The present invention is directed to an ultrasonic probe in the form of a transducer array, and specifically an ultrasonic probe having a probe body with a geometric shape such that transducers in the transducer array are equidistant from an origin point in the probe body so that sound waves generated simultaneously by two or more transducers in the array arrive simultaneously at the origin point.
Ultrasonic probes are used for inspection of work pieces in industrial applications. The inspections have been conducted by contact methods, wherein the probe is brought into intimate contact with the workpiece, but coupled to the workpiece using a couplant such as glycerin or oil, or by non-contact or submersion methods, in which a column of water lies between the workpiece and the transducer.
The probe is comprised of a delay body and at least one transducer mounted on the delay body. The at least one transducer typically is a piezoelectric material which is excited by an electrical signal to produce a mechanical vibration, or is excited by a mechanical vibration to produce an electrical signal. The transducer is connected to a signal generator and to a signal analyzer so that electrical signals can be used to excite the transducer and so that mechanical vibrations received by the transducer can be analyzed. The transducer comprise a plurality of transducer crystals arranged as a transducer array. The signal processing equipment, including the apparatus for generating electrical signals and the signal analysis equipment, including associated software and algorithms, can be quite complex. The delay body to which the transducer or transducer array is attached is intermediate the workpiece and the piezoelectric material. It typically has the form of a disk or a wedge, and the sound generated or received by the transducer must pass through the delay body.
Because of the shape of the delay body, sound generated or received by the transducer or transducers in the array pass through unequal amounts of material in the delay body, resulting in a timing delay for the signal. While this time delay can be accounted for in the analysis, it leads to complications that slow the analysis and which add to the potential for errors.
Various approaches have been used to improve the focusing of sound waves in objects. One approach for medical echography is set forth in U.S. Pat. No. 5,027,820 ('820 patent). This approach utilizes a phased array positioned on a cylindrical generatrix. More specifically, the phased array is positioned on a convex surface and focuses the beam in a direction D away from this convex surface to a focusing point Fj a way from the convex surface. The transducer arrays are not equidistant from the focal point as is evident from FIG. 2 of the '820 patent. As a result, focusing can be achieved electronically, but not mechanically.
U.S. Pat. No. 5,148,810 ('810 patent) discloses generating a spherical wavefront from a substantially linear transducer array. Although no delay body is disclosed, transducers are mounted on array bodies. In an arrangement such as disclosed in the '810 patent, such as is shown in FIG. 5, while the spherical wavefronts generated are equidistant from a centerline bisecting the transducer array, any focal point generated along the centerline is not equidistant from each transducer array, so that a time delay would be inherent in the delay body.
What is lacking in the art is an ultrasonic probe that utilizes a combination of a transducer and delay body that generates a wave that is focused to a point, the focus point being equidistant from a geometric center of the transducer or each transducer in a transducer array. Such a focal point may be in the delay body, or it may be outside the delay body in the workpiece to be inspected. However, any sound wave reaching the focal point from the transducers in the array arrives at substantially the same time, thereby allowing potential errors in measurement to be eliminated, or alternatively, allowing for elimination of corrections to measurements due to time delays. Conversely, sound reflected from the work piece and arriving at the focal point would reach transducer in the array at the same time. Thus, echoes such as from back surfaces and imperfections could be more readily determined.
The present invention is an ultrasonic probe used for inspecting a workpiece. The probe is particularly useful for inspecting work pieces that are articles of manufacture having at least one surface having a geometry that can be coupled to the workpiece. The probe comprises a transducer array having a plurality of transducer elements. The transducer elements are connected to an ultrasound device that can generate sound across a range of preselected frequencies and that can analyze received sound across a range of preselected frequencies. The transducer elements are connected to the ultrasound device by well-known techniques, allowing each element to produce sound waves at ultrasonic frequencies when excited by the ultrasonic device. The transducer elements also receive sound and communicate the sound to the ultrasonic device, where it can be appropriately analyzed and displayed.
The probe also includes a delay body. The delay body is a solid material having a matrix characterized by its ability to transmit a sound wave with little or no attenuation. A portion of the delay body is characterized by a geometry in the shape of a spherical wedge with a curved outer surface. The curved outer surface is defined in terms of a radius, each point on the curved outer surface being spaced from the center or origin point by a constant distance, the distance of each point on the curved outer surface being the radius of the outer surface curve.
The plurality of transducer elements of the transducer array are mounted on the curved outer surface of the delay body. Because each of the transducer elements in the array of elements is equidistant from the center of the radius of curvature of the curved outer surface, sound waves simultaneously generated by two or more of the transducer elements arrive at the center of the radius, also referred to as the origin point, at the same time. For any delay body, there is a single origin point, since a curved body of constant radius can have but a single center.
An index point is related to the origin point. The index point can be any preselected point selected from a group of positions consisting of a position on an interface formed by the delay body and the workpiece. The index point can also be any preselected point within the workpiece. In this circumstance the index point is a preselected calculable distance from the origin point within the workpiece.
When the index point is located on the interface formed by the delay body and the workpiece, the index point corresponds to the origin point. In this circumstance, the group of positions can be selected by moving the delay body and the origin point is arrived at by simultaneously firing the elements
When the index point is located within the workpiece, the index point is a preselected distance from the origin point. The index point is arrived at by a more complicated method. The index point is moved into the workpiece by sequentially firing preselected transducer elements in the array with a preselected time delay. By firing the elements, a pattern is formed which in turn generates a sound wave that converges to the index point within the workpiece. The index point is a preselected distance from the origin point, which can be determined by a mathematical algorithm that calculates the origin point based on location of the preselected transducer elements within the array, firing sequence and time delay. By carefully controlling each of these elements, it is possible to sequentially move the index point through the workpiece without moving the delay body.
Regardless of whether the index point corresponds to the origin point, or whether the index point is located within the workpiece at a predetermined distance from the workpiece, the location of any imperfections within the workpiece can more readily be determined, as the index point either corresponds to the origin point or is located at a preselected distance from the origin point. It should be clear that the distance from any of the transducer arrays to the index point is the same, so that the time delay from the index point to the any of the elements is the same. Any reflection from an imperfection within the workpiece to the index point will depend on the distance of the imperfection from the index point. Now, the calculation of the position of the imperfection is simplified. Also, by mapping the reflection received by each element of the array, the size of the imperfection can be determined and mapped, and a determination of its acceptability can be made.
As used herein, the term “sound wave” refers to any wave having a frequency of about 0.25 MHz to about 35 MHz, and the term “sound is used interchangeably with the term “ultrasound” or “ultrasonic.” The term “transducer” means any device capable of producing or receiving sound waves. Although transducers include piezoelectric materials that convert electrical impulses into sound waves, and sound waves into electrical impulses, piezoelectric materials are merely preferred transducers, as the term is not limited to such preferred embodiments. The term “firing a transducer element” means activating a transducer element by providing it with a stimulus, causing the element to vibrate for a brief period of time, thereby generating a sound wave or ultrasonic pulse. A piezoelectric element is stimulated with an electrical pulse.
Another advantage of the present invention is that the calculations can be performed more quickly and more reliably. Additionally, the ultrasonic testing of a volume of the material can be performed without moving the probe, but by simply implementing a program that fires preselected elements of the array in a prearranged sequence and in a prearranged timing pattern so as to scan the volume. Rather than having to move the probe across the entire surface of the workpiece, a thorough scan of the workpiece can be accomplished by simply moving the probe linearly, along a single dimension, rather than in a planar fashion, along a surface of the test piece.
Still another advantage of the present invention is that an accurate scan of the workpiece can be achieved when the workpiece is a complex shape. With such work pieces, an accurate scan can be achieved when only one surface is suitable for interfacing with the probe. Indeed, depending upon the configuration of the workpiece, an accurate scan may be achieved when only a portion of a surface is suitable. Of course, other factors will enter into such testing, such as filtering back reflections and reflections from indications, but full volumetric testing using ultrasonics which previously were precluded by the complex shape of the workpiece may now be possible.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The ultrasonic probe of the present invention utilizes a delay body of having a convex outer surface, the convex outer surface having a constant radius. This probe is depicted in
It should be noted that the transducer arrays depicted in the Figures are shown in cross-section, but the arrays extend in three dimensions. For example, the transducer array depicted in
To further illustrate,
The prior art has been described in great detail in
The construction of the array elements may vary. The benefits of the present invention may be achieved with array elements that are manufactured so that the array elements have a radius of curvature that matches the radius of curvature of the delay body. As is clear from
The probe is shown in cross-section in
The delay body 8 used in the probe thus may be of any geometric configuration in which a portion of the delay body has a curvilinear surface in which the points on the curvilinear surface are equidistant from an origin point, the distance from the points on the surface to the origin point being a radius of constant distance or length. The curvilinear surface of the delay body forms a convex surface. At least some of the elements of the transducer array are mounted on the curvilinear surface of the delay body equidistant from the origin point. Thus, preferred geometric configurations for the delay body include a hemisphere of preselected radius or a spherical wedge, wherein sides of the wedge extend from the center of the sphere outwardly, while the transducer array is mounted on the outer surface of the sphere. Of course, the delay body may also be some portion of a cylinder, such as a hemi-cylinder, wherein the cylinder is sectioned along the axis perpendicular to the radial direction. A transducer array is mounted on the outer surface of the cylinder. Each array element mounted along the outer surface substantially in a plane perpendicular to the axis is equidistant from a point along the axis and forms a radial array. This radial array can be made to perform in accordance with the principles of the current information. Of course, a plurality of such radial arrays 62 exist in parallel planes, as shown in
In another embodiment of the present invention, the index point is not coincident with the origin point of the center point of the radius as discussed above. This embodiment permits the sound wave to be focused within the interior of the workpiece. Since sound waves generated by elements of the array must reach the index point at the same time in order to be focused, the effective distance traveled by the sound generated by each element of the array is identical. Similarly, the effective distance traveled by reflected sound back to each element of the array also must be identical. Thus even though the index point is not coincident with the origin point, if the sound is focused, the index point can be treated as if it were the origin point. Any sound passing through the origin point will necessarily reach the index point at the simultaneously when the beam is focused. Thus, for calculation purposes, the index point can be determined as the sum of by the radius of the delay body and the distance of the index point from the origin point or radius center. This greatly simplifies the calculations in evaluating reflected signals, as reflected signals travel the same effective distance both to and from the index point. The programs in the associated diagnostic equipment evaluating the reflected signals need only calculate distances from the index point to the imperfection, which can be measured by calculating the differences in time required for the reflected sound wave to travel from the index point to the imperfection and back again, as the time for the sound wave to travel from the index point to and from the transducer will be constant. With the prior art probe, the distance from the transducer elements to the origin point is constantly changing as is the origin point making this calculation extremely difficult to determine, even when possible.
While the prior discussion relates to changing the focus, it should be apparent that by preselecting the elements that are fired across the transducer array, the angle of the sound wave at a focal point can also be modified. Thus, without moving the probe of the present invention, the workpiece can be scanned by changing the angle of the sound wave (by proper preselection of the sequence of the elements fired) and the focus of the sound wave can be changed (by proper firing of the elements in a preselected sequencing). This can be done rapidly, as the calculations can be computed rapidly because the geometry of the probe simplifies the calculations as discussed above. It is envisioned that the inspection sequence (i.e. the preselection of sequencing of the elements and the firing of the elements in a preselected sequence) can be preprogrammed. The program can be run while moving the probe of the present invention is a single direction along the surface of the workpiece to interrogate the entire workpiece. The results of the interrogation can be stored or viewed on a screen as the test progresses, or both. This is a significant improvement over current methods that require scanning of the entire surface or plane of the workpiece.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.