shielding screen formed of a material such that may be made of Nylon®, Kevlar®, Vectran®, or another high strength, lightweight polymer fibers or carbon fibers or compound carbon and polymer filament. In one or more embodiments high strength polypropylene netting might be used to form the shielding screens as a relatively low costs alternative. The material of the shielding screen may be formed of strands, fibers, stings, ropes or wires made of lightweight, high-strength material. Such strands may be interwoven into a mesh, a net material, or a fabric. According to one embodiment, the material forming the shielding screen comprises a mesh or netting that has interwoven lightweight, high strength strands. The strands may be spaced sufficiently far apart to permit transfer of wind through open spaces between the strands so that there is a small amount of wind resistance. The strands are woven together sufficiently closely spaced to intercept or engage missiles, mortars, and other projectile, and air born ordnance (all of which may be referred to herein as “missiles”). The resulting net material of the shielding screen is sufficiently strong to intercept and engage the missiles with an amount of resistive force as they travel through the air along a path or trajectory from a launch area toward a target area such that the path is changed by the resistive force applied by the shielding screen.
According to one or more embodiments, the net material of the shielding screen has sufficient impact strength to withstand impact and avoid immediate penetration of missiles. According to one or more embodiments, the net material is sufficiently flexible to “give” (i.e., to flex and/or deform) with the impact and to engage the flying missile and to progressively apply resistance or drag force to the flying missiles so that the trajectory is changed and the missile is deflected.
According to one or more embodiments, the net material may eventually give way and the projectile may pass to the other side of it, but the material significantly alters and/or slows down the trajectory of the missile. As well, according to one or more embodiments, the net material can be placed in “layers”, that is one in back of the other, for missiles that penetrate the first, another layer of shielding material is behind it. Also, in case a first shielding screen is knocked down, a second shielding screen may remain in place to intercept missiles.
According to one or more embodiments, of the present invention, there is provided a defense shield including at least one shielding screen supported in the air by tethered balloons, aerostats, airships or other lighter-than-air devices that are buoyant in air, and positioned adjacent to, along and above a border, or adjacent to, along and above an area perimeter, to intercept and deflect missiles, mortars projectile or other ordnance. According to one embodiment, the balloons may be tethered by tether cords that comprise a high strength-to-weight material such as Nylon®, Kevlar®, Vectran®, carbon fiber, composites, or combinations of such materials. In one or more embodiments high strength polypropylene cord or rope might be used to tether the balloons and/or the shielding screens as a relatively low costs alternative.
According to one or more embodiments a supported shielding screen includes a plurality of independently supported ‘panels’ such as net screens that may be aligned in a row independent of each other, side by side or overlapping one another along the edges.
According to one or more embodiments, a plurality panels, such as net screens, form a shielding screen jointly supported by one or more shared balloons. The panels may be aligned in a row side by side, or alternatively may be positioned overlapping along vertical edges of the panels.
According to one or more embodiments of the present invention, there is provided a lighter-than-air, buoyant apparatus (“balloon”). The buoyancy of the balloon is provided by holding lighter-than-air gas, such as helium. The buoyancy may be controlled and may be maintained or adjusted depending upon atmospheric conditions, by supplying controlled amounts of replacement light gases. The buoyant gas may for example comprise helium for its stability. In one or more embodiments, the balloon may be controlled by supplying replacement gas through a conduit from a supply on the ground. In an alternative embodiment, controls may be automated, as by use of an altimeter controlled valve, or may be remotely controlled, as by a communication line or radio controlled valve operated from a remote control transmitter. The controls allow the balloon to be refilled with lighter-than-air, buoyant gas through a conduit from a supply such as a helium gas storage tank on the ground. The supplying of lighter-than-air gas is controlled for maintaining support for a shielding screen over an extended period of time or substantially continuously as long as the apparatus is maintained and refilled.
According to one or more embodiments of the present invention, the balloon may comprise a hot air balloon and a controlled hot air burner may be carried by the hot air balloon. In one or more embodiments, the burner is controlled to maintain the balloon aloft. In one embodiment, the controls are automatic based upon altitude sensors. In one or more embodiments, the burner may be controlled remotely, such as from the ground via communication line or via radio control signals. In one alternative embodiment, there may be a refillable supply of fuel for the burner carried onboard by the balloon. In one alternative embodiment, a fuel supply for the burner may be provided or refueled through a fuel conduit from a fuel supply on the ground. Thus, the burner can be operated for maintaining hot air in the balloon to support a shielding screen during an extended period of time or substantially continuously as long as the burner and balloon are re-fueled and maintained operational.
One skilled in the art will recognize workable embodiments of the apparatus may include, but are not limited to, balloons, aerostats, airships, and other lighter-than-air devices that are buoyant in air (balloons). The buoyancy that is provided by holding lighter-than-air gas, such as helium or heated air and combustion gas may be maintained or adjusted depending upon atmospheric conditions, by supplying controlled amounts of replacement light gases, or by controlling a hot air burner and supplying replacement fuel for the hot air burner, and any combination thereof. Thus, controls may be automated, as by use of an altimeter controlled valve or burner, or may be remotely controlled, as by a radio controlled valve or burner operated from a remote transmitter.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
It is common in war and border conflicts between nations for missiles, rockets, mortars, and other projectiles (for purposes of clarity, any of these types of ordnance may be referred to herein as “missiles”) to be launched, fired, or lobbed from one area over the border toward a target area. For example, the northern border of Gaza is in some places no more than about ten miles wide and in many instances, such as at a military compound, a border area may be less than a mile wide. Currently missiles of various types are being launched from northern Gaza over a border, an agreed armistice line, into towns in the neighboring country of Israel.
For example, in
Cross border launched missile attacks have been going on for some time. Often such attacks are made without well directed missiles, rockets, or mortars. It is not uncommon for many missiles launched across borders to be unguided rockets, mortars, “home-made” ordnance, or low-tech explosive projectiles. Many of these rockets and mortars are simply propelled and not “guided”. These are not guided missiles that can be routed or controlled during flight to the target. In such cases, the missile may be aimed at a target and fired to travel along a trajectory without further control or guidance (unguided missiles). Such missiles are typically aimed to travel along an arc trajectory toward a target, but once they are aimed and launched they are not guided. Short range and long range rockets may be built or acquired and fired from a launch area in one country to a target area in another country. Too often the targets include cities, towns, and villages inhabited by innocent civilians, non-combatant men, women, and children and indiscriminately injure, maim, and kill innocent victims.
Sometimes missiles, rockets and mortars are launched from outside a military compound by opposing forces targeting military targets. Civilians and troops are being injured and killed because of these relatively crude devices that are often fired from civilian populated areas (making it harder to strike back, for wariness of collateral damage).
In one alternative embodiment, also shown in
According to one embodiment as may be seen in
It will be understood by those skilled in the art that although the drawings depict the balloons 50 as air ships in
According to one or more embodiments, the supporting balloons need not be positioned immediately at the top of the shielding screen. The balloons may be positioned significantly higher than the top of the shielding screen to reduce the opportunity to be impacted by the missiles the shielding screen is designed to intercept and also avoid or reduce the opportunity for the balloons to be shot down by those intending to launch the missiles. For example, the balloons could be a mile or more higher than the top of the shielding screen material to avoid being shot down and/or to make them less able to be targeted.
According to one or more embodiments, the balloons may be self-sealing to reduce the adverse affects of any punctures and to further reduce the opportunity to be shot down. For example, a self sealing material can be used for the “skin” of the balloons to seal and reduce the escape of lighter-than-air gas in case of puncture and to make them more durable.
According to one embodiment, a missile need not be completely blocked or immediately stopped at the shielding screen 40 in order for the defense shield 30 to be effective. Rather, by intercepting and imparting drag force on the missile along its trajectory, the missile is deflected by changing its velocity and direction so that it will miss the intended target area 20 and closely surrounding areas such as town 14.
According to one or more embodiments a supported shielding screen include a plurality of independently supported ‘panels’, such as net screens, that may be aligned in a row independent of each other, side by side or overlapping one another along vertical edges.
According to one or more embodiments a plurality of panels, such as net screens, form a shielding screen jointly supported by one or more shared balloons. The panels may be aligned in a row, or alternatively may be positioned overlapping along vertical edges of the panels. For example, if one needs to ‘cover’ a space 10,000 yards wide, one could line up 200 panels or net screens each 50 yards wide, all independently supported by balloons so that they are independently tethered and secured. As well, as noted above, one could set these panels or net screens up more than one ‘layer’ deep, namely, one behind another in a direction of expected missile travel from a launch site to a target area.
The defense shield 30 may comprise a generally continuous shielding screen 40 that may be made of a net material 42 that is strong and flexible so that it easily deforms upon impact by a missile and then drags against the motion of the missile and thereby deflects the missile from the trajectory toward the target area. For example, free-flying artillery rockets lacking any guidance system may be launched across a border, such as the Kassam type Hamas-made rockets known to have been fired across the border between the Gaza Strip and Israel. For another example, Katyusha Russian made rockets are known to have been fired across the border from southern Lebanon into Israel. For comparison, a bullet-proof vest must completely stop a projectile for it to be effective because a human being is directly on the other side. In the case of missiles such as rockets, mortars and other projectile ordnance, the targeted human beings are at a target area 20 a substantial distance from the shielding screen 40 and not within inches of the shielding screen 40. The target area 20 is a distance away so that minor deviations in the trajectory will be multiplied by the distance traveled to increase the total deflection and thereby miss the target area and closely surrounding areas. For example with reference to
According to one embodiment, a shielding screen 40 comprises a plurality of net sheets 44(a), 44(b), 44(c), . . . , 44(n), where “n” represents any number of net sheets 44 that may be made of a strong wind permeable net material 42. Each net sheet 44 is spaced along the border 10 and may overlap a short distance at each juncture 48 to form a shielding screen 40 extending generally continuously along the border 10. Each net sheet 44(a), 44(b), 44(c), . . . , 44(n) may be held by one or more balloons 50(a), 50(b), 50(c), 50(d), . . . , 50(n), 50(n+1). In one or more embodiments, each net sheet 44 is held by attachment to two balloons, one at either side of each net sheet. In alternative embodiments (not shown in the drawings), more than one net sheet 44 might be held by a single balloon, or each net sheet 44 might be attached to a greater number of balloons. A substantially continuous shielding screen 40 is formed elevated in the air extending a desired distance along the border 10 to be protected by the defense shield system 30.
According to one embodiment, the balloons 50(a)-50(n+1) are anchored through the tether cords 46 that extend from main ground anchors 60 located on the ground 58 at or below each balloon 50(a)-50(n+1) and spaced along and adjacent to the border 10. The tether cords 46 may extend generally vertically up from the ground anchors and along the side edges of the net sheets 44. According to one or more embodiments, where there is an overlap of the side edges of the net sheets and each net sheet 44(a)-44(n) may be provided with pairs of anchors 60(a1) & 60(a2), 60(b1) & 60(b2), and . . . 60(n1) & 60(n2) so that the overlapping portions of the net sheets 44 are held in an overlapping relationship to form a substantially continuous shielding screen 40. To facilitate holding the net sheets 44 in position, the balloons 50 may also be tethered with angled tether cords 64 attached to offset anchors 62. In one alternative embodiment, the angled tether cords 64 may be attached directly to the balloons 50 as shown in
A balloon filled with lighter-than-air gas or with hot air can lift and carry as much as several thousand pounds, or more, depending upon the volume of gas or heated air in the balloon and the temperature differential between the balloon air and ambient air. For example, helium filled balloons, aerostats and airships can have significant buoyancy up to tens of thousands of pounds, depending upon the volume of helium. Thus, according to one or more embodiments a plurality of balloons, aerostats, airships, or other lighter-than-air devices 50, having requisite buoyancy and spaced as closely together as may be needed, are secured to net sheets 44 to form and support a shielding screen 40 at an appropriate altitude for missile and projectile interception. The size, number and spacing of the net sheets 44 between balloons 50 will depend upon the weight of the net material 42. Balloons tethered high above the expected missile or projectile trajectory would be very difficult to shoot down. For example, at altitudes of one, two, three, or more miles above the ground 58, the speed of bullets fired from the ground will slow by the force of gravity and upon reaching a maximum altitude the speed will not be great and thus the kinetic force of a bullet will be small. In one theoretical example, a net sheet 44 that has a given horizontal width, might weigh about one pound for each twenty feet of vertical length. In this example, a balloon having a buoyancy of about 530 pounds lift force could support a total vertical length of two miles of such a lightweight net sheet 44. For another theoretical example, a net sheet 44 made of heavier netting material might weigh one pound for each five feet of length. Such a netting material might for example, be made of a stronger mesh material, a wider sheet, or a net sheet made of multiple layers of mesh material. Two miles of such a net sheet made of such a stronger wider material in this example, might weigh about 2100 pounds so that it could be supported by a balloon having a buoyancy of more than about 2100 pounds lift force. It will be understood that two miles is merely an example and other heights might be appropriate in a given situation. In cases where the height might need to be more than two miles high, for example three, four or more miles, lighter materials, or additional lift force might be provided. An extra amount of lift force may be provided by increasing the buoyancy of the balloon and the additional lift force will be held by the tether cord 46 anchored to the ground. It will be understood that in general for most materials, stronger net sheets are likely to weigh more than weaker nets made of the same types of fibers or woven strands. Thus, bigger balloons or a greater number of balloons will be required for carrying the heavier load. It will be understood based upon this disclosure that there will be a balance between the net weight and strength and the size and number of balloons to provide the total buoyancy that will be required. Based upon this disclosure, it will further be understood that the additional lift force will desirably be equal to or greater than the wind resistance force that might be expected to act upon the balloon and the net sheet so that total upward force will keep the balloon and the net sheet aloft even when acted upon by any expected wind.
The height or the range of heights of an expected trajectory 22, 26 of missiles launched from a particular ground launch area 18 toward a particular ground target area 20 can be determined, for example, by physics formulas and calculations or by actual testing. For the expected speed or amount of propulsion for a given type of rocket, mortar, projectile, or other missile there will be a range of heights at the border for trajectories that would allow such missiles to reach the target area or to reach the surrounding town or populated areas around the intended target area. The maximum speed or amount of propulsion of a particular missile will limit its maximum altitude 24. A missile traveling along a trajectory with a relatively low maximum altitude is close to the ground and requires a higher speed in order to reach a long distance target before gravity pulls the missile to the ground at a point short of the target area. In order to intercept a missile or projectile along a trajectory 22, 26 that will actually reach the target area 20, the defense shield 30 may be suspended so that it vertically spans the expected trajectory height range that would otherwise allow such missiles to reach the target area. In one or more embodiments, the net sheets 44 would not necessarily need to start at the ground and may instead start at a significant height above the ground. Thus, according to one or more embodiments, the projectile deflecting net sheets 44 would not need to extend the entire height distance from the ground 58 to the balloons 50. A shorter net sheet may be adequate to cover the appropriate trajectory range. While the balloons would support the net sheets 44 at or above the maximum height 24 of the expected trajectory height range, the net sheets 44 could hang down to an altitude below the expected minimum trajectory height range. A lightweight tether cord 46 might extend from the main ground anchor 60 to the maximum altitude and the net sheets 44 may extend a much shorter distance so that the total weight of netting material 42 in the net sheet 44 might be less than a similar strength net sheet extending all the way from the ground 58 to the maximum altitude of the balloons 50. In one theoretical example, a maximum altitude of the expected trajectory range might be about two miles and the minimum trajectory to reach the protected target area might be about ½ mile above the ground. Thus, in this theoretical example, the total height of the net sheets 44 could be about 1½ miles extending from at or above about two miles down to a height at or below ½ mile above the ground level. Those skilled in the art upon reading this disclosure may consider other example heights and length of net sheets to cover possible expected maximum and minimum missile trajectories. In one or more embodiments, the tether cord 46 could extend along the height of the shorter net and extension tether cords could extend from the bottom of the net sheets or from the bottom ends of the tether cords 46 down to the main ground anchors 60. Thus, shorter and stronger net sheets 44 might be used in appropriate situations where the target area 20 is sufficiently distant from the launch area 18 and a low trajectory missile would not have sufficient velocity to reach the target area 20.
According to one or more embodiments, the plurality of balloons, as schematically depicted in either
According to one or more embodiments as in
According to one or more embodiments as in
In one or more embodiments, the angled tether line 64 is connected to the offset anchor 62 through a biasing device for providing a predetermined amount of tension to the angled tether line 64. For example, such a biasing device might include a reel, such as reel 68 as shown in
The angled tether lines 64 may be attached in front of each sheet towards the projectile launch areas. According to one embodiment, there may be two angled tether lines for each sheet, secured close to the top 144 of the netting material or about ¾ of the way up, whichever is more efficacious, that are secured as well towards where the projectiles are fired. As discussed previously, the angled tether lines 64 may play out at a certain rate or provide an amount of give, whether it is through a coiled spring system, or one or more mechanisms that control or calibrate the “give” to a desired rate to slow down, deflect, or stop the projectile given its expected speed, weight, force, configuration, etc.
In another embodiment, as shown in
According to one embodiment also shown in
As depicted in
In one or more embodiments, a tether cord 46 may support a separately attached transmission tube 73. In one or more alternative embodiments, an extension tether cord 47 may comprise a gas transmission tube 73 for conveying replacement fuel 75 from the ground 58 to a hot air balloon 50y. Thus, the transmission tube 73 may be integrally formed within the extension tether cord 47, as for example, the extension tether cord 47 may form a hollow transmission tube 73 or a woven extension tether cord 47 may enclose a coaxially disposed transmission tube 73.
In one or more embodiments, hot air balloons 50(y) may be used that have onboard burners 78. In one embodiment, an amount of fuel may be stored onboard for operating the onboard burner 78. Heat will dissipate from the hot air balloon 50(y) over time and onboard fuel may be burned in the onboard burner 78 to keep the balloon air sufficiently hot to maintain a proper altitude. The control of the burner 78 may be automatically programmed, for example by using an altitude monitoring device 84. Alternatively, the burner 78 might be controlled by remote control. The onboard fuel will be consumed and will run out after a period of time. To keep the hot air balloon aloft for longer periods of time, according to one embodiment, the fuel may be replenished from a fuel supply on the ground. The replenished fuel may be conveyed directly to the burner 78 or to the onboard balloon fuel storage through a lightweight conduit 72 that may be formed as part of a specialized extension tether cord 47 or the conduit 72 may be supported by attachment to a tether cord 46. Thus, according to one embodiment, the fuel, such as natural gas, propane, or other gaseous fuel for a hot air burner, may be kept in an appropriate storage tank on the ground below the balloon and may be “fed” through a tube at a calculated steady rate or periodically as necessary to control the buoyancy of the balloon and thereby keep the balloon and supported deflection shield system at the desired altitude. In one or more embodiments, the fuel storage may be a mobile storage tank, such as a tanker truck, and refueling can be accomplished on a schedule, sequentially along the border or as may be needed for individual balloons among the plurality of balloons to keep all the balloons substantially continuously aloft.
According to one embodiment, hot air balloons are used that do not have an onboard burner 78, and a burner may be provided on the ground below the balloons to heat the balloon air. After the balloon is launched and anchored in position, air may be heated at the ground level burner and sent up to the balloons through a conduit to keep the balloon aloft to the desired altitude. Appropriate altitude monitoring devices 84, such as altimeters, or balloon inflation of balloon lift monitoring devices, such as cord tension sensors, may be used in the balloons for real time determination of the altitude or proper inflation of each balloon where the altitude is determined by the length of the support cord. The differential temperature of internal air and external air might also be monitored to properly control lifting force where the altitude is not the only consideration.
According to one or more embodiments, the number and buoyancy of the balloons would be sufficient to provide an amount of lift force that is sufficient to overcome the downwardly directed force vector caused by the force of wind resistance against the net sheets and the balloons. In addition, according to one or more embodiments, a buoyancy “safety factor” of more buoyancy than the total required buoyancy for keeping the balloons and net sheets at the desired altitude may be provided by selecting a number and size of the plurality of balloons to provide extra buoyancy. For example, a safety factor of two or more times the amount of lift force required might be selected so that at least a double load could be supported by the lift of the balloons. The support for each portion of the netting according to one embodiment would be distributed to more than one of the balloons. Thus, even if one balloon deflates completely, the surrounding balloons will support the total weight of the defense shield at the location of the deflated balloon. The defense shield system would not fall and local sagging would be minimal. A replacement balloon could be inflated and elevated to take the place of the deflated or defective balloon without interrupting the effectiveness of the defense shield. In an alternative embodiment, as noted above, the net sheets may be layered one behind another as well as overlapping side over side so that if one falls, there is another one in position to intercept and/or block a missile at the same location.
According to one or more embodiments, the net sheets 44 are not intertwined or interlocked. According to this embodiment, if one net sheet falls or is knocked down it does not take the others down. The net sheets 44 may effectively overlap a sufficient distance so that relative movement along the edges does not open or interrupt the continuity of the defense shield. If one net sheet does go down, only that particular area becomes open and the whole area being protected by the remaining defense shield is not vulnerable. A replacement net screen can be elevated in place of the fallen net sheet and the integrity of the defense shield can be conveniently and rapidly restored.
According to one or more embodiments, as shown in
The net sheets 44 may be additionally layered so that there may be one or more additional net sheets 44(iii) (not shown) forming a shielding screen 40(iii) (not shown) in back of the first and second net sheets 44(i) and 44(ii), to provide additional deflection of missiles. In one or more embodiments, the added layers might be supported from separate balloons so that if one net sheet 44(i) goes down there may be a back up net sheet 44(ii) that will still defend against the missiles while the downed net sheet is replaced.
According to one embodiment, a defense shield system may be truck mounted or transported and deployable to a border or to a perimeter where rocket, missiles, mortars or other air launched ordnance may be a problem. For example, increased localized insurgent activity at a state border, city border, or a military base. A sea vessel could be used to deploy the inventive system on the sea, in front of or around warships. Variations might also be used at sea for moving vessels wherein the netting could be deployed in front of a ship, tethered to the ship or with its own propulsion assist system to move with the vessel and reduce or avoid slowing of the vessel. According to another embodiment, the system could run in sync with the boat's actual movement.
According to one or more embodiments, a defense shield may be quickly deployed if radar picks up a threat from a number of miles away. For one theoretical example such an embodiment may be a floating and guided defense shield, essentially as described above and also one that could be deployed over an “aggressors” territory or adjacent to it, as in international waters. In this embodiment, the military could guide the defense shield into place, and also move it around, using remote controlled propulsion devices at each end of the individual panels or net sheets, so as to intercept more advanced guided missiles, as near the Korean peninsula. If one generally knew the missile launching area from where the missiles were to be launched, one could guide a shield to be put in place near that area that could be in total a number of square miles wide that would have a significant chance of intercepting the missile before it entered the target area. This also could be deployed in a horizontal fashion (versus the vertical detailed hereto) with the balloons potentially well above the height of a defense shield that might be adjacent to or close to the ground. Such a defense shield could have the effect of an aggressor deciding not to launch, as such a launch might have the effect of the missile coming back down on top of the launch site or other site occupied by those launching the missiles. A possible use for this is that while current defenses against such missiles need to be very precise and generally involve another projectile intercepting the first, a defense shield according to one or more embodiments of the present invention would not have to be as precise.
According to one or more embodiments, the net material and the suspension system is designed to provide a calibrated amount of “give” from the fabric, netting, tethers, and/or anchoring systems to allow appropriate “capture” or sufficient change of velocity of projectiles to change the velocity and/or direction to deflect the missile away from the intended trajectory and target. According to one embodiment, the angled tether line 64 may be secured with a tensioning device such as a coiled loaded reel similar to a coiled spring loaded tape measure. In one embodiment, the tension may be adjustable according to the balloon lift, the weight of the net system, the altitude, the weight of the tether line already extended, and the wind and weather conditions. The “give” might also be adjusted according to the construction of the expected types of missiles (if known) at a particular location. This might be understood as similar to a bed sheet strung out tightly that might be torn and penetrated easier than a loosely strung bed sheet that will “capture” and absorb the impact without tearing. The loosely suspended netting system by easing its force slowly against the missile “catches” or partially catches the missile sufficiently to stop or deflect it from its intended target. Once again, in the case of a projectile without onboard propulsion, it is theorized that the closer the net is to a peak trajectory for a given missile, type, velocity, launch site and target sight, the slower the missile (the projectile will have reduced energy due to the action of gravity and wind resistance) and the more effective will be the netting to deflect the projectile. For any unguided missile or projectile, even a small deflection at a high altitude, and thus at a corresponding long distance from the target, may cause a great variation to the impact location away from the intended target area. The deflection will be amplified by the distance traveled along the changed course.
According to one or more embodiment the support balloons 50 may be tethered by angled tether lines 164 and positioning tether cords 146 as shown in
In one or more embodiments, as shown in
In one or more embodiments, the amount of tension in tether line 164 and tether cords 146 may be predetermined so that the impact of a missile with the shielding screen 40 is accommodated with give, and then the net sheet 44 is returned by biasing force to its shielding position. Thus, the angled tether line 164 may be anchored at a position towards the launch area 18 with the net screen 44 position spaced a short distance back from the border 10 and towards the target area 20 to be shielded. This arrangement facilitates supporting the shielding screen 40 in the direction of impact by projectiles. The biasing as by coil tension is thus provided in the direction that the projectiles are coming from, so that when the projectile hits the material or net sheets 44, it gives at a certain calibrated rate to slow down the missile as the shielding screen deforms and moves in the direction of the impact. The bias tension moves the net sheet 44 back to a shielding position. The balloons 50 are further back toward the target area 20, further away from the launch site 18, and at a higher altitude than the top 144 shielding screen 40, for example by a distance 150, so that the balloons 50 are more difficult to shoot down.
According to one or more embodiments, there may be two angled tether lines 164 for each sheet, and the net sheets 44 may be secured at the same distance along the tether lines toward the balloons 50. The balloons may be replenished with fuel for an on board hot air gas burner or with lighter than air gas from a source 70 and along a conduit 172 that also may extend along tether cord 146. Because of the angle of tether cord 146, the conduit 172 is also less vulnerable to attack. The angled tether cords 146 may also be attached to tensioning or biasing devices 179 that may provide an amount of tension that appropriately counter-balances the tension in the angled tether lines 164 so that they play out or retract at a certain rate or provide a desired amount of give, whether it is through a coiled spring system, or one or more mechanisms that control or calibrate the “give” to a desired rate to slow down, deflect, or stop the projectile given its expected speed, weight, force, configuration, etc. and then return the nets 44 to their desired shielding positions.
The most sophisticated national defense systems including the US military are using their AWACS and cruise missiles to look for and knock down sophisticated guided missiles. They are not looking for and shooting down low tech unguided missiles, projectiles, and mortars. The present defense shield could be set up around a base, town, or attack target of any kind to facilitate defense against the low technology attacks that are not cost effective to defend using more sophisticated systems. This shield could be deployed and retracted at will. In one variation it could be deployed quickly by the panels being shot up, with the balloons deploying when the panels reach their intended height as determined by the length of the tethers. In such an embodiment, a compressed lighter-than-air gas may be used that deploys the balloon when the panel reaches its intended height and the tether stops it.
A variation of the netting material could be employed to deflect bullets, for example at selected altitudes, (the material might need to be a close weave or a “solid” fabric material). Such material might not have to be held as high up by the balloons because the impact of a bullet falling at terminal velocity from a high altitude is not as devastating as a lower trajectory and thus higher velocity bullet that might reach the target area. In appropriate circumstances a balloon-supported bullet projectile shield might be easier and faster to deploy than erecting a wall on the ground. It could be considered as a highly portable wall of fabric that may be helpful as a defense of a target area.
While the invention has been described with respect to a limited number of embodiments, and the discussion has focused on lighter-than-air supported defense shields along borders, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. For example, lighter-than-air supported defense shields may be movable as with ships or may be otherwise guided for deployment at different locations. For example, the defense shield may be guided to a missile launch area to intercept missiles directed to a target area, or such a defense shield might be guided to effectively surround such a launch site to intercept, deflect, and “contain” missiles from leaving the launch site and reaching a target area to be protected and these and other embodiments may also benefit from certain aspects of the present invention alone or in combinations with the various other aspects of the present invention. Accordingly, the scope of the invention should be broadly interpreted to the full extent to which applicant is entitled and limited only by the attached claims.
The present application claims priority to U.S. Provisional application Ser. No. 61/141,868, titled UNGUIDED MISSILE AND PROJECTILE DEFENSE SHIELD SUPPORTED BY TETHERED BALLOONS, by inventor Joel F. Berman, filed Dec. 31, 2008, which is incorporated by reference herein and relied upon for priority and all legitimate purposes.
Number | Name | Date | Kind |
---|---|---|---|
1309391 | Adkins | Jul 1919 | A |
2354754 | Irwin | Aug 1944 | A |
2365778 | Schwab | Dec 1944 | A |
2374261 | Ames | Apr 1945 | A |
3229290 | Fisher | Jan 1966 | A |
3454244 | Walander | Jul 1969 | A |
5583311 | Rieger | Dec 1996 | A |
6588702 | Robbins | Jul 2003 | B2 |
6626077 | Gilbert | Sep 2003 | B1 |
6865852 | Gower | Mar 2005 | B2 |
7201348 | Flammer | Apr 2007 | B1 |
20020152881 | Stevens et al. | Oct 2002 | A1 |
20040050014 | Lisa et al. | Mar 2004 | A1 |
20040108950 | Zaar | Jun 2004 | A1 |
20070261542 | Chang et al. | Nov 2007 | A1 |
Number | Date | Country |
---|---|---|
1752730 | Feb 2007 | EP |
2757937 | Jul 1998 | FR |
2789484 | Aug 2000 | FR |
2001417 | Jan 1979 | GB |
121148 | Dec 1983 | GB |
2005-090932 | Apr 2005 | JP |
10-2008-0068055 | Jul 2008 | KR |
2004054667 | Jul 2004 | WO |
Entry |
---|
H. E. Dickard, Mini-RPV Recovery System Conceptual Study, Aug. 1977, pp. 193-194, Figure 73. |
PCT International Preliminary Report on Patentability with Written Opinion dated Jul. 14, 2011 in related PCT/US2009/069103, Berman et al. (8 pages). |
PCT International Search Report dated Oct. 26, 2010 in related PCT/US2009/069103, Berman et al. (10 pages). |
Tethered Aerostat Radar System fact sheets; Air Force Link; 2 pages; Sep. 6, 2008. |
The Most Popular, Most Advanced, State-of-the-Art Airship Available; Worldwide Aeros Corp.; 1 page; no date. |
The Aeros 40D Sky Dragon Airship Training, Support and Specifications; Worldwide Aeros Corp.; 1 page; no date. |
Easily Transportable and Rapid Deployable Aeros 1170 Tethered Aerostat System; Worldwide Aeros Corp.; 1 page; no date. |
TCOM Innovations in Aerostat Technology; TCOM; Sep. 6, 2008; 1 page. |
What is an Aerostat?; TCOM; Sep. 6, 2008; 1 page. |
What is a Mooring System?; TCOM; Sep. 6, 2008; 1 page. |
What is a Tether?; TCOM; Sep. 6, 2008; 1 page. |
What Types of Payloads Can Be Used?; TCOM; Sep. 6, 2008; 1 page. |
Cut Resistant Gloves and Other Applications & General Properties of Vectran Fiber; VECTRAN; Sep. 6, 2008; 3 pages. |
Tensile Properties; Finishing Options; Impact Resistance; VECTRAN; 2 pages; no date. |
Nylon Netting Material 44mm; www.ahh.biz; Sep. 6, 2008; 2 pages. |
Number | Date | Country | |
---|---|---|---|
20110174922 A1 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
61141868 | Dec 2008 | US |