Unicompartmental customized arthroplasty cutting jigs and methods of making the same

Information

  • Patent Grant
  • 8617175
  • Patent Number
    8,617,175
  • Date Filed
    Monday, December 14, 2009
    14 years ago
  • Date Issued
    Tuesday, December 31, 2013
    10 years ago
Abstract
Disclosed herein are unicompartmental femoral and tibial arthroplasty jigs for respectively assisting in the performance of unicompartmental femoral and tibial arthroplasty procedures on femoral and tibial arthroplasty target regions. The femoral and tibial unicompartmental arthroplasty jigs each include a first side, a second side and a mating surface. Each second side is generally opposite its respective first side. For the femoral jig, the mating surface is in the first side of the femoral jig and configured to matingly receive and contact a generally planar area of an anterior side of a femoral shaft generally proximal of the patellar facet boarder and generally distal an articularis genu. The first side of the femoral jig is configured to be oriented towards the femoral arthroplasty target region surface when the mating surface of the femoral jig matingly receives and contacts the planar area. For the tibial jig, the mating surface of the tibial jig is in the first side and configured to matingly receive and contact a generally planar area of an anterior side of a tibial shaft distal of the tibial plateau edge and generally proximal of the tibial tuberosity. The first side of the tibial jig is configured to be oriented towards the tibial arthroplasty target region surface when the mating surface of the tibial jig matingly receives and contacts the planar area.
Description
FIELD OF THE INVENTION

The present invention relates to arthroplasty cutting jigs and systems and methods for manufacturing such jigs. More specifically, the present invention relates to uni-compartmental customized arthroplasty cutting jigs and automated systems and methods of manufacturing such jigs.


BACKGROUND

Over time and through repeated use, bones and joints can become damaged or worn. For example, repetitive strain on bones and joints (e.g., through athletic activity), traumatic events, and certain diseases (e.g., arthritis) can cause cartilage in joint areas, which normally provides a cushioning effect, to wear down. When the cartilage wears down, fluid can accumulate in the joint areas, resulting in pain, stiffness, and decreased mobility.


Arthroplasty procedures can be used to repair damaged joints. During a typical arthroplasty procedure, an arthritic or otherwise dysfunctional joint can be remodeled or realigned, or an implant can be implanted into the damaged region. Arthroplasty procedures may take place in any of a number of different regions of the body, such as a knee, a hip, a shoulder, or an elbow.


One type of arthroplasty procedure is a total knee arthroplasty (“TKA”), in which a damaged knee joint is replaced with prosthetic implants. The knee joint may have been damaged by, for example, arthritis (e.g., severe osteoarthritis or degenerative arthritis), trauma, or a rare destructive joint disease. Typically, a candidate for a TKA has significant wear or damage in two or more “compartments” of the knee. The knee is generally divided into three “compartments”: medial (the inside part of the knee), lateral (the outside part of the knee) and the patellofemoral (the joint between the kneecap and the thighbone). During a TKA procedure, a damaged portion in the distal region of the femur may be removed and replaced with a metal shell, and a damaged portion in the proximal region of the tibia may be removed and replaced with a channeled piece of plastic having a metal stem. In some TKA procedures, a plastic button may also be added under the surface of the patella, depending on the condition of the patella.


Another type of procedure is a unicompartmental (knee) arthroplasty or partial knee replacement (“UKA”) in which only a portion (or a single compartment) of the knee is replaced with prosthetic implants. Typically, a candidate for a UKA has significant wear or damage confined to primarily one compartment of the knee. A UKA may be a less invasive approach than a TKR and may have a quicker recovery time. A UKA may be utilized to prevent the spread of disease, such as in the early stages of osteoarthritis, where the disease has only affected a portion of the knee and it is desirable to prevent the disease from spreading to other portions of the knee.


Implants that are implanted into a damaged region may provide support and structure to the damaged region, and may help to restore the damaged region, thereby enhancing its functionality. Prior to implantation of an implant in a damaged region, the damaged region may be prepared to receive the implant. For example, in a knee arthroplasty procedure, one or more of the bones in the knee area, such as the femur and/or the tibia, may be treated (e.g., cut, drilled, reamed, and/or resurfaced) to provide one or more surfaces that can align with the implant and thereby accommodate the implant.


Accuracy in implant alignment is an important factor to the success of a TKA or a UKA procedure. A one- to two-millimeter translational misalignment, or a one- to two-degree rotational misalignment, may result in imbalanced ligaments, and may thereby significantly affect the outcome of the procedure. For example, implant misalignment may result in intolerable post-surgery pain, and also may prevent the patient from having full leg extension and stable leg flexion.


To achieve accurate implant alignment, prior to treating (e.g., cutting, drilling, reaming, and/or resurfacing) any regions of a bone, it is important to correctly determine the location at which the treatment will take place and how the treatment will be oriented. In some methods, an arthroplasty jig may be used to accurately position and orient a finishing instrument, such as a cutting, drilling, reaming, or resurfacing instrument on the regions of the bone. The arthroplasty jig may, for example, include one or more apertures and/or slots that are configured to accept such an instrument. However, under some methods, it may be difficult to determine the proper orientation of an arthroplasty jig, and more specifically, of a unicompartmental arthroplasty jig.


A system and method has been developed for producing customized arthroplasty jigs configured to allow a surgeon to accurately and quickly perform an arthroplasty procedure that restores the pre-deterioration alignment of the joint, thereby improving the success rate of such procedures. Specifically, the customized arthroplasty jigs are indexed such that they matingly receive the regions of the bone to be subjected to a treatment (e.g., cutting, drilling, reaming, and/or resurfacing). The customized arthroplasty jigs are also indexed to provide the proper location and orientation of the treatment relative to the regions of the bone. The indexing aspect of the customized arthroplasty jigs allows the treatment of the bone regions to be done quickly and with a high degree of accuracy that will allow the implants to restore the patient's joint to a generally pre-deteriorated state. However, the system and method for generating the customized jigs often relies on a human to “eyeball” bone models on a computer screen to determine configurations needed for the generation of the customized jigs. This “eyeballing” or manual manipulation of the bone models on the computer screen is inefficient and unnecessarily raises the time, manpower and costs associated with producing the customized arthroplasty jigs. Furthermore, a less manual approach may improve the accuracy of the resulting jigs.


There is a need in the art for customized uni-compartmental arthroplasty jigs and methods of planning and generating such a jig. There is a need in the art for a system and method for reducing the labor associated with generating customized arthroplasty jigs. There is also a need in the art for a system and method for increasing the accuracy of customized arthroplasty jigs.


SUMMARY

Disclosed herein is an unicompartmental femoral arthroplasty jig for assisting in the performance of an unicompartmental femoral arthroplasty procedure on a femoral arthroplasty target region. In one embodiment, the unicompartmental femoral arthroplasty jig includes a first side, a second side and a mating surface. The second side is generally opposite the first side. The mating surface is in the first side and configured to matingly receive and contact certain surfaces of the femoral arthroplasty target region. The certain surfaces are limited to and include a medial articular condyle surface, an articular trochlear groove surface, and a generally planar area of an anterior side of a femoral shaft. The first side is configured to be oriented towards the femoral arthroplasty target region surface when the mating surface matingly receives and contacts the certain surfaces.


In one version of the embodiment, the unicompartmental femoral arthroplasty jig further includes a cutting guide surface positioned and oriented relative to the mating surface to result in a cut in the femoral arthroplasty target region with a desired position and orientation. In some cases, the desired position and orientation may allow a prosthetic femoral implant to restore a patient's knee joint to a natural alignment and, in other cases, the restoration may be to a zero degree mechanical axis alignment.


In one version of the embodiment of the unicompartmental femoral arthroplasty jig, the certain surfaces associated with the medial articular condyle surface are generally limited to an anterior and distal regions of the medial articular condyle surface.


In one version of the embodiment of the unicompartmental femoral arthroplasty jig, the certain surfaces associated with the articular trochlear groove surface are generally limited to an anterior and distal regions of a medial articular trochlear groove surface.


In one version of the embodiment of the unicompartmental femoral arthroplasty jig, the certain surfaces associated with the articular trochlear groove surface are generally limited to regions of a lateral articular trochlear groove surface and a medial articular trochlear groove surface.


In one version of the embodiment of the unicompartmental femoral arthroplasty jig, the certain surfaces associated with the articular trochlear groove surface are generally limited to anterior and distal regions of a lateral articular trochlear groove surface and anterior and distal regions of a medial articular trochlear groove surface.


In one version of the embodiment of the unicompartmental femoral arthroplasty jig, the certain surfaces associated with the generally planar area of the anterior side of the femoral shaft are generally limited to being generally distal of the articulars genu and generally proximal of the anterior patellar facet boarder.


In one version of the embodiment of the unicompartmental femoral arthroplasty jig, the certain surfaces associated with the generally planar area of the anterior side of the femoral shaft are generally limited to: being generally distal of the articulars genu and generally proximal of the anterior patellar facet boarder; and at least one contact point with the anterior patellar facet boarder.


Also disclosed herein is an unicompartmental tibial arthroplasty jig for assisting in the performance of an unicompartmental tibial arthroplasty procedure on a tibial arthroplasty target region. In one embodiment, the unicompartmental tibial arthroplasty jig includes a first side, a second side and a mating surface. The second side is generally opposite the first side. The mating surface is in the first side and configured to matingly receive and contact certain surfaces of the tibial arthroplasty target region. The certain surfaces are limited to and include a medial articular plateau surface, an intercondyloid eminence surface, and a generally planar area of an anterior side of a tibial shaft. The first side is configured to be oriented towards the tibial arthroplasty target region surface when the mating surface matingly receives and contacts the certain surfaces.


In one version of the embodiment, the unicompartmental tibial arthroplasty jig further includes a cutting guide surface positioned and oriented relative to the mating surface to result in a cut in the tibial arthroplasty target region with a desired position and orientation. In some cases, the desired position and orientation may allow a prosthetic tibial implant to restore a patient's knee joint to a natural alignment and, in other cases, the restoration may be to a zero degree mechanical axis alignment.


In one version of the embodiment of the unicompartmental tibial arthroplasty jig, the certain surfaces associated with the generally planar area of the anterior side of the tibial shaft are generally limited to being generally distal of the tibial plateau edge and generally proximal of the tibial tuberosity.


In one version of the embodiment of the unicompartmental tibial arthroplasty jig, the certain surfaces associated with the intercondyloid eminence are generally limited to a medial upslope of the intercondyloid eminence.


In one version of the embodiment of the unicompartmental tibial arthroplasty jig, the certain surfaces associated with the intercondyloid eminence are generally limited to a medial upslope of the intercondyloid eminence and a region extending from anterior the intercondyloid eminence to towards a tuberosity over an edge transition from a tibial plateau region. In some such cases, at least one of the certain surfaces associated with the intercondyloid eminence merges with at least one of the certain surfaces associated with the generally planar area of the anterior side of the tibial shaft.


Further disclosed herein is an unicompartmental femoral arthroplasty jig for assisting in the performance of an unicompartmental femoral arthroplasty procedure on a femoral arthroplasty target region. In one embodiment, the unicompartmental femoral arthroplasty jig includes a first side, a second side and a mating surface. The second side is generally opposite the first side. The mating surface is in the first side and configured to matingly receive and contact a generally planar area of an anterior side of a femoral shaft generally proximal of the patellar facet boarder and generally distal an articularis genu. The first side is configured to be oriented towards the femoral arthroplasty target region surface when the mating surface matingly receives and contacts the planar area.


Yet further disclosed herein is an unicompartmental tibial arthroplasty jig for assisting in the performance of an unicompartmental tibial arthroplasty procedure on a tibial arthroplasty target region. In one embodiment, the unicompartmental tibial arthroplasty jig includes a first side, a second side and a mating surface. The second side is generally opposite the first side. The mating surface is in the first side and configured to matingly receive and contact a generally planar area of an anterior side of a tibial shaft distal of the tibial plateau edge and generally proximal of the tibial tuberosity. The first side is configured to be oriented towards the tibial arthroplasty target region surface when the mating surface matingly receives and contacts the planar area.


In one version of the embodiment of the unicompartmental tibial arthroplasty jig, the generally planar area includes a portion that extends distally from generally the tibial plateau edge to a point generally even with the beginning of a distal half to distal third of the tibial tuberosity. In some such cases, the portion extends medial-lateral from a medial edge of a medial tibia condyle to a point generally even with a medial edge of the tibial tuberosity.


In one version of the embodiment of the unicompartmental tibial arthroplasty jig, the generally planar area includes a portion that extends distally from generally the tibial plateau edge to a point near a proximal boundary of the tibial tuberosity. In some such cases, the portion extends medial-lateral generally between a lateral edge and a medial edge of the tibial tuberosity.


While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a schematic diagram of a system for employing the automated jig production method disclosed herein.



FIGS. 1B-1E are flow chart diagrams outlining the jig production method disclosed herein.



FIG. 1F is a distal axial view of the three dimensional (“3D”) restored femoral bone model and the 3D femoral unicompartmental implant model adjacent to each other.



FIG. 1G is a posterior coronal view of the three dimensional (“3D”) restored femoral bone model and the 3D femoral unicompartmental implant model adjacent to each other.



FIG. 1H illustrates adjacent posterior coronal and distal axial views of the 3D restored femoral bone model.



FIG. 1I illustrates the same adjacent views of the 3D restored femoral bone model as depicted in FIG. 1H, except the 3D femoral unicompartmental implant model is shape matched to the 3D restored femoral bone model.



FIG. 1J is an isometric view of the 3D femoral and tibial unicompartmental implant models interfaced with each other.



FIG. 1K illustrates adjacent posterior coronal and anterior coronal views of the 3D restored femoral and tibial bone models interfaced with each other.



FIG. 1L illustrates a proximal axial view of the 3D restored tibial bone model with the 3D tibial unicompartmental implant model shape matched thereto.



FIG. 1M is a coronal-sagital view of the 3D restored femoral and tibial bone models interfaced with each other.



FIGS. 2A-2B are isometric views of a uni-compartmental femur arthroplasty jig that may be produced by the methods disclosed herein in a customized state, wherein the jig is shown either on (FIG. 2A) or off (FIG. 2B) the distal femur.



FIG. 2C depicts a top view of the uni-compartmental femur arthroplasty jig, wherein the femur is not shown, the jig being in a customized state.



FIG. 2D depicts a bottom view of the uni-compartmental femur arthroplasty jig of FIG. 2C.



FIG. 2E depicts a top-side isometric view of the uni-compartmental femur arthroplasty jig of FIG. 2C, wherein the jig is in a non-customized state or, in other words, in the form of a jig blank from which the jig in manufactured.



FIG. 3A illustrates how the uni-compartmental femur arthroplasty jig of FIG. 2A may be sized based on the medial condyle.



FIG. 3B illustrates the area in the trochlear groove and the anterior cortex that may be covered by the jig of FIG. 2A.



FIG. 3C illustrates how the size of the anterior flange of the jig of FIG. 2A may be determined.



FIGS. 4A and 4B are, respectively, coronal and distal views of the femoral condyles and displaying one embodiment of the mating surfaces for the uni-compartmental arthroplasty femur jig about the distal femoral condyle.



FIGS. 5A and 5B are, respectively, coronal and distal views of femoral condyles and displaying an embodiment having a reduced number of mating surfaces that still provides adequate stability of the uni-compartmental arthroplasty femur jig about the distal femoral condyle.



FIG. 6 is an isometric view of the uni-compartmental arthroplasty femur jig with mating surfaces corresponding to those of the distal femoral condyle depicted in FIGS. 4A and 4B.



FIG. 7 illustrates mating and hooking of the anterior flange of the uni-compartmental arthroplasty femur jig about the edge of the anterior-proximal trochlear groove.



FIG. 8 illustrates one method of mating to the trochlear groove.



FIG. 9 illustrates full mating of the trochlear groove.



FIG. 10 illustrates a single MRI slice in the sagittal plane with three consecutive segmentation outlines where the corresponding outline hooks the edge of the anterior-proximal trochlear groove.



FIG. 11A is an isometric view of a uni-compartmental tibial arthroplasty jig that may be produced by the methods disclosed herein in a customized state, wherein the jig is shown on the proximal tibia.



FIG. 11B is the tibial arthroplasty jig of FIG. 11B, except the jig is shown off the proximal tibia.



FIG. 11C depicts a top view of the uni-compartmental tibial arthroplasty jig, wherein the tibia is not shown.



FIG. 11D depicts a bottom view of the uni-compartmental tibial arthroplasty jig of FIG. 11C.



FIG. 11E depicts a top view of the uni-compartmental tibial arthroplasty jig of FIG. 11C, except the jig is in a non-customized state.



FIG. 12A illustrates the length of the tibial plateau that one embodiment of the tibial jig may cover.



FIG. 12B illustrates the height of one embodiment of the tibial jig.



FIGS. 13A and 13B are, respectively, an anterior coronal view and a proximal axial view of one embodiment of the mating surfaces for the tibial arthroplasty jig on the proximal tibia.



FIGS. 14A-14B are, respectively, an anterior coronal view and a proximal axial view of a second embodiment of the mating surfaces for the tibial arthroplasty jig on the proximal tibia.



FIG. 15 illustrates the uni-compartmental tibial arthroplasty jig with mating surfaces corresponding to those of the proximal tibia depicted in FIGS. 13A-13B.



FIG. 16 is a single MRI slice in the sagittal plane at the medial upslope of the intercondyloid eminence.



FIG. 17A illustrates one method of the uni-compartmental tibial arthroplasty jig mating with the medial upslope of the intercondyloid eminence.



FIG. 17B is an enlarged view of FIG. 17A.



FIG. 18A illustrates another method of the uni-compartmental tibial arthroplasty jig mating with the medial upslope of the intercondyloid eminence.



FIG. 18B is an enlarged view of FIG. 18A.



FIG. 19 is a flow chart outlining production to use of the arthroplasty jigs of FIGS. 2A and 11A.





DETAILED DESCRIPTION

Disclosed herein are customized uni-compartmental arthroplasty jigs 2 and systems 4 for, and methods of, producing such jigs 2. The jigs 2 are customized to fit specific bone surfaces of specific patients. Depending on the embodiment and to a greater or lesser extent, the jigs 2 are automatically planned and generated and may be similar to those disclosed in these three U.S. Patent Applications: U.S. patent application Ser. No. 11/656,323 to Park et al., titled “Arthroplasty Devices and Related Methods” and filed Jan. 19, 2007; U.S. patent application Ser. No. 10/146,862 to Park et al., titled “Improved Total Joint Arthroplasty System” and filed May 15, 2002; and U.S. patent Ser. No. 11/642,385 to Park et al., titled “Arthroplasty Devices and Related Methods” and filed Dec. 19, 2006. The disclosures of these three U.S. Patent Applications are incorporated by reference in their entireties into this Detailed Description.


A. Overview of System and Method for Manufacturing Customized Arthroplasty Cutting Jigs


For an overview discussion of the systems 4 for, and methods of, producing the customized uni-compartmental arthroplasty jigs 2, reference is made to FIGS. 1A-1L. FIG. 1A is a schematic diagram of a system 4 for employing the automated jig production method disclosed herein. FIGS. 1B-1E are flow chart diagrams outlining the jig production method disclosed herein. FIGS. 1F-1L show the 3D computer models of several steps outlined in the flow chart diagrams of FIGS. 1B-1E. The following overview discussion can be broken down into three sections.


The first section, which is discussed with respect to FIG. 1A and [blocks 100-125] of FIGS. 1B-1E, pertains to an example method of determining, in a three-dimensional (“3D”) computer model environment, saw cut and drill hole locations 30, 32 relative to 3D computer models that are termed restored bone models 28. The resulting “saw cut and drill hole data” 44 is referenced to the restored bone models 28 to provide saw cuts and drill holes that will allow arthroplasty implants to restore the patient's joint to its pre-degenerated or natural alignment state. Depending on the damage to the actual cartilage and bone of the patient's joint that is the target of the arthroplasty, the bone model 22 may or may not be “restored” to a greater or lesser extent into a restored bone model 28.


The second section, which is discussed with respect to FIG. 1A and [blocks 100-105 and 130-145] of FIGS. 1B-1E, pertains to an example method of importing into 3D computer generated uni-compartmental jig models 38 3D computer generated surface models 40 of arthroplasty target areas 42 of 3D computer generated arthritic models 36 of the patient's joint bones. The resulting “jig data” 46 is used to produce a jig customized to matingly receive the arthroplasty target areas of the respective bones of the patient's joint.


The third section, which is discussed with respect to FIG. 1A and [blocks 150-165] of FIG. 1E, pertains to a method of combining or integrating the “saw cut and drill hole data” 44 with the “jig data” 46 to result in “integrated jig data” 48. The “integrated jig data” 48 is provided to the CNC machine 10 or other rapid production machine (e.g., a stereolithography apparatus (“SLA”) machine) for the production of customized arthroplasty jigs 2 from jig blanks 50 provided to the CNC machine 10. The resulting customized arthroplasty jigs 2 include saw cut slots and drill holes positioned in the jigs 2 such that when the jigs 2 matingly receive the arthroplasty target areas of the patient's bones, the cut slots and drill holes facilitate preparing the arthroplasty target areas in a manner that allows the arthroplasty joint implants to generally restore the patient's joint line to its pre-degenerated state or natural alignment state.


As shown in FIG. 1A, the system 4 includes a computer 6 having a CPU 8, a monitor or screen 9 and an operator interface controls 11. The computer 6 is linked to a medical imaging system 8, such as a CT or MRI machine 8, and a computer controlled machining system 10, such as a CNC milling machine 10.


As indicated in FIG. 1A, a patient 12 has a joint 14 (e.g., a knee, elbow, ankle, wrist, hip, shoulder, skull/vertebrae or vertebrae/vertebrae interface, etc.) to be replaced. The patient 12 has the joint 14 scanned in the imaging machine 8. The imaging machine 8 makes a plurality of scans of the joint 14, wherein each scan pertains to a thin slice of the joint 14.


As can be understood from FIG. 1B, the plurality of scans is used to generate a plurality of two-dimensional (“2D”) images 16 of the joint 14 [block 100]. Where, for example, the joint 14 is a knee 14, the 2D images will be of the femur 18 and tibia 20. The imaging may be performed via CT or MRI. In one embodiment employing MRI, the imaging process may be as disclosed in U.S. patent application Ser. No. 11/946,002 to Park, which is entitled “Generating MRI Images Usable For The Creation Of 3D Bone Models Employed To Make Customized Arthroplasty Jigs,” was filed Nov. 27, 2007 and is incorporated by reference in its entirety into this Detailed Description.


As can be understood from FIG. 1A, the 2D images are sent to the computer 6 for creating computer generated 3D models. As indicated in FIG. 1B, in one embodiment, point P is identified in the 2D images 16 [block 105]. In one embodiment, as indicated in [block 105] of FIG. 1A, point P may be at the approximate medial-lateral and anterior-posterior center of the patient's joint 14. In other embodiments, point P may be at any other location in the 2D images 16, including anywhere on, near or away from the bones 18, 20 or the joint 14 formed by the bones 18, 20.


As described later in this overview, point P may be used to locate the computer generated 3D models 22, 28, 36 created from the 2D images 16 and to integrate information generated via the 3D models. Depending on the embodiment, point P, which serves as a position and/or orientation reference, may be a single point, two points, three points, a point plus a plane, a vector, etc., so long as the reference P can be used to position and/or orient the 3D models 22, 28, 36 generated via the 2D images 16.


As shown in FIG. 1C-1, the 2D images 16 are employed to create computer generated 3D bone-only (i.e., “bone models”) 22 of the bones 18, 20 forming the patient's joint 14 [block 110]. The bone models 22 are located such that point P is at coordinates (X0-j, Y0-j, Z0-j) relative to an origin (X0, Y0, Z0) of an X-Y-Z axis [block 110]. The bone models 22 depict the bones 18, 20 in the present deteriorated condition with their respective degenerated joint surfaces 24, 26, which may be a result of osteoarthritis, injury, a combination thereof, etc. The degeneration may be minimal such that it is cartilage damage only and no bone damage. Alternatively, the degeneration may be more significant such that the damage is both to the cartilage and the bone.


In one embodiment, the bone surface contour lines of the bones 18, 20 depicted in the image slices 16 may be auto segmented via an image segmentation process as disclosed in U.S. Patent Application 61/126,102, which was filed Apr. 30, 2008, is entitled System and Method for Image Segmentation in Generating Computer Models of a Joint to Undergo Arthroplasty, and is hereby incorporated by reference into the present application in its entirety.


Computer programs for creating the 3D computer generated bone models 22 from the 2D images 16 include: Analyze from AnalyzeDirect, Inc., Overland Park, Kans.; Insight Toolkit, an open-source software available from the National Library of Medicine Insight Segmentation and Registration Toolkit (“ITK”), www.itk.org; 3D Slicer, an open-source software available from www.slicer.org; Mimics from Materialise, Ann Arbor, Mich.; and Paraview available at www.paraview.org.


As indicated in FIG. 1C-1, the 3D computer generated bone models 22 are utilized to create 3D computer generated “restored bone models” or “planning bone models” 28 wherein the degenerated surfaces 24, 26 are modified or restored to approximately their respective conditions prior to degeneration [block 115]. Thus, the bones 18, 20 of the restored bone models 28 are reflected in approximately their condition prior to degeneration. The restored bone models 28 are located such that point P is at coordinates (X0-j, Y0-j, Z0-j) relative to the origin (X0, Y0, Z0). Thus, the restored bone models 28 share the same orientation and positioning relative to the origin (X0, Y0, Z0) as the bone models 22. If damage is minimal to the bone (e.g., the damage is to the cartilage, only), the bone model 22 may not need much, if any, restoration, and the bone model 22 may be used as the restored bone model 28 for purposes of the process described herein.


In one embodiment, the restored bone models 28 are manually created from the bone models 22 by a person sitting in front of a computer 6 and visually observing the bone models 22 and their degenerated surfaces 24, 26 as 3D computer models on a computer screen 9. The person visually observes the degenerated surfaces 24, 26 to determine how and to what extent the degenerated surfaces 24, 26 surfaces on the 3D computer bone models 22 need to be modified to restore them to their pre-degenerated condition. By interacting with the computer controls 11, the person then manually manipulates the 3D degenerated surfaces 24, 26 via the 3D modeling computer program to restore the surfaces 24, 26 to a state the person believes to represent the pre-degenerated condition. The result of this manual restoration process is the computer generated 3D restored bone models 28, wherein the surfaces 24′, 26′ are indicated in a non-degenerated state.


In one embodiment, the above-described bone restoration process is generally or completely automated, as disclosed in U.S. patent application Ser. No. 12/111,924 to Park, which is entitled Generation of a Computerized Bone Model Representative of a Pre-Degenerated State and Usable in the Design and Manufacture of Arthroplasty Devices, was filed Apr. 29, 2008 and is incorporated by reference in its entirety into this Detailed Description. In other words, a computer program may analyze the bone models 22 and their degenerated surfaces 24, 26 to determine how and to what extent the degenerated surfaces 24, 26 surfaces on the 3D computer bone models 22 need to be modified to restore them to their pre-degenerated condition. The computer program then manipulates the 3D degenerated surfaces 24, 26 to restore the surfaces 24, 26 to a state intended to represent the pre-degenerated condition. The result of this automated restoration process is the computer generated 3D restored bone models 28, wherein the surfaces 24′, 26′ are indicated in a non-degenerated state.


As depicted in FIG. 1C-1, the restored bone models 28 are employed in a pre-operative planning (“POP”) procedure to determine saw cut locations 30 and drill hole locations 32 in the patient's bones that will allow the arthroplasty joint implants to generally restore the patient's joint line to its pre-degenerative alignment [block 120].


In one embodiment, the POP procedure is a manual process, wherein computer generated 3D uni-compartmental implant models 34 (e.g., femur and tibia implants in the context of the joint being a knee) and restored bone models 28 are manually manipulated relative to each other by a person sitting in front of a computer 6 and visually observing the uni-compartmental implant models 34 and restored bone models 28 on the computer screen 9 and manipulating the models 28, 34 via the computer controls 11. By superimposing the uni-compartmental implant models 34 over the restored bone models 28, or vice versa, the joint surfaces of the uni-compartmental implant models 34 can be aligned or caused to correspond with the joint surfaces of the restored bone models 28. By causing the joint surfaces of the models 28, 34 to so align, the uni-compartmental implant models 34 are positioned relative to the restored bone models 28 such that the saw cut locations 30 and drill hole locations 32 can be determined relative to the restored bone models 28.


In one embodiment, the POP process is generally or completely automated. For example, a computer program may manipulate computer generated 3D uni-compartmental implant models 34 (e.g., femur and tibia implants in the context of the joint being a knee) and restored bone models or planning bone models 28 relative to each other to determine the saw cut and drill hole locations 30, 32 relative to the restored bone models 28. With reference to the above POP discussion, in one embodiment, 3D models such as those depicted in FIGS. 1F-1M are created by a computer during POP. In one embodiment, the femur is planned first. As shown in FIGS. 1F-1G, which depict distal axial and posterior coronal views, respectively, the femoral restored bone model 28 and uni-compartmental femoral implant model 34 are generated by a computer during POP. As can be understood from FIGS. 1F-1H, the femoral restored bone model 28 is moved to the implant model 34 such that the articular surfaces of the models 28, 34 are superimposed or shape matched. Specifically, as depicted in FIG. 1I, the femoral restored bone model 28 may be moved such that the most posterior point and most distal point of the articular surface of the restored bone model are aligned relative to the posterior and distal planes that are respectively tangent to the most posterior point and most distal point of the articular surface of the femoral implant model 34. The articular surfaces of the implant model 34 may then be shape matched or superimposed on the articular surfaces of the femur model 28. While this discussion takes place in the context of the bone model 28 being moved to the implant model 34, in other embodiments, the reverse may be true.


As indicated in FIG. 1J, the femur implant model 34a and the tibia implant model 34b may be shown in a non-implanted state, which may help the planner visualize the spatial relationship between the implant models 34.


The tibia is planned next. FIG. 1K illustrates the alignment of the tibia bone model 28b relative to the femoral bone model 28a, such that the femoral condyles are in contact with the tibial plateau. This determines the rotation of the tibia relative to the femur. Once tibial positioning is set, the tibial implant model 34 is displayed and changes to the tibial positioning are made to maximize shape matching (FIG. 1L). Sizing and appropriate off-set are accounted for. Then, the implant models 34 may be checked for proper alignment, as shown in FIG. 1M.


In summary and regardless of whether via the manual or the substantially or totally automated POP process, in one embodiment, the uni-compartmental implant models 34 may be superimposed over the restored bone models 28, or vice versa. In one embodiment, the uni-compartmental implant models 34 are located at point P′ (X0-k, Y0-k, Z0-k) relative to the origin (X0, Y0, Z0), and the restored bone models 28 are located at point P (X0-j, Y0-j, Z0-j). To cause the joint surfaces of the models 28, 34 to correspond, the computer program may move the restored bone models 28 from point P (X0-j, Y0-j, Z0-j) to point P′ (X0-k, Y0-k, Z0-k), or vice versa. Once the joint surfaces of the models 28, 34 are in close proximity, the joint surfaces of the uni-compartmental implant models 34 may be shape-matched to align or correspond with the joint surfaces of the restored bone models 28. By causing the joint surfaces of the models 28, 34 to so align, the uni-compartmental implant models 34 are positioned relative to the restored bone models 28 such that the saw cut locations 30 and drill hole locations 32 can be determined relative to the restored bone models 28.


In one embodiment, once the shape matching is achieved as discussed above with respect to [block 120], the implant model 34 is modified or positionally adjusted to achieve the proper spacing between the femur and tibia implants to account for the cartilage thickness not represented in the restored bone model 28. To achieve the correct adjustment, an adjustment value Tr may be determined. The adjustment value Tr that is used to adjust the surface matching may be based off of an analysis associated with the cartilage thickness. In one embodiment, the minimum cartilage thickness is observed and measured for the undamaged and damaged femoral condyle. If the greatest cartilage loss is identified on the surface of the healthy condyle, which is the medial condyle in this example, then the lateral condyle can be used as the cartilage thickness reference for purposes of POP and, more specifically, for the adjustment value Tr. Of course, where the lateral condyle is deteriorated and is the target of the uni-compartmental arthroplasty, then the cartilage thickness can be measured off of the healthy medial side condyle to determine adjustment value Tr. Thus, the adjustment value Tr may be based on the cartilage thickness measured for the least damaged condyle cartilage. Once the adjustment value Tr is determined based off of healthy side cartilage thickness, the femoral implant model 34 can be positionally adjusted or otherwise modified relative to the restored bone model 28 to account for cartilage thickness to restore the joint line.


A similar adjustment process is also performed for the proximal tibia such that the adjustment value Tr is determined based off of cartilage thickness of the healthy side of the proximal tibia and the tibia implant model 34 can be positionally adjusted or otherwise modified relative to the restored bone model 28 to account for cartilage thickness to restore the joint line.


Thus, as can be understood from [block 123] of FIG. 1C-2, once the shape matching process of the POP in [block 120] has been achieved to align the articular surfaces of the implant models 34 relative to the articular surfaces of the restored bone models 28, the implant models 34 may be adjusted relative to the bone models 28 to account for the cartilage thickness not represented in the bone only models 28. Specifically, in one embodiment, the femur implant model 34 or its saw cut plane 30 may be shifted distally relative to the restored femur bone model 28 a distance equal to the adjustment value Tr, which is obtained from the thickness of the healthy side condyle and thereby creating a shifted femur implant model 34′ or shifted saw cut plane 30′ [block 123]. Similarly, the tibia implant model 34 or its saw cut plane 30 may be shifted distally relative to the restored tibia bone model 28 a distance equal to the adjustment value Tr, which is obtained from the thickness of the healthy side condyle and thereby creating a shifted tibia implant model 34′ or shifted saw cut plane 30′ [block 123]. A more detailed discussion of the POP procedure is disclosed in U.S. Provisional Patent Application 61/102,692 to Park, which is entitled Arthroplasty System and Related Methods, was filed Oct. 3, 2008 and is incorporated by reference in its entirety into this Detailed Description.


As indicated in FIG. 1E, in one embodiment, once the saw cut planes 30′ have been adjusted for the adjustment value Tr as set out in [block 123], the data 44 regarding the saw cut and drill hole locations 30′, 32 relative to point P′ (X0-k, Y0-k, Z0-k) is packaged or consolidated as the “saw cut and drill hole data” 44 [block 125]. The “saw cut and drill hole data” 44 is then used as discussed below with respect to [block 150] in FIG. 1E.


As can be understood from FIG. 1D, the 2D images 16 employed to generate the bone models 22 discussed above with respect to [block 110] of FIG. 1C-1 are also used to create computer generated 3D bone and cartilage models (i.e., “arthritic models”) 36 of the bones 18, 20 forming the patient's joint 14 [block 130]. Like the above-discussed bone models 22, the arthritic models 36 are located such that point P is at coordinates (X0-j, Y0-j, Z0-j) relative to the origin (X0, Y0, Z0) of the X-Y-Z axis [block 130]. Thus, the bone and arthritic models 22, 36 share the same location and orientation relative to the origin (X0, Y0, Z0). This position/orientation relationship is generally maintained throughout the process discussed with respect to FIGS. 1B-1E. Accordingly, movements relative to the origin (X0, Y0, Z0) of the bone models 22 and the various descendants thereof (i.e., the restored bone models 28, bone cut locations 30, and drill hole locations 32, although not with respect to the correction of bone cut locations 30, with respect to adjustment value Tr to arrive at the shifted cut locations 30′ adjusted for cartilage thickness Tr) are also applied to the arthritic models 36 and the various descendants thereof (i.e., the uni-compartmental jig models 38). Maintaining the position/orientation relationship between the bone models 22 and arthritic models 36 and their respective descendants allows the “saw cut and drill hole data” 44 to be integrated into the “jig data” 46 to form the “integrated jig data” 48 employed by the CNC machine 10 to manufacture the customized arthroplasty jigs 2.


Computer programs for creating the 3D computer generated arthritic models 36 from the 2D images 16 include: Analyze from AnalyzeDirect, Inc., Overland Park, Kans.; Insight Toolkit, an open-source software available from the National Library of Medicine Insight Segmentation and Registration Toolkit (“ITK”), www.itk.org; 3D Slicer, an open-source software available from www.slicer.org; Mimics from Materialise, Ann Arbor, Mich.; and Paraview available at www.paraview.org.


Similar to the bone models 22, the arthritic models 36 depict the bones 18, 20 in the present deteriorated condition with their respective degenerated joint surfaces 24, 26, which may be a result of osteoarthritis, injury, a combination thereof, etc. However, unlike the bone models 22, the arthritic models 36 are not bone-only models, but include cartilage in addition to bone. Accordingly, the arthritic models 36 depict the arthroplasty target areas 42 generally as they will exist when the customized arthroplasty jigs 2 matingly receive the arthroplasty target areas 42 during the arthroplasty surgical procedure.


As indicated in FIG. 1D and already mentioned above, to coordinate the positions/orientations of the bone and arthritic models 22, 36 and their respective descendants, any movement of the restored bone models 28 from point P to point P′ is tracked to cause a generally identical displacement for the “arthritic models” 36 [block 135].


As depicted in FIG. 1D, computer generated 3D surface models 40 of the arthroplasty target areas 42 of the arthritic models 36 are imported into computer generated 3D arthroplasty uni-compartmental jig models 38 [block 140]. Thus, the uni-compartmental jig models 38 are configured or indexed to matingly receive the arthroplasty target areas 42 of the arthritic models 36. Jigs 2 manufactured to match such uni-compartmental jig models 38 will then matingly receive the arthroplasty target areas of the actual joint bones during the arthroplasty surgical procedure.


In one embodiment, the procedure for indexing the uni-compartmental jig models 38 to the arthroplasty target areas 42 is a manual process. The 3D computer generated models 36, 38 are manually manipulated relative to each other by a person sitting in front of a computer 6 and visually observing the uni-compartmental jig models 38 and arthritic models 36 on the computer screen 9 and manipulating the models 36, 38 by interacting with the computer controls 11. In one embodiment, by superimposing the uni-compartmental jig models 38 (e.g., femur and tibia arthroplasty jigs in the context of the joint being a knee) over the arthroplasty target areas 42 of the arthritic models 36, or vice versa, the surface models 40 of the arthroplasty target areas 42 can be imported into the uni-compartmental jig models 38, resulting in uni-compartmental jig models 38 indexed to matingly receive the arthroplasty target areas 42 of the arthritic models 36. Point P′ (X0-k, Y0-k, Z0-k) can also be imported into the uni-compartmental jig models 38, resulting in uni-compartmental jig models 38 positioned and oriented relative to point P′ (X0-k, Y0-k, Z0-k) to allow their integration with the bone cut and drill hole data 44 of [block 125].


In one embodiment, the procedure for indexing the uni-compartmental jig models 38 to the arthroplasty target areas 42 is generally or completely automated, as disclosed in U.S. patent application Ser. No. 11/959,344 to Park, which is entitled System and Method for Manufacturing Arthroplasty Jigs, was filed Dec. 18, 2007 and is incorporated by reference in its entirety into this Detailed Description. For example, a computer program may create 3D computer generated surface models 40 of the arthroplasty target areas 42 of the arthritic models 36. The computer program may then import the surface models 40 and point P′ (X0-k, Y0-k, Z0-k) into the uni-compartmental jig models 38, resulting in the uni-compartmental jig models 38 being indexed to matingly receive the arthroplasty target areas 42 of the arthritic models 36. The resulting uni-compartmental jig models 38 are also positioned and oriented relative to point P′ (X0-k, Y0-k, Z0-k) to allow their integration with the bone cut and drill hole data 44 of [block 125].


In one embodiment, the arthritic models 36 may be 3D volumetric models as generated from the closed-loop process discussed in U.S. patent application Ser. No. 11/959,344 filed by Park. In other embodiments, the arthritic models 36 may be 3D surface models as generated from the open-loop process discussed in U.S. patent application Ser. No. 11/959,344 filed by Park.


In one embodiment, the models 40 of the arthroplasty target areas 42 of the arthritic models 36 may be generated via an overestimation process as disclosed in U.S. Provisional Patent Application 61/083,053, which is entitled System and Method for Manufacturing Arthroplasty Jigs Having Improved Mating Accuracy, was filed by Park Jul. 23, 2008, and is hereby incorporated by reference in its entirety into this Detailed Description.


As indicated in FIG. 1E, in one embodiment, the data regarding the uni-compartmental jig models 38 and surface models 40 relative to point P′ (X0-k, Y0-k, Z0-k) is packaged or consolidated as the “jig data” 46 [block 145]. The “jig data” 46 is then used as discussed below with respect to [block 150] in FIG. 1E.


As can be understood from FIG. 1E, the “saw cut and drill hole data” 44 is integrated with the “jig data” 46 to result in the “integrated jig data” 48 [block 150]. As explained above, since the “saw cut and drill hole data” 44, “jig data” 46 and their various ancestors (e.g., models 22, 28, 36, 38) are matched to each other for position and orientation relative to point P and P′, the “saw cut and drill hole data” 44 is properly positioned and oriented relative to the “jig data” 46 for proper integration into the “jig data” 46. The resulting “integrated jig data” 48, when provided to the CNC machine 10, results in jigs 2: (1) configured to matingly receive the arthroplasty target areas of the patient's bones; and (2) having cut slots and drill holes that facilitate preparing the arthroplasty target areas in a manner that allows the arthroplasty joint implants to generally restore the patient's joint line to its pre-degenerated state or natural alignment state.


As can be understood from FIGS. 1A and 1E, the “integrated jig data” 44 is transferred from the computer 6 to the CNC machine 10 [block 155]. Jig blanks 50 are provided to the CNC machine 10 [block 160], and the CNC machine 10 employs the “integrated jig data” to machine the arthroplasty jigs 2 from the jig blanks 50.


The remainder of this Detailed Description will now discuss example customized arthroplasty uni-compartmental cutting jigs 2 capable of being manufactured via the above-discussed process in addition to methods of using the jigs 2. While, as pointed out above, the above-discussed process may be employed to manufacture jigs 2 configured for arthroplasty procedures involving knees, elbows, ankles, wrists, hips, shoulders, vertebra interfaces, etc., the jig examples depicted in FIGS. 2A-18B are for partial knee (“uni-compartmental”) replacement procedures. Thus, although the discussion provided herein is given in the context of uni-compartmental jigs and the generation thereof, this disclosure is readily applicable to total arthroplasty procedures in the knee or other joint contexts. Thus, the disclosure provided herein should be considered as encompassing jigs and the generation thereof for both total and uni-compartmental arthroplasty procedures.


For a discussion of a femur arthroplasty jig 2a, reference is first made to FIGS. 2A-2E. FIGS. 2A-2B are isometric views of the femur arthroplasty jig 2a in a customized state, wherein the jig 2A is shown either on (FIG. 2A) or off (FIG. 2B) the distal femur 100. FIGS. 2C-2D depict isometric top, bottom and side views of the femur arthroplasty jig 2a, wherein the femur 100 is not shown, the jig 2a being in a customized state. FIG. 2E is a side-top isometric view of the jig 2a in a non-customized state or, in other words, in the form of a jig blank 50a from which the jig 2a is manufactured.


As shown in FIGS. 2A-2E, a femur arthroplasty jig 2a may include an interior side or portion 200 and an exterior side or portion 202. When the femur cutting jig 2a is used in a UKA procedure, the interior side or portion 200 faces and matingly receives the arthroplasty target area 42 of the femur lower end, and the exterior side or portion 202 is on the opposite side of the femur cutting jig 2a from the interior portion 200.


As can be best understood from FIGS. 2B and 2D, the interior side 200 may include an anterior flange 107, a mid section 104, a distal cut slot 111, a distal drill hole 112, an antero-medial section 109, and a target area 125. In some embodiments, the target area 125 may include an anterior mating surface 103 and a distal condylar mating surface 105. The anterior mating surface may include a hooking portion 113. The interior portion 200 of the femur jig 2a is configured to match the surface features of the damaged lower end (i.e., the arthroplasty target area 42) of the patient's femur 18. Thus, when the arthroplasty target area 42 is received in the target area 125 of the interior portion 200 of the femur jig 2a during the UKA surgery, the surfaces of the target area 42 and the target area 125 of the interior portion 200 of the jig 2a match.


The surface of the interior portion 200 of the femur cutting jig 2A is machined or otherwise formed into a selected femur jig blank 50A and is based or defined off of a 3D surface model 40 of a target area 42 of the damaged lower end or target area 42 of the patient's femur 18.


As shown in FIGS. 2A, 2C and 2E, the exterior side 202 of the jig 2a may include an anterior flange 107, an anterior-distal condylar section 102 and a posterior-distal condylar section 106, a lateral edge 108, a mid section 104, a distal cut slot 111, a distal drill hole 112, and an antero-medial section 109. In some embodiments, the exterior side may also include a cut slot extension 110 for a close slot. The interior side 200 and the exterior side 202 help the jig 2a to mate stably and accurately to the distal femur, thereby accurately positioning the distal cut slot 111 that will be used to guide the distal cut of the medial condyle. The jig 2a also incorporates one or more distal drill holes 112 that may guide the positioning of a secondary cutting guide or “chamfer” block. This subsequently creates the cuts that will determine the flexion/extension, internal/external, anterior/posterior, distal/proximal position of the UKA implant. The medial/lateral position is left open.


For a discussion of certain sizing measurements that may be utilized in the development of the femur cutting jig 2a, reference is now made to FIGS. 3A-3C. FIG. 3A illustrates how the femur arthroplasty jig 2a of FIG. 2A may be sized based on the medial condyle. FIG. 3B illustrates the area in the trochlear groove and the anterior cortex that may be covered by the jig 2a of FIG. 2A. FIG. 3C illustrates how the size of the anterior flange 107 of the jig 2a of FIG. 2A may be determined.


The size of the femoral jig 2a depends on the size of each particular patient's bone. In one embodiment, as shown in FIGS. 3A-3C, the anterior-distal and posterior-distal condylar section 102,106 may be designed to reach within a distance D1 and D2 of approximately 2-3 mm of the medial and lateral ends of the medial condyle, and to reach within a distance D3 of approximately 3-5 mm of the posterior condyle as shown in FIG. 3A. The mid section 104 should reach to within a distance D4 of approximately 3-5 mm to the lateral side of the bottom of the trochlear groove as shown in FIG. 3B. The medial edge of the antero-medial section 109 should line up with a line c1 drawn from the middle of the medial condyle as shown in FIG. 3B. In one embodiment, the anterior flange 107 may have a thickness T1 of approximately 5 mm or less and the top of the anterior flange 107 should have a length L1 of approximately 0.8-1.2 mm of the target area as shown in FIG. 3C. In one embodiment, the thickness T1 is 4 mm. The cut slot 111 may be positioned according to the position of the femoral implant, as described in more detail above.


For a discussion of the mating surfaces for the femur arthroplasty jig 2a, reference is now made to FIGS. 4-10. FIGS. 4A and 4B display one embodiment of the mating surfaces for the arthroplasty femur jig 2a about the distal femoral condyle. FIGS. 5A and 5B display an embodiment having a reduced number of mating surfaces that still provides adequate stability of the arthroplasty femur jig 2a about the distal femoral condyle 350. FIG. 6 is an isometric view of the arthroplasty femur jig 2a with mating surfaces corresponding to those of the distal femoral condyle 350 depicted in FIGS. 4A and 4B. FIG. 7 illustrates mating and hooking of the anterior flange 107 of the arthroplasty femur jig 2a about the edge of the anterior-proximal trochlear groove. FIG. 8 illustrates one method of mating 331 to the trochlear groove. FIG. 9 illustrates full mating 332 of the trochlear groove. FIG. 10 illustrates a single MRI slice 355 in the sagittal plane with three consecutive segmentation outlines where the corresponding outline hooks the edge of the anterior-proximal trochlear groove.


In one embodiment (FIGS. 4A and 4B), mating of the arthroplasty femur jig 2a occurs on the surfaces of the distal femur at the medial condyle 302, 303, the anterior cortex 310, 311, 313, into the trochlear groove 305, 306, 308, 309, and about the edge 314 of the anterior-proximal trochlear groove 307. In this embodiment, the combination of these surfaces serve as a condition that provides for reliable mating given the variety of patient bone anatomies. Specific mating surfaces are illustrated in FIGS. 4A and 4B with double cross-hatching illustrating discrete mating surfaces and single cross-hatching illustrating optional overall mating areas that may circumscribe or encompass the more discrete mating surfaces. These surfaces are defined as follows: the distal medial condyle 302, the anterior medial condyle 303, the medial anterior cortex 310, and the anterior cortex 311, 313, the distal medial trochlear groove 305, the antero-medial trochlear groove 308, and a portion 309 of the distal lateral trochlear groove and the antero-lateral trochlear groove that extends 5-6 mm lateral to the sulcus of the trochlear groove. The arthroplasty femur jig 2a may either mate to these surfaces specifically (as indicated by the double cross-hatching) or globally (as indicated by the single cross-hatching). For example, on the surfaces of the trochlear groove 307 and the medial condyle 301, the jig 2a could either mate to surfaces 302, 303, 305, 306, 308, 309 or globally to the area circumscribing these surfaces 304, which is illustrated with single cross-hatching. On the anterior cortex, the jig 2a could either mate to surfaces 310, 311, 313 or to the area circumscribing these areas 312.


As can be understood from FIG. 4A, the distal medial condyle 302 includes a distal semi-planar region of the articular surface of the medial condyle 301. The posterior edge of the distal medial condyle 302 begins where the articular surface of the medial condyle 301 begins to significantly curve towards a posterior region of the articular surface of the medial condyle 301, and the anterior edge of the distal medial condyle 302 begins where the articular surface of the medial condyle 301 begins to significantly curve towards the anterior medial condyle region 303 of the medial condyle 301.


The anterior medial condyle 303 includes an anterior region of the articular surface of the medial condyle 301. The posterior edge of the anterior medial condyle 303 begins where the articular surface of the medial condyle 301 begins to significantly curve towards the distal medial condyle 302 of the articular surface of the medial condyle 301, and the lateral edge of the anterior medial condyle 303 begins where the articular surface of the medial condyle 301 begins to significantly curve towards or transition into the medial region of the trochlear groove 307.


The distal medial trochlear groove 305 includes a distal-medial region of the articular surface of the trochlear groove 307. The medial edge of the distal medial trochlear groove 305 begins where the articular surface of the trochlear groove 307 begins to significantly curve or transition into the anterior medial condyle 303 of the articular surface of the medial condyle 301, and the lateral edge of the distal medial trochlear groove 305 begins where the articular surface of the trochlear groove 307 begins to curve out of or transition from the deepest portion of the trochlear groove 307.


The distal lateral trochlear groove 306 includes a distal-lateral region of the articular surface of the trochlear groove 307. The medial edge of the distal lateral trochlear groove 306 begins where the articular surface of the trochlear groove 307 begins to significantly curve or transition into the deepest portion of the trochlear groove 307, and the lateral edge of the distal lateral trochlear groove 306 begins where the articular surface of the trochlear groove 307 begins to curve or transition into the articular surface of the lateral condyle.


As can be understood from FIG. 4A, the antero-medial trochlear groove 308 includes an anterior-medial region of the articular surface of the trochlear groove 307. The antero-medial trochlear groove 308 is located between the anterior patellar facet boarder 314 and the distal medial trochlear groove 305. The lateral edge of the antero-medial trochlear groove 308 begins where the articular surface of the trochlear groove 307 begins to curve out of or transition from the deepest portion the of trochlear groove 307.


The antero-lateral trochlear groove 309 includes an anterior-lateral region of the articular surface of the trochlear groove 307. The antero-lateral trochlear groove 309 is located between the anterior patellar facet boarder 314 and the distal lateral trochlear groove 306. The lateral edge of the antero-lateral trochlear groove 309 begins where the articular surface of the trochlear groove 307 begins to curve or transition into the articular surface of the lateral condyle.


As indicated in FIG. 4A by the single cross-hatching, the overall anterior cortex or anterior optimal target region 312 is located on the anterior shaft of the femur proximal of the patellar facet boarder 314. The anterior optimal target region 312 may be generally coextensive with the generally planar surface area on the anterior shaft of the femur between the articularis genu 1000 and the patellar facet boarder 314. The region 312 may extend from a medial edge generally even with a line extending distally-proximally through the medial condyle to a lateral edge generally even with a line extending distally-proximally through the most lateral edge of the transition between the trochlear groove and the lateral condyle surface. The most distal edge of the region 312 may contact the patellar facet boarder 314 at discrete locations or points 329, 333. For example, a discrete point of contact with the patellar facet boarder 314 may be at a point 329 generally even with a line extending distally-proximally with the deepest portion of the trochlear groove. Another discrete point of contact with the patellar facet boarder 314 may be at a point 333 generally even with a line extending distally-proximally with a location half way through the transition between the trochlear groove and the lateral condyle surface.


As indicated in FIG. 4A by the double cross-hatching, multiple discrete target regions 310, 311, 313 may be identified within the overall anterior cortex or anterior optimal target region 312. Thus, although the anterior optimal target region 312 may be generally coextensive with the generally planar surface area on the anterior shaft of the femur between the articularis genu 1000 and the patellar facet boarder 314, the actual areas 310, 311, 313 within the anterior optimal target region 314 identified as being a reliable surface for the generation of the mating surfaces of arthroplasty jigs may be limited to any one or more of the areas 310, 311, 313. For example, an anterior-medial target region 310 forms a most medial discrete region within the overall region 312. The anterior-medial region 310 has a medial edge generally even with a line extending distally-proximally through the medial condyle, and a proximal edge generally even with a line extending distally-proximally through the transition between the medial condyle and the trochlear groove.


An anterior-center-medial target region 311 forms a central/medial discrete region within the overall region 312 just lateral of the region 310. The anterior-center-medial region 311 has a medial edge generally even with a line extending distally-proximally through the transition between the medial condyle and the trochlear groove, and a lateral edge generally even with a line extending distally-proximally through the deepest portion of the trochlear groove.


An anterior-lateral target region 313 forms a lateral discrete region within the overall region 312 just lateral of the region 311. The anterior-lateral region 313 has a medial edge generally even with a line extending distally-proximally through the deepest portion of the trochlear groove, and a lateral edge generally even with a line extending distally-proximally through the transition between the trochlear groove and the lateral condyle surface.


In another embodiment (FIGS. 5A and 5B), mating of the arthroplasty femur jig 2a occurs on the surfaces of the medial condyle 302, 303, 305, 308, the anterior-center-medial region 311, and about the anterior edge 314 of the anterior-proximal trochlear groove 307, each of these regions 302, 303, 305, 308 and 311 being substantially as described above with respect to FIGS. 4A-4B. This embodiment differs from that of FIGS. 4A and 4B in that the anterior shaft region 312 does not reach as far laterally or medially, and the medial condyle—trochlear groove region 304 the lateral portion of the trochlear groove. The method of mating for each of these embodiments is performed similarly and will be explained later.


For each of these embodiments, overestimating is performed at the rim 314 of articular cartilage, except at, for example, two points 329, 333 (FIG. 7), although in some embodiments it may be less than or greater than two points. “Hooking” occurs at the edge 314 of the anterior-proximal trochlear groove 307 instead of mating. “Hooking” is performed by matching, for example, two or more points 329, 333 to the rim of the articular cartilage as illustrated in FIG. 7, which shows a sliced section 330 of the femoral jig 2a where mating at the anterior surface occurs. Between hooking points 329, 333, the jig 2a is designed to overestimate the area, which is where there may be osteophytes or cartilage. The purpose of hooking to single points while overestimating other areas is to avoid mis-matching due to the unpredictable nature of osteophytes. In one embodiment, the anterior mating surface with hooking points incorporated is shown by the double cross-hatch section 328. As illustrated in FIG. 7, hooking occurs in a manner that steps down and hooks at another point. FIG. 10 illustrates this process during segmentation of the femur in the sagittal plane. In the active slice n, the segmentation line matches nearly precisely to the edge of the anterior-proximal trochlear groove. The segmentation line of slice n+1 is overestimated, while that of n−1 is nearly identical to the segmentation line of slice n. Between hooking points, at least one slice must be overestimated. The ideal edge to hook is illustrated in FIG. 10. The ideal edge protrudes from the anterior cortex at least 1 mm. Once segmentation is complete, the mating surface should resemble that of FIG. 7. For example, as shown in FIG. 6, hooking points 323, which correspond to points 329, 333 of the anterior-proximal edge of the trochlear groove, hook on points 329, 333.


A detailed discussion of the overestimation process is provided in U.S. Provisional Patent Application 61/083,053, which is entitled System and Method for Manufacturing Arthroplasty Jigs Having Improved Mating Accuracy, was filed by Park Jul. 23, 2008, and is hereby incorporated by reference in its entirety into this Detailed Description.


Mating in the trochlear groove can be achieved with two different methods. In one method, mating 332 would be absolute as illustrated in FIG. 9. However, due to the drastic deflection at the trochlear groove of some femurs, absolute mating may not be reliable. For these cases, mating 331 may be done step-wise, as illustrated in FIG. 8. In this method, every other segmentation slice is matched precisely to the trochlear groove, while those in between are over-estimated. Segmentation is done in a similar manner to that described above and as illustrated for hooking in FIG. 10. To determine whether slices should be overestimated, segmentation in the trochlear groove may first be performed absolute with each slice matching the surface. Thereafter consecutive slices may be compared (slice n compared with slice n+1), if the distance between slices is greater than 1 mm, then the next slice (n+1) may be adjusted to reduce this distance, thereby overestimating the next slice (n+1). By overestimating this next slice (n+1), the following slice (n+2), can mate precisely to the trochlear groove without under-estimating the trochlear groove. Mating of the trochlear groove is generally performed as a combination of these methods.


As described above and can be understood from FIG. 6, the femur jig 2a may include a distal condylar mating region 316, trochlear groove mating region 320 and an anterior cortex mating region 326. The mating regions or surfaces 316, 320, 326 of the arthroplasty femur jig 2a that correspond and mate specifically to the surfaces defined above with respect to FIGS. 4A-5B are illustrated in FIG. 6. In general, surface 315 mates to the distal medial condyle 302, surface 317 mates to the anterior medial condyle 303, surface 318 mates to the distal medial trochlear groove 305, surface 321 mates to the antero-medial trochlear groove 308, surface 319 mates to the distal lateral trochlear groove 306, surface 322 mates to the antero-lateral trochlear groove 309, surface 327 mates to the medial anterior cortex 310, surfaces 325 and 324 mate to the anterior cortex 311 and 313, respectively, and points 323 hook onto the edge 314 of the anterior-proximal trochlear groove 307 at points 329, 333.


As can be understood from the proceeding discussion regarding the mating contact surfaces (indicated by single and double cross hatch regions in FIGS. 4A-4B and 5A-5B) of the distal femur and the corresponding mating contact surfaces (indicated by single and double cross hatch regions in FIG. 6) of the inner side of the uni-compartmental arthroplasty jig, the inner side of the jig matingly receives the arthroplasty target region of the distal femur as shown in FIG. 2A. However, although the inner side of the femoral jig matingly receives the arthroplasty target region of the distal femur, only those mating contact regions (indicated by single and double cross hatch regions in FIG. 6) of the inner side of the jig actually make mating contact with the mating contact regions (indicated by single and double cross hatch regions in FIGS. 4A-4B and 5A-5B) of the distal femur. All other regions (those regions not single or double cross hatched in FIG. 6) of the inner side of the jig do not make contact with corresponding surfaces of the distal femur on account of being defined according to the overestimation process. Thus, in one embodiment, the double cross hatch regions of the inner side of the jig and the distal femur may be the only regions that make mating contact because the rest of the inner side of the jig is the result of the overestimation process. In another embodiment, both the single and double cross hatch regions of the inner side of the jig and the distal femur may be the only regions that make mating contact because the rest of the inner side of the jig is the result of the overestimation process. Regardless, the inner side of the jig is configured to matingly receive the distal femur such that the jig has a customized mating contact with the distal femur that causes the jig to accurately and securely sit on the distal femur in a stable fashion such that the jig may allow the physician to make the distal cut with an accuracy that allows the femoral implant to restore the patient's joint to its pre-degenerated or natural alignment state. This accurate and stable customized mating between the jig and femur is facilitated by the jig mating contact regions being based on regions of the femur that are accurately identified and reproduced from the medical imaging (e.g., MRI, CT, etc.) used to generate the various bone models, and overestimating in those regions that are not accurately identified and reproduced due to issues with the medical imaging and/or the inability to machine the identified bone features into the inner side of the jig.


For a discussion of the tibia arthroplasty jig 2b, reference is first made to FIGS. 11A-11E. FIGS. 11A-11B are isometric views of the tibial arthroplasty jig 2b in a customized state, wherein the jig is shown on (FIG. 11A) or off (FIG. 11B) the proximal tibia 20. FIGS. 11C-11E depict top and bottom views of the tibial arthroplasty jig 2b in a customized state, wherein the tibia is not shown. FIG. 11E shows a top view of the jig 2b of FIG. 11C, wherein the jig 2b is in a non-customized state (e.g., the jig 2b is in the form of a jig blank 50b from which the jig 2b is created machining or other manufacturing methods).


As indicated in FIGS. 11A-11E, a tibia arthroplasty jig 2b may include an interior side or portion 404 and an exterior side or portion 406. When the tibia cutting jig 2b is used in a UKA procedure, the target area 438 of the interior side or portion 404 faces and matingly receives the arthroplasty target area 42 of the tibia proximal end, and the exterior side or portion 406 is on the opposite side of the tibia cutting jig 2b from the interior portion 404.


As may be best understood with reference to FIG. 11D, the interior portion 404 of the tibia cutting jig 2b may include a horizontal cut clot 433, a proximal drill hole 432, a target area 438, and mating portions 434, 435, 436, 437. The interior portion 404 of the tibia jig 2b is configured to match the surface features of the damaged proximal end (i.e., the arthroplasty target area 42) of the patient's tibia 20. Thus, when the target area 42 is received in the interior portion 404 of the tibia jig 2B during the UKA surgery, the surfaces of the target area 42 and interior portion 404 matingly match.


The surface of the interior portion 404 of the tibia cutting jig 2b is machined or otherwise formed into a selected tibia jig blank 50B and is based or defined off of a 3D surface model 40 of a target area 42 of the damaged upper end or target area 42 of the patient's tibia 20.


As indicated in FIGS. 11A-11C and 11E, the exterior portion 406 of the tibial jig 2b may include a medial plateau portion 428, an anterior cortex flange 429, a medial anterior cortex portion 431, a medial tibial upslope portion 430, a horizontal cut clot 433, a proximal drill hole 432, and finally a target area 438. As can be understood from FIG. 11E, in a non-customized state, the jig 2b may include a customizable portion 440 which may be customized to help properly position the jig 2b during surgery. Thus, together with the features of the interior portion 404 of the jig 2b, the exterior portion 406 helps the jig 2b to mate stably with the medial tibia 426 and position a drill hole 432 and horizontal cut slot 433. With this drill hole and horizontal cut slot, the proximal/distal, internal/external, varus/valgus positions of the uni-condylar tibial implant may be set.


For a discussion of certain sizing measurements that may be utilized in the development of the tibial cutting jig 2b, reference is now made to FIGS. 12A-12B. FIG. 12A illustrates the coverage of the tibial plateau that one embodiment of the tibial jig 2b may cover. FIG. 12B illustrates the height of one embodiment of the tibial jig 2b.


The size of the tibial jig 2b is determined by the size of the patient's bone 20. FIG. 12A illustrates the parameters which determine how much of the tibial plateau the jig 2b should cover. In one embodiment, the medial edge of the tibial plateau portion 428 of the tibial jig 2b has a distance Dm of approximately 1-2 mm from the medial edge of the tibial plateau. Also, the posterior edge of the tibial plateau portion 428 of the tibial jig 2b has a distance Dp of approximately 3-5 mm from the posterior edge of the tibial plateau. In one embodiment as depicted in FIG. 12A, the anterior cortex flange 429 should not reach further than midway past the patellar insertion as illustrated by line c2. In one embodiment as shown in FIG. 12B, the length Lt the jig 2b between the top surface of the jig 2b and the bottom edge of the medial anterior cortex portion 431 is approximately 40 mm. The horizontal cut slot 433 should be positioned at the level which the proximal/distal and varus/valgus positions of the unicondylar tibial implant should be set.


For a discussion of the mating surfaces for the tibial arthroplasty jig 2b, reference is now made to FIGS. 13A-18B. FIGS. 13A and 13B are, respectively, an anterior coronal view and a proximal axial view of one embodiment of the mating surfaces for the tibial arthroplasty jig 2b on the proximal tibia 20. FIGS. 14A-14B are, respectively, an anterior coronal view and a proximal axial view of a second embodiment of the mating surfaces for the tibial arthroplasty jig 2b on the proximal tibia 20. FIG. 15 illustrates the tibial arthroplasty jig 2b with mating surfaces corresponding to those of the proximal tibia depicted in FIGS. 13A-13B. FIG. 16 is a single MRI slice in the sagittal plane at the medial upslope of the intercondyloid eminence. FIGS. 17A-18B illustrate various methods of the tibial arthroplasty jig 2b mating with the medial upslope 602 of the intercondyloid eminence 600.


The tibial arthroplasty jig 2b mates to the medial surfaces of the proximal tibia 20. In one embodiment, for stability, the guide 2b may at least mate to the surfaces that are illustrated in FIGS. 13A-13B. FIGS. 14A-14B illustrates another embodiment of the mating conditions that lead to stability. Both of these embodiments incorporate some or all of the areas illustrated by the double cross hatch markings 534, 535, 536, 537 and 538 in FIGS. 13A-14B. These areas are: the medial tibial plateau 534, the medial anterior tibial cortex 537, the anterior cortex 538 superior to the tuberosity 555, the medial upslope 535 of the intercondyloid eminence 556, and a region 536 extending from anterior the intercondyloid eminence 556 to towards the tuberosity 555 over the edge transition from the tibial plateau region (FIG. 13A) to the tibial anterior region (FIG. 13B). In one embodiment, the tibial arthroplasty jig 2b may include mating surfaces that matingly engage some or all of these discrete areas 534, 535, 536, 537, 538 or mating surfaces of the jig 2b may matingly engage more globally the discrete mating surfaces 534, 535, 536, 537, 538 and the surrounding areas 533, 539, 549 as illustrated with the single hatch markings in FIGS. 13A-14B. Specifically, the jig 2a may have mating surfaces that matingly engage the region of the tibia encompassed by the single hatch area 539 on the tibial plateau and single hatch area 540 on the anterior region of the proximal tibia, as reflected in FIGS. 14A-14B, or the single hatch area 533 which extends over the tibial plateau and anterior region of the proximal tibia, as illustrated in FIGS. 13A-13B.


As shown in FIGS. 13A and 13B by the cross-hatching, the optimal target region 533 on the anterior side of the tibial shaft may be divided into two sub-regions 537 and 538. The first or medial sub-region 537 may be a generally planar surface region that extends distally from generally the plateau edge or capsule line to a point generally even with the beginning of the distal half to distal third of the tibial tuberosity 555. The sub-region 537 may extend medial-lateral from the medial edge of the medial tibia condyle to a point generally even with a medial edge of the tibial tuberosity 555.


The center sub-region 538 may be a generally planar surface region that extends distally from generally the plateau edge or capsule line to a point near the proximal boundary of the tibial tuberosity 555. The center sub-region 538 may extend medial-lateral from the lateral edge of the medial sub-region 537 to a point generally even with a center of the tibial tuberosity 555 or even to the lateral edge of the tibial tuberosity 555.


To result in a jig 2a having mating surfaces that only matingly engage or contact some or all of the above-discussed surfaces of the tibia 20, overestimation during the segmentation process may be employed to over-machine those areas of the jig 2a that correspond to those surfaces of the tibia 20 that are outside the double cross hatched regions and/or the single cross hatched regions depicted in FIGS. 13A-14B. The result of such an overestimation process is a jig 2a does not make contact with those regions of the tibia 20 that are outside the double and/or single cross hatch regions of the tibia 20, the jig 2a only making mating, secure and stable contact with the double cross hatch, single cross hatch, combinations thereof, or portions thereof.


In the other embodiment as illustrated in FIGS. 13A and 13B, one additional mating area 536 may be the ridge superior to the tuberosity and anterior to the intercondyloid eminence 556 where insertion of the ACL takes place. At this ridge there may be irregular osteophytes as shown in FIG. 16. Mating in this area may help to stabilize internal/external rotation. Because of the irregularity of osteophytes in this region, mating here may not be absolute. Segmentation may “hug” this region as shown in FIG. 16. Between slices, segmentation may take care to over-estimate in order not to segment too closely and cause rocking of the jig.


In some embodiments, mating at the medial upslope 535 of the intercondyloid eminence 556 may be necessary to stabilize internal/external rotation. Because of the rapid change in geometry at the upslope, to facilitate accurate mating at this location 535, overestimation may be performed to prevent mismatching. FIGS. 17A-18B illustrate two methods of mating to the medial upslope 557 of the intercondyloid eminence 556. FIGS. 17B and 18B illustrate an enlarged view of the upslope 557 in a coronal plane. In one method as depicted in FIG. 18B, mating may be absolute and sequential segmentation lines in the sagittal plane may be drawn to mate precisely to the cartilage surface of the upslope 557 of the intercondyloid eminence 556. Since segmentation slices in the sagittal plane are drawn 2 mm apart from one another, interpolation between slices may not represent the geometry of the upslope. This first method may be performed if in checking sequential slices, the distance between slices is not greater than 1 mm. Otherwise, the method illustrated in FIGS. 17A-17B may be performed to segment the upslope of the tibial spine. In one embodiment of this method, at least one segmentation slice 550 (see FIG. 16) in the sagittal plane should mate precisely to the medial upslope of the intercondyloid eminence. Slices between this mating slice and those slices that mate to the medial plateau may be overestimated. As a result, the upslope mating region 535 may be as indicated in FIG. 17B, the rest of the upslope 557 being overestimated so no other contact between the jig 2a and upslope 557 occurs, other than at region 535 (compare FIG. 18B at 557 for example of no overestimation and FIG. 17B at 557 for example of overestimation).


As can be understood from FIGS. 13A and 13B, the proximal tibia 20 includes a general mating area 533 that extends over or incorporates areas 536, 537, 538 of the tibial anterior region near the tibial plateau (FIG. 13A) and areas 534, 535, 536 of the tibial plateau itself (FIG. 13B), the general mating area 533 being identified in FIGS. 13A and 13B via a single cross hatch and including the double hatch regions 534, 535, 536, 537, 538 encompassed by the single cross hatch. As illustrated in FIGS. 14A and 14B, in another embodiment, a general mating area extends over areas 534, 535 of the medial tibial plateau 539 (FIG. 14B), and a general mating area over areas 537, 538 of the medial anterior cortex 540 (FIG. 14A), each of the regions 539, 540 being identified by single cross-hatch markings and including the double hatch regions 534, 535, 537, 538 encompassed by the single cross hatch.


As can be understood from FIG. 15, the tibial jig 2b includes a general mating area 543 (FIG. 15), which is identified by single cross-hatch markings and defined in the inner surface 438 of the jig 2b (see FIGS. 11B and 11D). The surfaces within the target area 438 of the tibial arthroplasty jig 2b that mate to corresponding surfaces of the tibia 20 are illustrated by the double cross hatch markings in FIG. 15. Areas that are outside the single cross hatch markings 543 may not mate with the corresponding surfaces of the proximal tibia and are overestimated. Specifically, the corresponding surfaces within the tibial arthroplasty jig 2b target area 438 that mate with the proximal tibia 20 are the following: surface 546 matingly contacts the medial plateau 534, surface 545 matingly contacts the medial upslope 535 of the intercondyloid eminence 556, surface 544 matingly contacts the region 536 that incorporates the ridge superior to the tuberosity 555 and anterior to the intercondyloid eminence 556, surface 541 matingly contacts the anterior cortex 538 superior to the tuberosity 555, and surface 542 matingly contacts the medial anterior cortex 537. The single cross hatch region 543 of the mating target region 438 of the jig 2b may, depending on the embodiment, be configured to matingly contact the single cross hatch regions 533, 539, 540 shown in FIGS. 13A-14B. Alternatively, if the image slices are not sufficiently narrow or the topography of the tibia 20 does not lend itself to accurate mating replication for the jig 2a, the regions 533, 539, 540 may be near, but slightly offset from the corresponding surfaces 533, 539, 540 of the tibia 20 due to overestimation, the regions 541, 542, 544, 545 and 546 being the only portions of the jig 2a that actually matingly contact the corresponding regions 534, 535, 536, 537 and 538 of the tibia 20.


As can be understood from the proceeding discussion regarding the mating contact surfaces (indicated by single and double cross hatch regions in FIGS. 13A-14B) of the proximal tibia 20 and the corresponding mating contact surfaces (indicated by single and double cross hatch regions in FIG. 15) of the inner side 438 of the uni-compartmental arthroplasty jig 2b, the inner side 438 of the jig 2b matingly receives the arthroplasty target region 42 of the proximal tibia 2b as shown in FIG. 11A. However, although the inner side 438 of the tibia jig 2b matingly receives the arthroplasty target region 42 of the proximal tibia 20, only those mating contact regions (indicated by single and double cross hatch regions in FIG. 15) of the inner side of the jig actually make mating contact with the mating contact regions (indicated by single and double cross hatch regions in FIGS. 13A-14B) of the proximal tibia. All other regions (those regions not single or double cross hatched in FIG. 15) of the inner side of the jig do not make contact with corresponding surfaces of the proximal tibia on account of being defined according to the overestimation process. Thus, in one embodiment, the double cross hatch regions of the inner side of the jig and the proximal tibia may be the only regions that make mating contact because the rest of the inner side of the jig is the result of the overestimation process. In another embodiment, both the single and double cross hatch regions of the inner side of the jig and the proximal tibia may be the only regions that make mating contact because the rest of the inner side of the jig is the result of the overestimation process. Regardless, the inner side of the jig is configured to matingly receive the proximal tibia such that the jig has a customized mating contact with the proximal tibia that causes the jig to accurately and securely sit on the proximal tibia in a stable fashion such that the jig may allow the physician to make the proximal cut with an accuracy that allows the tibia implant to restore the patient's joint to its pre-degenerated or natural alignment state. This accurate and stable customized mating between the jig and tibia is facilitated by the jig mating contact regions being based on regions of the tibia that are accurately identified and reproduced from the medical imaging (e.g., MRI, CT, etc.) used to generate the various bone models, and overestimating in those regions that are not accurately identified and reproduced due to issues with the medical imaging and/or the inability to machine or otherwise manufacture the identified bone features into the inner side of the jig.


The discussion provided herein is given in the context of uni-compartmental jigs and the generation thereof. However, the disclosure provided herein is readily applicable to total arthroplasty procedures in the knee or other joint contexts. Thus, the disclosure provided herein should be considered as encompassing jigs and the generation thereof for both total and uni-compartmental arthroplasty procedures. Additionally, while the discussion is given in the context of restoring the patient to their natural alignment, the concepts taught herein are also readily applicable to arthroplasty procedures causing the patient's knee to be zero mechanical axis. Thus, the disclosure contained herein should be considered to encompass both natural alignment and mechanical axis alignment. Additionally, the discussion provided herein is given in the context of medial uni-compartmental knee jigs but the teachings are equally applicable to lateral uni-compartmental knee jigs; therefore the disclosure should be considered to encompass both medial and lateral uni-compartmental knee jigs.


For an overview of an embodiment of the above-described methods of design, manufacture and use of the above-described arthroplasty jigs that may be utilized in a UKA procedure, reference is made to FIG. 19, which is a flow chart illustrating the methods. As shown in FIG. 19, the target bones are scanned and the resulting images are segmented [blocks 702 and 704]. The resulting segmented images are used to form 3D models of the target bones. The 3D models of the target bones are employed for the surgical planning of the jigs, wherein 3D models of the jigs are positioned on 3D models of the target bones, such positioning being employed to determine cavity generation for the jigs that will allow the actual resulting jigs to matingly receive the actual corresponding surfaces of the actual target bones [blocks 706 and 708]. The information determined from the surgical planning is used to CNC machine or otherwise manufacture (e.g., SLA or other rapid prototyping manufacturing processes) the femoral and tibial jigs [block 710]. Once the femoral and tibial jigs are created, the jigs 2a, 2b are sent to the surgeon for review [block 712]. The jigs are sterilized before use [block 714]. The surgeon prepares the site for the arthroplasty procedure (i.e. makes an incision, etc.), The surgeon fits the femoral jig 2a onto the femur such that the femoral jig 2a matingly receives the corresponding surfaces of the target bone, the jig 2a then being secured to and stabilized on the target bone via pins drilled through the jig 2a and into the target bone[block 716]. The surgeon makes guided cuts in the femur via the guide surfaces in the femoral jig 2a [block 718]. The surgeon then fits the tibial jig 2b onto the tibia such that the tibial jig 2b matingly receives the corresponding surfaces of the target bone, the jig 2b then being secured to and stabilized on the target bone via pins drilled through the jig 2b and into the target bone [block 720]. The surgeon makes guided cuts into the tibia via the guide surfaces in the tibia jig 2b [block 722]. After the cuts are made, the jigs 2a, 2b may be discarded and the implantation of the femur and tibia implants can take place [block 724].


Depending on the type of arthroplasty jig desired, the systems and methods disclosed herein may be applied to both the production of natural alignment arthroplasty jigs, zero degree mechanical axis alignment jigs, or arthroplasty jigs configured to provide a result that is somewhere between natural alignment and zero degree mechanical axis alignment.


Although the present invention has been described with reference to preferred embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims
  • 1. An unicompartmental femoral arthroplasty jig for assisting in the performance of an unicompartmental femoral arthroplasty procedure on a femoral arthroplasty target region, the jig comprising: a first side; a second side generally opposite the first side; and a mating surface in the first side including a customized surface contour that is generally a negative of certain surfaces of the femoral arthroplasty target region, the mating surface configured to matingly receive and contact the certain surfaces of the femoral arthroplasty target region, the certain surfaces being limited to and including a medial articular condyle surface, an articular trochlear groove surface, and a generally planar area between an articularis genu and a patellar facet boarder of an anterior side of a femoral shaft, wherein the first side is configured to be oriented towards the femoral arthroplasty target region surface when the mating surface matingly receives and contacts the certain surfaces.
  • 2. The unicompartmental femoral arthroplasty jig of claim 1, further comprising a cutting guide surface positioned and oriented relative to the mating surface to result in a cut in the femoral arthroplasty target region with a desired position and orientation.
  • 3. The unicompartmental femoral arthroplasty jig of claim 2, wherein the desired position and orientation allows a prosthetic femoral implant to restore a patient's knee joint to a natural alignment.
  • 4. The unicompartmental femoral arthroplasty jig of claim 1, wherein the medial articular condyle surface are limited to an anterior and distal regions of the medial articular condyle surface.
  • 5. The unicompartmental femoral arthroplasty jig of claim 1, wherein the articular trochlear groove surface is limited to an anterior and distal regions of a medial articular trochlear groove surface.
  • 6. The unicompartmental femoral arthroplasty jig of claim 1, wherein the articular trochlear groove surface is limited to regions of a lateral articular trochlear groove surface and a medial articular trochlear groove surface.
  • 7. The unicompartmental femoral arthroplasty jig of claim 1, wherein the articular trochlear groove surface is limited to anterior and distal regions of a lateral articular trochlear groove surface and anterior and distal regions of a medial articular trochlear groove surface.
  • 8. The unicompartmental femoral arthroplasty jig of claim 1, wherein the generally planar area of the anterior side of the femoral shaft is limited to being generally distal of the articulars genu and generally proximal of the anterior patellar facet boarder.
  • 9. The unicompartmental femoral arthroplasty jig of claim 1, wherein the generally planar area of the anterior side of the femoral shaft is limited to: being generally distal of the articulars genu and generally proximal of the anterior patellar facet boarder; and at least one contact point with the anterior patellar facet boarder.
  • 10. An unicompartmental femoral arthroplasty jig for assisting in the performance of an unicompartmental femoral arthroplasty procedure on a femoral arthroplasty target region, the jig comprising: a first side; a second side generally opposite the first side; and a mating surface in the first side including a customized surface contour configured to matingly receive and contact a generally planar area of an anterior side of a femoral shaft generally proximal of the patellar facet boarder and generally distal an articularis genu, wherein the first side is configured to be oriented towards the femoral arthroplasty target region surface when the mating surface matingly receives and contacts the planar area, wherein the customized surface contour of the mating surface is generally an identical negative shape of the generally planar area of an anterior side of a femoral shaft generally proximal of the patellar facet boarder and generally distal an articularis genu.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims priority under 35 U.S.C. §119 to U.S. provisional patent application 61/122,842, which was filed Dec. 16, 2008, entitled “Uni-Compartmental Customized Arthroplasty Cutting Jigs And Methods Of Making The Same” and is hereby incorporated by reference in its entirety into the present application.

US Referenced Citations (536)
Number Name Date Kind
3195411 MacDonald et al. Jul 1965 A
3825151 Arnaud Jul 1974 A
D245920 Shen Sep 1977 S
4198712 Swanson Apr 1980 A
4298992 Burstein Nov 1981 A
4436684 White Mar 1984 A
D274093 Kenna May 1984 S
D274161 Kenna Jun 1984 S
4467801 Whiteside Aug 1984 A
4575330 Hull Mar 1986 A
4646726 Westin et al. Mar 1987 A
4719585 Cline et al. Jan 1988 A
4721104 Kaufman et al. Jan 1988 A
4821213 Cline et al. Apr 1989 A
4822365 Walker et al. Apr 1989 A
4825857 Kenna May 1989 A
4841975 Woolson Jun 1989 A
4931056 Ghajar et al. Jun 1990 A
4936862 Walker et al. Jun 1990 A
4976737 Leake Dec 1990 A
5007936 Woolson Apr 1991 A
5011405 Lemchen Apr 1991 A
5027281 Rekow et al. Jun 1991 A
5030219 Matsen, III et al. Jul 1991 A
5037424 Aboczsky Aug 1991 A
5075866 Goto et al. Dec 1991 A
5078719 Schreiber Jan 1992 A
5086401 Glassman et al. Feb 1992 A
5098383 Hemmy et al. Mar 1992 A
5099846 Hardy Mar 1992 A
5122144 Bert et al. Jun 1992 A
5123927 Duncan et al. Jun 1992 A
5139419 Andreiko et al. Aug 1992 A
5140646 Ueda Aug 1992 A
5141512 Farmer et al. Aug 1992 A
5154717 Matsen, III et al. Oct 1992 A
5156777 Kaye Oct 1992 A
5171276 Caspari et al. Dec 1992 A
D336518 Taylor Jun 1993 S
5218427 Koch Jun 1993 A
5234433 Bert et al. Aug 1993 A
5236461 Forte Aug 1993 A
5274565 Reuben Dec 1993 A
5298115 Leonard Mar 1994 A
5305203 Raab Apr 1994 A
D346979 Stalcup et al. May 1994 S
5320529 Pompa Jun 1994 A
5360446 Kennedy Nov 1994 A
5364402 Mumme et al. Nov 1994 A
5365996 Crook Nov 1994 A
5368478 Andreiko et al. Nov 1994 A
D355254 Krafft et al. Feb 1995 S
D357315 Dietz Apr 1995 S
5408409 Glassman et al. Apr 1995 A
5431562 Andreiko et al. Jul 1995 A
5448489 Reuben Sep 1995 A
5452407 Crook Sep 1995 A
5462550 Dietz et al. Oct 1995 A
5484446 Burke et al. Jan 1996 A
D372309 Heldreth Jul 1996 S
D374078 Johnson et al. Sep 1996 S
5556278 Meitner Sep 1996 A
5569260 Petersen Oct 1996 A
5569261 Marik et al. Oct 1996 A
5601563 Burke et al. Feb 1997 A
5601565 Huebner Feb 1997 A
5662656 White Sep 1997 A
5681354 Eckhoff Oct 1997 A
5682886 Delp et al. Nov 1997 A
5683398 Carls et al. Nov 1997 A
5690635 Matsen, III et al. Nov 1997 A
5716361 Masini Feb 1998 A
5725376 Poirier Mar 1998 A
5735277 Schuster Apr 1998 A
5741215 D'Urso Apr 1998 A
5749876 Duvillier et al. May 1998 A
5768134 Swaelens et al. Jun 1998 A
5769092 Williamson, Jr. Jun 1998 A
5769859 Dorsey Jun 1998 A
D398058 Collier Sep 1998 S
5810830 Noble et al. Sep 1998 A
5824085 Sahay et al. Oct 1998 A
5824098 Stein Oct 1998 A
5824100 Kester et al. Oct 1998 A
5824111 Schall et al. Oct 1998 A
5860980 Axelson, Jr. et al. Jan 1999 A
5860981 Bertin et al. Jan 1999 A
5871018 Delp et al. Feb 1999 A
5880976 DiGioia, III et al. Mar 1999 A
5908424 Bertin et al. Jun 1999 A
5911724 Wehrli Jun 1999 A
5964808 Blaha et al. Oct 1999 A
5967777 Klein et al. Oct 1999 A
5993448 Remmler Nov 1999 A
5995738 DiGioia, III et al. Nov 1999 A
6002859 DiGioia, III et al. Dec 1999 A
6068658 Insall et al. May 2000 A
6090114 Matsuno et al. Jul 2000 A
6096043 Techiera et al. Aug 2000 A
6106529 Techiera Aug 2000 A
6112109 D'Urso Aug 2000 A
6126690 Ateshian et al. Oct 2000 A
6132447 Dorsey Oct 2000 A
6161080 Aouni-Ateshian et al. Dec 2000 A
6171340 McDowell Jan 2001 B1
6173200 Cooke et al. Jan 2001 B1
6183515 Barlow et al. Feb 2001 B1
6205411 DiGioia, III et al. Mar 2001 B1
6228121 Khalili May 2001 B1
6254639 Peckitt Jul 2001 B1
6285902 Kienzle, III et al. Sep 2001 B1
6327491 Franklin et al. Dec 2001 B1
6343987 Hayama et al. Feb 2002 B2
6382975 Poirier May 2002 B1
6383228 Schmotzer May 2002 B1
6385475 Cinquin et al. May 2002 B1
6415171 Gueziec et al. Jul 2002 B1
6458135 Harwin et al. Oct 2002 B1
6463351 Clynch Oct 2002 B1
6503254 Masini Jan 2003 B2
6510334 Schuster et al. Jan 2003 B1
6514259 Picard et al. Feb 2003 B2
6520964 Tallarida et al. Feb 2003 B2
6533737 Brosseau et al. Mar 2003 B1
D473307 Cooke Apr 2003 S
6540784 Barlow et al. Apr 2003 B2
6558426 Masini May 2003 B1
6575980 Robie et al. Jun 2003 B1
6602259 Masini Aug 2003 B1
6672870 Knapp Jan 2004 B2
6692448 Tanaka et al. Feb 2004 B2
6701174 Krause et al. Mar 2004 B1
6702821 Bonutti Mar 2004 B2
6711431 Sarin et al. Mar 2004 B2
6711432 Krause et al. Mar 2004 B1
6712856 Carignan et al. Mar 2004 B1
6716249 Hyde Apr 2004 B2
6738657 Franklin et al. May 2004 B1
6747646 Gueziec et al. Jun 2004 B2
6770099 Andriacchi et al. Aug 2004 B2
6772026 Bradbury et al. Aug 2004 B2
6799066 Steines et al. Sep 2004 B2
6814575 Poirier Nov 2004 B2
6905510 Saab Jun 2005 B2
6905514 Carignan et al. Jun 2005 B2
6923817 Carson et al. Aug 2005 B2
6932842 Litschko et al. Aug 2005 B1
6944518 Roose Sep 2005 B2
6955345 Kato Oct 2005 B2
6969393 Pinczewski et al. Nov 2005 B2
6975894 Wehrli et al. Dec 2005 B2
6978188 Christensen Dec 2005 B1
7029479 Tallarida et al. Apr 2006 B2
7033360 Cinquin et al. Apr 2006 B2
7039225 Tanaka et al. May 2006 B2
7060074 Rosa et al. Jun 2006 B2
7074241 McKinnon Jul 2006 B2
7090677 Fallin et al. Aug 2006 B2
7094241 Hodorek et al. Aug 2006 B2
RE39301 Bertin Sep 2006 E
7104997 Lionberger et al. Sep 2006 B2
7128745 Masini Oct 2006 B2
D532515 Buttler et al. Nov 2006 S
7141053 Rosa et al. Nov 2006 B2
7153309 Huebner et al. Dec 2006 B2
7166833 Smith Jan 2007 B2
7172597 Sanford Feb 2007 B2
7174282 Hollister et al. Feb 2007 B2
7177386 Mostafavi et al. Feb 2007 B2
7184814 Lang et al. Feb 2007 B2
7235080 Hodorek Jun 2007 B2
7238190 Schon et al. Jul 2007 B2
7239908 Alexander et al. Jul 2007 B1
7258701 Aram et al. Aug 2007 B2
7275218 Petrella et al. Sep 2007 B2
7309339 Cusick et al. Dec 2007 B2
7340316 Spaeth et al. Mar 2008 B2
7359746 Arata Apr 2008 B2
7383164 Aram et al. Jun 2008 B2
7388972 Kitson Jun 2008 B2
7392076 De La Barrera Jun 2008 B2
7393012 Funakura et al. Jul 2008 B2
7394946 Dewaele Jul 2008 B2
7429346 Ensign et al. Sep 2008 B2
7468075 Lang et al. Dec 2008 B2
7517365 Carignan et al. Apr 2009 B2
7534263 Burdulis, Jr. et al. May 2009 B2
7542791 Mire et al. Jun 2009 B2
7547307 Carson et al. Jun 2009 B2
7611519 Lefevre et al. Nov 2009 B2
7616800 Paik et al. Nov 2009 B2
7618421 Axelson, Jr. et al. Nov 2009 B2
7618451 Berez et al. Nov 2009 B2
7621744 Massoud Nov 2009 B2
7621920 Claypool et al. Nov 2009 B2
7630750 Liang et al. Dec 2009 B2
7634119 Tsougarakis et al. Dec 2009 B2
7634306 Sarin et al. Dec 2009 B2
7641660 Lakin et al. Jan 2010 B2
7641663 Hodorek Jan 2010 B2
7643862 Schoenefeld Jan 2010 B2
7658741 Claypool et al. Feb 2010 B2
7660623 Hunter et al. Feb 2010 B2
7682398 Croxton et al. Mar 2010 B2
7693321 Lehtonen-Krause Apr 2010 B2
7699847 Sheldon et al. Apr 2010 B2
7702380 Dean Apr 2010 B1
7715602 Richard May 2010 B2
7717956 Lang May 2010 B2
D618796 Cantu et al. Jun 2010 S
7747305 Dean et al. Jun 2010 B2
D619718 Gannoe et al. Jul 2010 S
D622854 Otto et al. Aug 2010 S
7769429 Hu Aug 2010 B2
7780681 Sarin et al. Aug 2010 B2
7787932 Vilsmeier et al. Aug 2010 B2
7794467 McGinley et al. Sep 2010 B2
7796791 Tsougarakis et al. Sep 2010 B2
7799077 Lang et al. Sep 2010 B2
D626234 Otto et al. Oct 2010 S
7806838 Tsai et al. Oct 2010 B2
7806896 Bonutti Oct 2010 B1
7815645 Haines Oct 2010 B2
7842039 Hodorek et al. Nov 2010 B2
7842092 Otto et al. Nov 2010 B2
7881768 Lang et al. Feb 2011 B2
7894650 Weng et al. Feb 2011 B2
7927335 Deffenbaugh et al. Apr 2011 B2
7940974 Skinner et al. May 2011 B2
7950924 Brajnovic May 2011 B2
7963968 Dees, Jr. Jun 2011 B2
D642263 Park Jul 2011 S
D642689 Gannoe et al. Aug 2011 S
8007448 Moctezuma de La Barrera Aug 2011 B2
8036729 Lang et al. Oct 2011 B2
8052623 Haimerl et al. Nov 2011 B2
8059878 Feilkas et al. Nov 2011 B2
8077950 Tsougarakis et al. Dec 2011 B2
8086336 Christensen Dec 2011 B2
D655008 Gannoe et al. Feb 2012 S
8126234 Edwards et al. Feb 2012 B1
8126533 Lavallee Feb 2012 B2
RE43282 Alexander et al. Mar 2012 E
8133234 Meridew et al. Mar 2012 B2
8142189 Brajnovic Mar 2012 B2
8160345 Pavlovskaia et al. Apr 2012 B2
8170641 Belcher May 2012 B2
8177850 Rudan et al. May 2012 B2
8202324 Meulink et al. Jun 2012 B2
8214016 Lavallee et al. Jul 2012 B2
8221430 Park et al. Jul 2012 B2
8224127 Woodard et al. Jul 2012 B2
8231634 Mahfouz et al. Jul 2012 B2
8234097 Steines et al. Jul 2012 B2
8241293 Stone et al. Aug 2012 B2
8265949 Haddad Sep 2012 B2
8306601 Lang et al. Nov 2012 B2
8311306 Pavlovskaia et al. Nov 2012 B2
8323288 Zajac Dec 2012 B2
8331634 Barth et al. Dec 2012 B2
8337501 Fitz et al. Dec 2012 B2
8460302 Park et al. Jun 2013 B2
8460303 Park Jun 2013 B2
8480679 Park Jul 2013 B2
8483469 Pavlovskaia et al. Jul 2013 B2
20020087274 Alexander et al. Jul 2002 A1
20020160337 Klein et al. Oct 2002 A1
20030009167 Wozencroft Jan 2003 A1
20030055502 Lang et al. Mar 2003 A1
20030100907 Rosa et al. May 2003 A1
20040102792 Sarin et al. May 2004 A1
20040102866 Harris et al. May 2004 A1
20040133276 Lang et al. Jul 2004 A1
20040147927 Tsougarakis et al. Jul 2004 A1
20040153066 Coon et al. Aug 2004 A1
20040153087 Sanford et al. Aug 2004 A1
20040204760 Fitz et al. Oct 2004 A1
20040220583 Pieczynski, II et al. Nov 2004 A1
20040243148 Wasielewski Dec 2004 A1
20040243481 Bradbury et al. Dec 2004 A1
20050059978 Sherry et al. Mar 2005 A1
20050065617 De la Barrera et al. Mar 2005 A1
20050148843 Roose Jul 2005 A1
20050148860 Liew et al. Jul 2005 A1
20050192588 Garcia Sep 2005 A1
20050234461 Burdulis et al. Oct 2005 A1
20050245934 Tuke et al. Nov 2005 A1
20050245936 Tuke et al. Nov 2005 A1
20050256389 Koga et al. Nov 2005 A1
20050267584 Burdulis, Jr. et al. Dec 2005 A1
20060015018 Jutras et al. Jan 2006 A1
20060015030 Poulin et al. Jan 2006 A1
20060015109 Haines Jan 2006 A1
20060015188 Grimes Jan 2006 A1
20060036257 Steffensmeier Feb 2006 A1
20060110017 Tsai et al. May 2006 A1
20060122491 Murray et al. Jun 2006 A1
20060155293 McGinley et al. Jul 2006 A1
20060155294 Steffensmeier et al. Jul 2006 A1
20060195113 Masini Aug 2006 A1
20060271058 Ashton et al. Nov 2006 A1
20070021838 Dugas et al. Jan 2007 A1
20070038059 Sheffer et al. Feb 2007 A1
20070055268 Utz et al. Mar 2007 A1
20070073305 Lionberger et al. Mar 2007 A1
20070083266 Lang Apr 2007 A1
20070100462 Lang et al. May 2007 A1
20070114370 Smith et al. May 2007 A1
20070118055 McCombs May 2007 A1
20070118243 Schroeder et al. May 2007 A1
20070123912 Carson May 2007 A1
20070162039 Wozencroft Jul 2007 A1
20070167833 Redel et al. Jul 2007 A1
20070173858 Engh et al. Jul 2007 A1
20070191741 Tsai et al. Aug 2007 A1
20070198022 Lang et al. Aug 2007 A1
20070213738 Martin et al. Sep 2007 A1
20070226986 Park et al. Oct 2007 A1
20070232959 Couture et al. Oct 2007 A1
20070233136 Wozencroft Oct 2007 A1
20070233140 Metzger et al. Oct 2007 A1
20070233141 Park et al. Oct 2007 A1
20070233269 Steines et al. Oct 2007 A1
20070239167 Pinczewski et al. Oct 2007 A1
20070249967 Buly et al. Oct 2007 A1
20070276224 Lang et al. Nov 2007 A1
20070276400 Moore et al. Nov 2007 A1
20070282451 Metzger et al. Dec 2007 A1
20070288030 Metzger et al. Dec 2007 A1
20070293734 Coste-Maniere et al. Dec 2007 A1
20080004701 Axelson et al. Jan 2008 A1
20080015433 Alexander et al. Jan 2008 A1
20080015599 D'Alessio et al. Jan 2008 A1
20080015600 D'Alessio et al. Jan 2008 A1
20080015602 Axelson et al. Jan 2008 A1
20080015606 D'Alessio et al. Jan 2008 A1
20080015607 D'Alessio et al. Jan 2008 A1
20080021299 Meulink Jan 2008 A1
20080031412 Lang et al. Feb 2008 A1
20080033442 Amiot et al. Feb 2008 A1
20080058613 Lang et al. Mar 2008 A1
20080088761 Lin et al. Apr 2008 A1
20080089591 Zhou et al. Apr 2008 A1
20080114370 Schoenefeld May 2008 A1
20080147072 Park et al. Jun 2008 A1
20080153067 Berckmans et al. Jun 2008 A1
20080161815 Schoenefeld et al. Jul 2008 A1
20080195108 Bhatnagar et al. Aug 2008 A1
20080215059 Carignan et al. Sep 2008 A1
20080234685 Gjerde Sep 2008 A1
20080243127 Lang et al. Oct 2008 A1
20080257363 Schoenefeld et al. Oct 2008 A1
20080262624 White et al. Oct 2008 A1
20080275452 Lang et al. Nov 2008 A1
20080281328 Lang et al. Nov 2008 A1
20080281329 Fitz et al. Nov 2008 A1
20080281426 Fitz et al. Nov 2008 A1
20080286722 Berckmans, III et al. Nov 2008 A1
20080287953 Sers Nov 2008 A1
20080287954 Kunz et al. Nov 2008 A1
20080312659 Metzger et al. Dec 2008 A1
20080319491 Schoenefeld Dec 2008 A1
20090024131 Metzger et al. Jan 2009 A1
20090087276 Rose Apr 2009 A1
20090088674 Caillouette et al. Apr 2009 A1
20090088753 Aram et al. Apr 2009 A1
20090088754 Aker et al. Apr 2009 A1
20090088755 Aker et al. Apr 2009 A1
20090088758 Bennett Apr 2009 A1
20090088759 Aram et al. Apr 2009 A1
20090088760 Aaram et al. Apr 2009 A1
20090088761 Roose et al. Apr 2009 A1
20090088763 Aram et al. Apr 2009 A1
20090089034 Penney et al. Apr 2009 A1
20090093816 Roose et al. Apr 2009 A1
20090110498 Park Apr 2009 A1
20090112213 Heavener et al. Apr 2009 A1
20090131941 Park et al. May 2009 A1
20090131942 Aker et al. May 2009 A1
20090138020 Park et al. May 2009 A1
20090151736 Belcher et al. Jun 2009 A1
20090157083 Park et al. Jun 2009 A1
20090163923 Flett et al. Jun 2009 A1
20090209884 Van Vorhis et al. Aug 2009 A1
20090222014 Bojarski et al. Sep 2009 A1
20090222015 Park et al. Sep 2009 A1
20090222016 Park et al. Sep 2009 A1
20090222103 Fitz et al. Sep 2009 A1
20090226068 Fitz et al. Sep 2009 A1
20090228113 Lang et al. Sep 2009 A1
20090234217 Mire et al. Sep 2009 A1
20090248044 Amiot et al. Oct 2009 A1
20090254093 White et al. Oct 2009 A1
20090254367 Belcher et al. Oct 2009 A1
20090270868 Park et al. Oct 2009 A1
20090274350 Pavlovskaia et al. Nov 2009 A1
20090276045 Lang Nov 2009 A1
20090285465 Haimerl et al. Nov 2009 A1
20090306676 Lang et al. Dec 2009 A1
20090307893 Burdulis, Jr. et al. Dec 2009 A1
20090312805 Lang et al. Dec 2009 A1
20100023015 Park Jan 2010 A1
20100042105 Park et al. Feb 2010 A1
20100049195 Park et al. Feb 2010 A1
20100087829 Metzger et al. Apr 2010 A1
20100099977 Hershberger Apr 2010 A1
20100145344 Jordan et al. Jun 2010 A1
20100153076 Bellettre et al. Jun 2010 A1
20100153081 Bellettre et al. Jun 2010 A1
20100160917 Fitz et al. Jun 2010 A1
20100168754 Fitz et al. Jul 2010 A1
20100174376 Lang Jul 2010 A1
20100185202 Lester et al. Jul 2010 A1
20100191242 Massoud Jul 2010 A1
20100191244 White et al. Jul 2010 A1
20100198351 Meulink Aug 2010 A1
20100209868 De Clerck Aug 2010 A1
20100212138 Carroll et al. Aug 2010 A1
20100217109 Belcher Aug 2010 A1
20100217270 Polinski et al. Aug 2010 A1
20100217336 Crawford et al. Aug 2010 A1
20100217338 Carroll et al. Aug 2010 A1
20100228257 Bonutti Sep 2010 A1
20100256479 Park et al. Oct 2010 A1
20100262150 Lian Oct 2010 A1
20100274253 Ure Oct 2010 A1
20100274534 Steines et al. Oct 2010 A1
20100292963 Schroeder Nov 2010 A1
20100298894 Bojarski et al. Nov 2010 A1
20100303313 Lang et al. Dec 2010 A1
20100303317 Tsougarakis et al. Dec 2010 A1
20100303324 Lang et al. Dec 2010 A1
20100305574 Fitz et al. Dec 2010 A1
20100305708 Lang et al. Dec 2010 A1
20100305907 Fitz et al. Dec 2010 A1
20100324692 Uthgenannt et al. Dec 2010 A1
20100329530 Lang et al. Dec 2010 A1
20100332194 McGuan et al. Dec 2010 A1
20110015636 Katrana et al. Jan 2011 A1
20110016690 Narainasamy et al. Jan 2011 A1
20110029091 Bojarski et al. Feb 2011 A1
20110029093 Bojarski et al. Feb 2011 A1
20110029116 Jordan et al. Feb 2011 A1
20110046735 Metzger et al. Feb 2011 A1
20110054486 Linder-Ganz et al. Mar 2011 A1
20110060341 Angibaud et al. Mar 2011 A1
20110066193 Lang et al. Mar 2011 A1
20110066245 Lang et al. Mar 2011 A1
20110071533 Metzger et al. Mar 2011 A1
20110071537 Koga et al. Mar 2011 A1
20110071581 Lang et al. Mar 2011 A1
20110071645 Bojarski et al. Mar 2011 A1
20110071802 Bojarski et al. Mar 2011 A1
20110087332 Bojarski et al. Apr 2011 A1
20110087465 Mahfouz Apr 2011 A1
20110092804 Schoenefeld et al. Apr 2011 A1
20110092977 Salehi et al. Apr 2011 A1
20110092978 McCombs Apr 2011 A1
20110093108 Ashby et al. Apr 2011 A1
20110106093 Romano et al. May 2011 A1
20110112808 Anderson et al. May 2011 A1
20110144760 Wong et al. Jun 2011 A1
20110160736 Meridew et al. Jun 2011 A1
20110166578 Stone et al. Jul 2011 A1
20110166666 Meulink et al. Jul 2011 A1
20110172672 Dubeau et al. Jul 2011 A1
20110184526 White et al. Jul 2011 A1
20110190899 Pierce et al. Aug 2011 A1
20110196377 Hodorek et al. Aug 2011 A1
20110213368 Fitz et al. Sep 2011 A1
20110213373 Fitz et al. Sep 2011 A1
20110213374 Fitz et al. Sep 2011 A1
20110213377 Lang et al. Sep 2011 A1
20110213427 Fitz et al. Sep 2011 A1
20110213428 Fitz et al. Sep 2011 A1
20110213429 Lang et al. Sep 2011 A1
20110213430 Lang et al. Sep 2011 A1
20110213431 Fitz et al. Sep 2011 A1
20110214279 Park Sep 2011 A1
20110218539 Fitz et al. Sep 2011 A1
20110218542 Lian Sep 2011 A1
20110218584 Fitz et al. Sep 2011 A1
20110230888 Lang et al. Sep 2011 A1
20110238073 Lang et al. Sep 2011 A1
20110245835 Dodds et al. Oct 2011 A1
20110266265 Lang Nov 2011 A1
20110268248 Simon et al. Nov 2011 A1
20110270072 Feilkas et al. Nov 2011 A9
20110276145 Carignan et al. Nov 2011 A1
20110282473 Pavlovskaia et al. Nov 2011 A1
20110295329 Fitz et al. Dec 2011 A1
20110295378 Bojarski et al. Dec 2011 A1
20110305379 Mahfouz Dec 2011 A1
20110313423 Lang et al. Dec 2011 A1
20110319897 Lang et al. Dec 2011 A1
20110319900 Lang et al. Dec 2011 A1
20120004725 Shterling et al. Jan 2012 A1
20120029520 Lang et al. Feb 2012 A1
20120041446 Wong et al. Feb 2012 A1
20120053591 Haines et al. Mar 2012 A1
20120065640 Metzger et al. Mar 2012 A1
20120066892 Lang et al. Mar 2012 A1
20120071881 Lang et al. Mar 2012 A1
20120071882 Lang et al. Mar 2012 A1
20120071883 Lang et al. Mar 2012 A1
20120072185 Lang et al. Mar 2012 A1
20120093377 Tsougarakis et al. Apr 2012 A1
20120101503 Lang et al. Apr 2012 A1
20120130434 Stemniski May 2012 A1
20120143197 Lang et al. Jun 2012 A1
20120143198 Boyer et al. Jun 2012 A1
20120150243 Crawford et al. Jun 2012 A9
20120151730 Fitz et al. Jun 2012 A1
20120158001 Burdulis, Jr. et al. Jun 2012 A1
20120158002 Carignan et al. Jun 2012 A1
20120165820 De Smedt et al. Jun 2012 A1
20120165821 Carignan et al. Jun 2012 A1
20120172882 Sato Jul 2012 A1
20120179147 Geebelen et al. Jul 2012 A1
20120191205 Bojarski et al. Jul 2012 A1
20120191420 Bojarski et al. Jul 2012 A1
20120192401 Pavlovskaia et al. Aug 2012 A1
20120197260 Fitz et al. Aug 2012 A1
20120197408 Lang et al. Aug 2012 A1
20120215226 Bonutti Aug 2012 A1
20120221008 Carroll et al. Aug 2012 A1
20120230566 Dean et al. Sep 2012 A1
20120232669 Bojarski et al. Sep 2012 A1
20120232670 Bojarski et al. Sep 2012 A1
20120232671 Bojarski et al. Sep 2012 A1
20120265499 Mahfouz et al. Oct 2012 A1
20120310400 Park Dec 2012 A1
20130039551 Pavlovskaia et al. Feb 2013 A1
20130115474 Park May 2013 A1
20130116697 Park et al. May 2013 A1
20130123789 Park May 2013 A1
Foreign Referenced Citations (33)
Number Date Country
3305237 Aug 1983 DE
4341367 Jun 1995 DE
102005023028 Nov 2006 DE
0097001 Dec 1983 EP
0574098 Dec 1993 EP
0622052 Nov 1994 EP
0908836 Apr 1999 EP
0908836 Dec 1999 EP
1059153 Dec 2000 EP
1486900 Dec 2004 EP
1532939 May 2005 EP
2215610 Sep 1989 GB
2420717 Jun 2006 GB
WO 9325157 Dec 1993 WO
WO 9507509 Mar 1995 WO
WO 9527450 Oct 1995 WO
WO 9723172 Jul 1997 WO
WO 9812995 Apr 1998 WO
WO 0100096 Jan 2001 WO
WO 0170142 Sep 2001 WO
WO 0185040 Nov 2001 WO
WO 02096268 Dec 2002 WO
WO 2004032806 Apr 2004 WO
WO 2004049981 Jun 2004 WO
WO 2005051240 Jun 2005 WO
WO 2005087125 Sep 2005 WO
WO 2006058057 Jun 2006 WO
WO 2006060795 Jun 2006 WO
WO 2006092600 Sep 2006 WO
WO 2006134345 Dec 2006 WO
WO 2007014164 Feb 2007 WO
WO 2007058632 May 2007 WO
WO 2007092841 Aug 2007 WO
Non-Patent Literature Citations (267)
Entry
U.S. Appl. No. 13/374,960, filed Jan. 25, 2012, Pavlovskaia et al.
Final Office Action, U.S. Appl. No. 11/959,344, mailed Oct. 27, 2011, 12 pages.
Final Office Action, U.S. Appl. No. 12/390,667, mailed Jan. 13, 2012, 27 pages.
Final Office Action, U.S. Appl. No. 11/641,569, mailed Mar. 1, 2012, 12 pages.
Non-Final Office Action, U.S. Appl. No. 11/924,425, mailed Jan. 25, 2012, 35 pages.
Non-Final Office Action, U.S. Appl. No. 11/641,382, mailed Mar. 29, 2012, 24 pages.
Non-Final Office Action, U.S. Appl. No. 11/946,002, dated Nov. 25, 2011, 44 pages.
Non-Final Office Action, U.S. Appl. No. 12/386,105, dated Feb. 9, 2012, 30 pages.
Non-Final Office Action, U.S. Appl. No. 12/391,008, mailed Oct. 31, 2011, 44 pages.
Notice of Allowance, U.S. Appl. No. 13/066,568, mailed Oct. 26, 2011, 28 pages.
Notice of Allowance, U.S. Appl. No. 11/959,344, mailed Mar. 5, 2012, 13 pages.
Office Action (Restriction Requirement), U.S. Appl. No. 12/563,809, dated Feb. 2, 2012, 7 pages.
Response to Final Office Action, U.S. Appl. No. 11/959,344, filed Dec. 27, 2011, 16 pages.
Response to final Office Action, U.S. Appl. No. 12/390,667, filed Mar. 12, 2012, 19 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/390,667, filed Nov. 18, 2011, 16 pages.
Response to Non-Final Office Action, U.S. Appl. No. 11/641,569, filed Dec. 2, 2011, 7 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/391,008, filed Feb. 24, 2012, 18 pages.
Response to Non-Final Office Action, U.S. Appl. No. 11/946,002, filed Mar. 8, 2012, 16 pages.
Response to Restriction Requirement, U.S. Appl. No. 12/386,105, filed Dec. 21, 2011, 9 pages.
Response to Restriction Requirement, U.S. Appl. No. 12/563,809, filed Feb. 24, 2012, 10 pages.
Response to Restriction Requirement, U.S. Appl. No. 12/111,924, filed Apr. 16, 2012, 8 pages.
Response to Restriction, U.S. Appl. No. 11/924,425, filed Nov. 8, 2011, 5 pages.
Response to Restriction, U.S. Appl. No. 11/946,002, filed Sep. 23, 2011, 7 pages.
Response to Restriction, U.S. Appl. No. 12/505,056, filed Apr. 11, 2012, 9 pages.
Restriction Requirement, U.S. Appl. No. 11/924,425, dated Oct. 13, 2011, 6 pages.
Restriction Requirement, U.S. Appl. No. 11/946,002, dated Sep. 1, 2011, 8 pages.
Restriction Requirement, U.S. Appl. No. 12/111,924, mailed Mar. 19, 2012, 8 pages.
Restriction Requirement, U.S. Appl. No. 12/386,105, dated Oct. 24, 2011, 7 pages.
Restriction Requirement, U.S. Appl. No. 12/505,056, mailed Mar. 14, 2012, 8 pages.
Abandoned U.S. Appl. No. 10/146,862, filed May 15, 2002, Park et al.
U.S. Appl. No. 13/086,275, filed Apr. 13, 2011, Park et al.
U.S. Appl. No. 13/066,568, filed Apr. 18, 2011, Pavlovskaia et al.
U.S. Appl. No. 29/394,882, filed Jun. 22, 2011, Ilwhan Park.
Advisory Action and Interview Summary, U.S. Appl. No. 12/390,667, mailed Apr. 27, 2012, 23 pages.
Amendment Under 37 C.F.R. 1.312, U.S. Appl. No. 12/386,105, filed Oct. 1, 2012, 6 pages.
Appeal Brief, U.S. Appl. No. 12/390,667, filed Jul. 12, 2012, 32 pages.
Final Office Action, U.S. Appl. No. 11/641,382, mailed Jul. 25, 2012, 12 pages.
Final Office Action, U.S. Appl. No. 11/924,425, mailed Jul. 6, 2012, 14 pages.
Final Office Action, U.S. Appl. No. 11/946,002, mailed May 9, 2012, 24 pages.
Final Office Action, U.S. Appl. No. 12/391,008, mailed May 17, 2012, 28 pages.
Non-Final Office Action, U.S. Appl. No. 12/111,924, mailed Jun. 29, 2012, 35 pages.
Non-Final Office Action, U.S. Appl. No. 12/390,667, mailed Sep. 26, 2012, 21 pages.
Non-Final Office Action, U.S. Appl. No. 12/546,545, mailed Jul. 19, 2012, 28 pages.
Non-Final Office Action, U.S. Appl. No. 12/563,809, mailed Sep. 21, 2012, 32 pages.
Non-Final Office Action, U.S. Appl. No. 13/374,960, mailed Aug. 1, 2012, 6 pages.
Notice of Allowance, U.S. Appl. No. 11/641,382, mailed Oct. 9, 2012, 9 pages.
Notice of Allowance, U.S. Appl. No. 11/924,425, mailed Sep. 25, 2012, 18 pages.
Notice of Allowance, U.S. Appl. No. 12/386,105, mailed Jul. 5, 2012, 11 pages.
RCE/Amendment, U.S. Appl. No. 11/946,002, filed Sep. 6, 2012, 38 pages.
Response to Final Office Action, U.S. Appl. No. 11/641,569, filed Jun. 28, 2012, 10 pages.
Response to Final Office Action, U.S. Appl. No. 11/641,382, filed Sep. 24, 2012, 11 pages.
Response to Final Office Action, U.S. Appl. No. 11/924,425, filed Sep. 5, 2012, 9 pages.
Response to Non-Final Office Action, U.S. Appl. No. 11/924,425, filed Apr. 25, 2012, 8 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/386,105, filed Jun. 8, 2012, 13 pages.
Response to Non-Final Office Action, U.S. Appl. No. 11/641,382, filed Jun. 27, 2012, 12 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/111,924, filed Sep. 28, 2012, 10 pages.
Response to Restriction, U.S. Appl. No. 12/563,809, filed Aug. 6, 2012, 10 pages.
Response to Restriction, U.S. Appl. No. 12/546,545, filed Jun. 4, 2012, 7 pages.
Restriction Requirement, U.S. Appl. No. 12/546,545, mailed May 3, 2012, 8 pages.
Restriction Requirement, U.S. Appl. No. 12/563,809, mailed Jul. 6, 2012, 6 pages.
U.S. Appl. No. 13/488,505, filed Jun. 5, 2012, Ilwhan Park et al.
U.S. Appl. No. 13/723,904, filed Dec. 21, 2012, Park.
U.S. Appl. No. 13/730,467, filed Dec. 28, 2012, Park et al.
U.S. Appl. No. 13/730,585, filed Dec. 28, 2012, Park et al.
U.S. Appl. No. 13/730,608, filed Dec. 28, 2012, Park et al.
U.S. Appl. No. 13/731,697, filed Dec. 31, 2012, Pavlovskaia et al.
U.S. Appl. No. 13/731,850, filed Dec. 31, 2012, Park.
U.S. Appl. No. 13/749,095, filed Jan. 24, 2013, Song.
Appeal Brief, U.S. Appl. No. 12/391,008, filed Oct. 16, 2012, 24 pages.
Examiner's Answer in appeal, U.S. Appl. No. 12/391,008, mailed Dec. 13, 2012, 27 pages.
Final Office Action, U.S. App. No. 12/546,545, dated Dec. 20, 2012, 16 pages.
Final Office Action, U.S. Appl. No. 12/563,809, mailed Mar. 7, 2013, 14 pages.
Howell et al., “In Vivo Adduction and Reverse Axial Rotation (External) of the Tibial Component can be Minimized During Standing and Kneeling,” Orthopedics|ORTHOSupersite.com vol. 32 No. 5, 319-326 (May 2009).
Non-Final Office Action, U.S. App. No. 11/641,569, dated Jan. 3, 2013, 12 pages.
Non-Final Office Action, U.S. Appl. No. 13/086,275, mailed Feb. 7, 2013, 36 pages.
Non-Final Office Action, U.S. Appl. No. 12/546,545, mailed Mar. 13, 2013, 10 pages.
Notice of Allowance, U.S. Appl. No. 11/641,382, mailed Feb. 6, 2013, 14 pages.
Notice of Allowance, U.S. Appl. No. 11/924,425, mailed Feb. 5, 2013, 16 pages.
Notice of Allowance, U.S. Appl. No. 12/111,924, dated Dec. 24, 2012, 10 pages.
Notice of Allowance, U.S. Appl. No. 29/394,882, mailed Feb. 4, 2013, 32 pages.
Notice of Allowance, U.S. Appl. No. 12/111,924, mailed Mar. 11, 2013, 14 pages.
Notice of Allowance, U.S. Appl. No. 13/374,960, mailed Nov. 2, 2012, 24 pages.
Notice of Allowance, U.S. Appl. No. 13/573,662, mailed Mar. 19, 2013, 34 pages.
Response to Final Office Action, U.S. Appl. No. 12/546,545, filed Feb. 20, 2013, 13 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/390,667, filed Feb. 26, 2013, 36 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/563,809, filed Dec. 13, 2012, 15 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/546,545, filed Oct. 19, 2012, 15 pages.
Response to Non-Final Office Action, U.S. Appl. No. 11/641,569, filed Apr. 3, 2013, 9 pages.
Response to Restriction, U.S. Appl. No. 13/573,662, filed Feb. 8, 2013, 8 pages.
Restriction Requirement, U.S. Appl. No. 13/573,662, mailed Jan. 17, 2013, 6 pages.
Restriction Requirement, U.S. Appl. No. 12/760,388, mailed Mar. 6, 2013, 7 pages.
Amendment Under 37 C.F.R. 1.312, U.S. Appl. No. 13/374,960, filed May 7, 2013, 6 pages.
Non-Final Office Action, U.S. Appl. No. 12/390,667, mailed May 8, 2013, 20 pages.
Non-Final Office Action, U.S. Appl. No. 12/505,056, mailed Jun. 28, 2013, 7 pages.
Non-Final Office Action, U.S. Appl. No. 12/760,388, mailed Jun. 20, 2013, 54 pages.
Non-Final Office Action, U.S. Appl. No. 13/730,585, mailed Jun. 11, 2013, 10 pages.
Notice of Allowance, Design U.S. Appl. No. 29/394,882, mailed May 24, 2013, 16 pages.
Notice of Allowance, U.S. Appl. No. 12/563,809, mailed May 28, 2013, 11 pages.
Notice of Allowance, U.S. Appl. No. 13/374,960, mailed May 6, 2013, 20 pages.
Preliminary Amendment, U.S. Appl. No. 13/731,697, filed May 10, 2013, 6 pages.
Response to Final Office Action, U.S. Appl. No. 12/563,809, filed May 6, 2013, 15 pages.
Response to Non-Final Office Action, U.S. Appl. No. 13/086,275, filed May 7, 2013, 11 pages.
Response to Non-Final Office Action, U.S. Appl. No. 12/546,545, filed Jul. 15, 2013, 14 pages.
Response to Restriction Requirement, U.S. Appl. No. 12/760,388, filed Apr. 5, 2013, 7 pages.
Advisory Action, U.S. Appl. No. 11/642,385, dated Oct. 29, 2010, 3 pages.
Amendment and Response to Ex Parte Quayle Action, U.S. Appl. No. 29/296,687 dated Mar. 24, 2011, 17 pages.
Amendment and Response to Final Office Action, U.S. Appl. No. 11/642,386, filed Oct. 4, 2010, 16 pages.
Amendment and Response to Non-Final Office Action, U.S. Appl. No. 11/641,382, dated Apr. 20, 2010, 23 pages.
Amendment and Response to Office Action and Petition to Revive, U.S. Appl. No. 10/146,862, filed Jan. 18, 2006, 29 pages.
Amendment and Response to Office Action, U.S. Appl. No. 11/656,323, filed Jun. 25, 2010, 7 pages.
Amendment and Response to Office Action, U.S. Appl. No. 11/641,569, dated Feb. 5, 2010, 20 pages.
Amendment and Response to Restriction Requirement, U.S. Appl. No. 11/641,569, dated May 27, 2009, 12 pages.
Amendment and Response to Restriction Requirement, U.S. Appl. No. 11/641,382, dated Oct. 5, 2009, 10 pages.
Amendment and Response to Restriction Requirement, U.S. Patent Appl. No. 11/642,385, filed Nov. 24, 2009, 10 pages.
Amendment and Response to Restriction/Election Requirement, U.S. Appl. No. 11/656,323, filed Dec. 8, 2009, 6 pages.
Amendment and Response, U.S. Appl. No. 11/642,385, filed May 28, 2010, 11 pages.
Amendment and Response to Non-Final Office Action, U.S. Appl. No. 11/959,344, dated Jul. 15, 2011, 13 pages.
European Search Report, 10192631.9-2310, dated Mar. 17, 2011, 5 pages.
Ex Parte Quayle Action, U.S. Appl. No. 29/296,687, mailed Jan. 24, 2011, 11 pages.
Final Office Action and PTO-892, U.S. Appl. No. 11/641,382, mailed Aug. 5, 2010, 13 pages.
Final Office Action and PTO-892, U.S. Appl. No. 11/656,323, mailed Sep. 3, 2010, 11 pages.
Final Office Action, U.S. Appl. No. 11/641,569, mailed May 10, 2010, 9 pages.
International Search Report and Written Opinion, PCT/US2009/034983, dated May 22, 2009, 15 pages.
International Search Report and Written Opinion, PCT/US2009/034967, dated Jun. 16, 2009, 15 pages.
International Search Report and Written Opinion, PCT/US2009/041519, dated Jun. 17, 2009, 10 pages.
International Search Report and Written Opinion, PCT/US2009/040629, dated Aug. 6, 2009, 10 pages.
International Search Report and Written Opinion, PCT/US2009/051109, dated Nov. 6, 2009, 13 pages.
International Search Report and Written Opinion, PCT/US2009/058946, dated Jan. 28, 2010, 14 pages.
International Search Report and Written Opinion, PCT/US2009/068055, dated Mar. 11, 2010, 10 pages.
International Search Report and Written Opinion, PCT/US2007/001624, dated Dec. 12, 2007, 14 pages.
International Search Report and Written Opinion, PCT/US2007/001622, dated Jun. 11, 2007, 14 pages.
International Search Report and Written Opinion, PCT/US2008/083125, dated Mar. 9, 2009, 13 pages.
International Search Report and Written Opinion, PCT/US2011/032342, dated Jul. 1, 2011, 8 pages.
Invitation to Pay Additional Fees mailed on Jul. 31, 2007, for PCT Application No. PCT/US2007/001624 filed on Jan. 19, 2007, 5 pages.
Non-Final Office Action and PTO-892, U.S. Appl. No. 11/641,382, mailed Jan. 20, 2010, 12 pages.
NonFinal Office Action and PTO-892, U.S. Appl. No. 11/642,385, mailed Mar. 2, 2010, 11 pages.
Non-Final Office Action and PTO-892, U.S. Appl. No. 11/656,323, mailed Mar. 30, 2010, 10 pages.
NonFinal Office Action, U.S. Appl. No. 11/641,569, mailed Nov. 12, 2009, 9 pages.
Nonfinal Office Action, U.S. Appl. No. 11/959,344, dated Feb. 15, 2011, 29 pages.
Non-Final Office Action, U.S. Appl. No. 11/641,569, dated Aug. 3, 2011, 14 pages.
Non-Final Office Action, U.S. Appl. No. 12/390,667, dated Aug. 24, 2011, 49 pages.
Notice of Allowance, U.S. Appl. No. 29/296,687, mailed Mar. 31, 2011, 18 pages.
Notice of Non-Compliant Amendment, U.S. Appl. No. 11/641,569, mailed Aug. 7, 2009, 3 pages.
Office Action, U.S. Appl. No. 10/146,862, mailed Jan. 13, 2005, 10 pages.
Preliminary Amendment, U.S. Appl. No. 11/641,569, dated Aug. 14, 2008, 13 pages.
Preliminary Amendment, U.S. Appl. No. 11/642,385, filed Aug. 22, 2008, 42 pages.
RCE/Amendment, U.S. Appl. No. 11/641,569, filed Aug. 9, 2010, 18 pages.
RCE/Amendment, U.S. Appl. No. 11/642,382, filed Oct. 26, 2010, 14 pages.
RCE/Amendment, U.S. Appl. No. 11/642,386, filed Dec. 6, 2010, 13 pages.
RCE/Amendment, U.S. Appl. No. 11/656,323, filed Nov. 19, 2010, 12 pages.
Response to Notice of Non-Complaint Amendment, U.S. Appl. No. 11/641,569, dated Aug. 19, 2009, 11 pages.
Response to Restriction Requirement U.S. Appl. No. 29/296,687, filed Oct. 7, 2010, 3 pages.
Response to Restriction Requirement, U.S. Appl. No. 11/959,344, filed Nov. 24, 2010, 13 pages.
Response to Restriction Requirement, U.S. Appl. No. 12/390,667, dated Jul. 27, 2011, 8 pages.
Response to Restriction Requirement, U.S. Appl. No. 12/391,008, filed Aug. 29, 2011, 9 pages.
Restriction Requirement, U.S. Appl. No. 11/641,382, mailed Sep. 3, 2009, 6 pages.
Restriction Requirement, U.S. Appl. No. 11/641,569, mailed Apr. 27, 2009, 7 pages.
Restriction Requirement, U.S. Appl. No. 11/642,385, mailed Oct. 27, 2009, 7 pages.
Restriction Requirement, U.S. Appl. No. 11/656,323, mailed Nov. 13, 2009, 10 pages.
Restriction Requirement, U.S. Appl. No. 11/959,344, dated Oct. 29, 2010, 6 pages.
Restriction Requirement, U.S. Appl. No. 29/296,687, mailed Sep. 21, 2010, 7 pages.
Restriction Requirement, U.S. Appl. No. 12/390,667, dated Jul. 14, 2011, 9 pages.
Restriction Requirement, U.S. Appl. No. 12/391,008, dated Aug. 18, 2011, 6 pages.
AKCA, “Matching of 3D Surfaces and Their Intensities,” ISPRS Journal of Photogrammetry & Remote Sensing, 62(2007), 112-121.
Akenine-Möller et al., Real-Time Rendering, Second Edition, AK Peters, Natick, MA, 6 pages (Table of Contents), 2002.
Arima et al., “Femoral Rotational Alignment, Based on the Anteroposterior Axis, in Total Knee Arthroplasty in a Valgus Knee. A Technical Note,” Journal Bone Joint Surg Am. 1995;77(9):1331-4.
Author Unknown, “MRI Protocol Reference,” ConforMIS, Inc., copyright 2007, http://www.conformis.com/Imaging-Professionals/MRI-Protocol-Guides, last visited on Mar. 28, 2008, 18 pages.
Author Unknown, “MRI Protocol Reference Guide for GE Systems,” ConforMIS, Inc., copyright 2007, http://www.conformis.com/Imaging-Professionals/MRI-Protocol-Guides, last visited on Mar. 28, 2008, 18 pages.
Author Unknown, “MRI Protocol Reference Guide for Phillips Systems,” ConforMIS, Inc., copyright 2007, http://www.conformis.com/Imaging-Professionals/MRI-Protocol-Guides, last visited on Mar. 28, 2008, 19 pages.
Author Unknown, “MRI Protocol Reference Guide for Siemens Systems,” ConforMIS, Inc., copyright 2007, http://www.conformis.com/Imaging-Professionals/MRI-Protocol-Guides, last visited on Mar. 28, 2008, 18 pages.
Barequet et al., “Filling Gaps in the Boundary of a Polyhedron,” Computer Aided Geometric Design, vol. 12, pp. 207-229, 1995.
Barequet et al., “Repairing CAD Models,” Proceedings of the 8th IEEE Visualization '97 Conference, pp. 363-370, Oct. 1997.
Bargar et al., “Robotic Systems in Surgery,” Orthopedic and Spine Surgery, Surgical Technology International II, 1993, 419-423.
Berry et al., “Personalised image-based templates for intra-operative guidance,” Proc. Inst. Mech. Eng. Part H: J. Engineering in Medicine, vol. 219, pp. 111-118, Oct. 7, 2004.
Besl et al., “A Method for Registration of 3-D Shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 14(2):239-256, Feb. 1992.
Bi{hacek over (s,c)}ević et al., “Variations of Femoral Condyle Shape,” Coll. Antropol., vol. 29 No. 2, pp. 409-414, 2005.
Blaha et al., “Using the Transepicondylar Axis to Define the Sagittal Morphology of the Distal Part of the Femur,” J Bone Joint Surg Am. 2002;84-A Suppl 2:48-55.
Blinn, Jim Blinn's Corner—A Trip Down the Graphics Pipeline, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 5 pages (Table of Contents), 1996.
Bøhn et al., “A Topology-Based Approach for Shell-Closure,” Geometric Modeling for Product Realization (P.R. Wilson et al. editors), pp. 297-319, Elsevier Science Publishers B.V., North-Holland, 1993.
Bullough et al., “The Geometry of Diarthrodial Joints, Its Physiologic Maintenance and the Possible significance of Age-Related Changes in Geometry-to-Load distribution and the Development of Osteoarthritis,” Clin Orthop Rel Res 1981, 156:61-6.
Burgkart et al., “Magnetic Resonance Imaging-Based Assessment of Cartilage Loss in Severe Osteoarthritis: Accuracy, Precision, and Diagnostic Value,” Arthritis Rheum 2001, 44:2072-7.
Canny, “A computational Approach to Edge Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI 8(6), pp. 679-698 (1986).
Chauhan et al., “Computer-assisted knee arthroplasty versus a conventional jig-based technique—a randomised, prospective trial,” The Journal of Bone and Joint Surgery, vol. 86-B, No. 3, pp. 372-377, Apr. 2004.
Churchill et al., “The Transepicondylar Axis Approximates the Optimal Flexion Axis of the Knee,” Clin Orthop Relat Res. 1998(356):111-8.
Cicuttini et al., “Gender Differences in Knee Cartilage Volume as Measured by Magnetic Resonance Imaging,” Osteoarthritis Cartilage 1999, 7:265-71.
Cicuttini et al., “Longitudinal Study of the Relationship Between Knee angle and Tibiofemoral cartilage Volume in Subjects with Knee Osteoarthritis,” Rheumatology (Oxford) 2004, 43:321-4.
Cohen et al., Radiosity and Realistic Image Synthesis, Academic Press Professional, Cambridge, MA, 8 pages (Table of Contents), 1993.
Couglin et al., “Tibial Axis and Patellar Position Relative to the Femoral Epicondylar Axis During Squatting,” The Journal of Arthroplasty, vol. 18, No. 8, Elsevier, 2003.
Delp et al., “Computer Assisted Knee Replacement,” Clinical Orthopaedics and Related Research, No. 354, pp. 49-56, Sep. 1998.
Dutré et al., Advanced Global Illumination, AK Peters, Natick, MA, 5 pages (Table of Contents), 2003.
Eckhoff et al., “Difference Between the Epicondylar and Cylindrical Axis of the Knee,” Clin Orthop Relat Res. 2007;461:238-44.
Eckhoff et al., “Three-Dimensional Mechanics, Kinematics, and Morphology of the Knee Viewed in Virtual Realty,” The Journal of Bone and Joint Surgery, vol. 87-A, Supplement 2, pp. 71-80, 2005.
Eisenhart-Rothe et al., “Femorotibial and Patellar Cartilage Loss in Patients Prior to Total Knee arthroplasty, Heterogeneity, and Correlation with alignment of the Knee,” Ann Rheum Dis., Jun. 2005 (BMJ Publishing Group Ltd & European League Against Rheumatism).
Eisenhart-Rothe et al., “The Role of Knee alignment in Disease Progression and Functional Decline in Knee Osteoarthritis,” JAMA 2001, 286:188-95.
Elias et al., “A Correlative Study of the Geometry and anatomy of the Distal Femur,” Clin orthop Relat Res. 1990(260):98-103.
Erikson, “Error Correction of a Large Architectural Model: The Henderson County Courthouse,” Technical Report TR95-013, Dept. of Computer Science, University of North Carolina at Chapel Hill, pp. 1-11, 1995.
Ervin et al., Landscape Modeling, McGraw-Hill, New York, NY, 8 pages (Table of Contents), 2001.
Farin, NURB Curves and Surfaces: From Projective Geometry to Practical Use, AK Peters, Wellesley, MA, 7 pages (Table of Contents), 1995.
Favorito et al., “Total Knee Arthroplasty in the Valgus Knee,” Journal Am Acad Orthop surg. 2002;10(1):16-24.
Fleischer et al., “Accurate Polygon Scan Conversion Using Half-Open Intervals,” Graphics Gems III, pp. 362-365, code: pp. 599-605, 1992.
Foley et al., Computer Graphics: Principles and Practice, Addison-Wesley Publishing Company, Reading, MA, 9 pages (Table of Contents), 1990.
Freeman et al., “The Movement of the Knee Studied by Magnetic Resonance Imaging,” Clinical orthop Relat Res. 2003(410):35-43.
Freeman et al., “The Movement of the Normal Tibio-Femoral Joint,” Journal Biomech. 2005;38(2):197-208.
Glassner (editor), An Introduction to Ray Tracing, Academic Press Limited, San Diego, CA, 4 pages (Table of Contents), 1989.
Glassner, Principles of Digital Image Synthesis, vols. One and Two, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 32 pages (Table of Contents), 1995.
Gooch et al., Non-Photorealistic Rendering, AK Peters, Natick, MA, 4 pages (Table of Contents), 2001.
Graichen et al., “Quantitative Assessment of Cartilage Status in Osteoarthritis by Quantitative Magnetic Resonance Imaging: Technical Validation for Use in analysis of Cartilage Volume and Further Morphologic Parameters,” Arthritis Rheum 2004, 50:811-16.
Gruen et al., “Least Squares 3D Surface and Curve Matching,” ISPRS Journal of Photogrammetry & Remote Sensing, 59(2005), 151-174.
Grüne et al., “On numerical algorithm and interactive visualization for optimal control problems,” Journal of Computation and Visualization in Science, vol. 1, No. 4, pp. 221-229, Jul. 1999.
Guéziec et al., “Converting Sets of Polygons to Manifold Surfaces by Cutting and Stitching,” Proc. IEEE Visualization 1998, pp. 383-390, Oct. 1998.
Hafez et al., “Patient Specific Instrumentation for TKA: Testing the Reliability Using a Navigational System,” MIS Meets CAOS Symposium & Instructional Academy, Less and Minimally Invasive Surgery for Joint Arthroplasty: FACT and FICTION Syllabus, San Diego, CA, 8 pages, Oct. 20-22, 2005 (best available copy).
Hafez et al., “Computer Assisted Total Knee Replacement: Could a Two-Piece Custom Template Replace the Complex Conventional Instrumentations?”, Computer Aided Surgery, vol. 9, No. 3, pp. 93-94, 2004.
Hafez et al., “Computer-Assisted Total Knee Arthroplasty Using Patient-Specific Templating,” Clinical Orthopaedics and Related Research, No. 0, pp. 1-9, 2006.
Hollister et al., “The Axes of Rotation of the Knee,” Clin Orthop Relat Res. 1993(290):259-68.
Howell et al., “Longitudinal Shapes of the Tibia and Femur are Unrelated and Variable,” Clinical Orthopaedics and Related Research (2010) 468: 1142-1148.
Howell et al., “Results of an Initial Experience with Custom-Fit Positioning Total Knee Arthroplasty in a Series of 48 Patients,” Orthopedics, 2008;31(9):857-63.
Iwaki et al., “Tibiofemoral Movement 1: The Shapes and Relative Movements of the Femur and Tibia in the Unloaded Cadaver Knee,” Journal Bone Joint Surg Br. 2000;82(8):1189-95.
Jensen, Realistic Image Synthesis Using Photon Mapping, AK Peters, Natick, MA, 7 pages (Table of Contents), 2001.
Jacobs et al., “Hip Resurfacing Through an Anterolateral Approach,” J. Bone Joint Surg Am. 2008:90 Suppl 3:38-44.
Johnson, “Joint Remodeling as the Basis for Osteoarthritis,” Journal Am Vet Med Assoc. 1962, 141:1233-41.
Jones et al., “A new approach to the construction of surfaces from contour data,” Computer Graphics Forum, vol. 13, No. 3, pp. 75-84, 1994 [ISSN 0167-7055].
Kass et al., “Active Contour Models,” International Journal of Computer Vision, pp. 321-331 (1988).
Kellgren et al., “Radiological Assessment of Osteoarthrosis,” Ann Rheum Dis 1957, 10:494-501.
Kessler et al, “Sagittal Curvature of Total Knee Replacements Predicts in vivo Kinematics,” Clin Biomech (Bristol, Avon) 2007; 22(1):52-8.
Khorramabadi, “A Walk Through the Planned CS Building,” Technical Report UCB/CSD 91/652, Computer Science Department, University of California at Berkeley, 74 pages, 1991.
Kidder et al., “3-D Model Acquisition, Design, Planning and Manufacturing of Orthopaedic Devices: A Framework,” Advanced Sensor and Control-System Interface (B.O. Nnaji editor), Proceedings SPIE—The International Society for Optical Engineering, Bellingham, WA, vol. 2911, pp. 9-22, Nov. 21-22, 1996.
Kienzel, III et al., “Total Knee Replacement,” IEEE May/Jun. 1995.
Kienzel, III et al., “An Integrated CAD-Robotics System for Total Knee Replacement Surgery”, IEEE International Conference, pp. 889-894, vol. 1, May 1993.
Krackow et al., “Flexion-Extension Joint Gap Changes After Lateral Structure Release for Valgus Deformity Correction in Total Knee Arthroplasty: A Cadaveric Study,” Journal Arthroplasty, 1999; 14(8): 994-1004.
Krackow et al., “Primary Total Knee Arthroplasty in Patients with Fixed Valgus Deformity,” Clin Orthop Relat Res. 1991(273):9-18.
Krackow, “Approaches to Planning lower Extremity alignment for Total Knee arthroplasty and Osteotomy About the Knee,” adv Orthop surg 7:69, 1983.
Kumar, Robust Incremental Polygon Triangulation for Surface Rendering, Center for Geometric Computing, Department of Computer Science, Johns Hopkins University, Baltimore, MD, WSCG, The International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, pp. 381-388, 2000.
Kunz et al., “Computer Assisted Hip Resurfacing Using Individualized Drill Templates,” The Journal of Arthroplasty, vol. 00, No. 0, pp. 1-7, 2009.
Kusumoto et al., “Application of Virtual Reality Force Feedback Haptic Device for Oral Implant Surgery”, Graduate School of Dentistry Course for Integrated Oral Science and Stomatology, Jun. 16, 2005.
Lea et al., “Registration and immobilization in robot-assisted surgery”, Journal of Image Guided Surgery, pp. 1-10, 1995.
Lorensen et al., “Marching Cubes: A High Resolution 3d Surface Construction Algorithm,” Computer Graphics, vol. 21, No. 4, pp. 163-169, 1987.
Manner et al., “Knee Deformity in Congenital Longitudinal Deficiencies of the Lower Extremity,” Clin Orthop Relat Res. 2006;448:186-92.
Matsuda et al., “Anatomical Analysis of the Femoral Condyle in Normal and Osteoarthritic Knees,” Journal Orthopaedic Res. 2004;22(1):104-9.
Matsuda et al., “Femoral Condyle Geometry in the Normal and Varus Knee,” Clinical Orthop Relat Res. 1998(349):183-8.
Messmer et al., “Volumetric Determination of the Tibia Based on 2d Radiographs Using A 2d/3d Database”, Dept. of Surgery, Trauma Unit, University Hospital, Bassel, Switzerland, Computer Aided Surgery 6:183-194 (2001).
Mihalko et al., The Variability of Intramedullary Alignment of the Femoral Component During Total Knee Arthroplasty, Journal Arthroplasty. 2005;20(1):25-8.
Mole et al., “A New Three-Dimensional Treatment Algorithm for Complex Surfaces: Applications in Surgery”, Feb. 1995.
Morvan et al., iVECS, Interactively Correcting .STL Files in a Virtual Environment, Clemson University, Clemson, SC, Proc. Conf. Virtual Design, Aug. 1996.
Nooruddin at al., Simplification and Repair of Polygonal Models Using Volumetric Techniques, IEEE Transactions on Visualization and Computer Graphics, vol. 9, No. 2, pp. 191-205, Apr.-Jun. 2003.
Panjabi et al., “Errors in Kinematic Parameters of a Planar Joint: Guidelines for Optimal Experimental Design,” Journal Biomech. 1982;15(7):537-44.
Perillo-Marcone et al., “Effect of Varus/Valgus Malalignment on Bone Strains in the Proximal Tibia After TKR: An Explicit Finite element Study,” Journal Biomechanical Engineering 2007, vol. 129, 1:1-11.
Peterfy et al., “Quantification of articular Cartilage in the Knee with Pulsed Saturation Transfer Subtraction and Fact-Suppressed MR Imaging: Optimization and Validation,” Radiology 1994, 192:485-91.
Pinskerova et al., “The Shapes and Relative Movements of the Femur and Tibia at the Knee,” Orthopaedics 2000;29 Suppl 1:S3-5.
Platt et al., “Mould Arthroplasty of the Knee, A Ten-Year Follow-up Study,” The Journal of Bone and Joint Surgery (British Volume), vol. 51-B, No. 1, pp. 76-87, Feb. 1969.
Potter, “Arthroplasty of the Knee with Tibial Metallic Implants of the McKeever and MacIntosh Design,” The Surgical Clinics of North America, vol. 49, No. 4, pp. 903-915, Aug. 1969.
Radermacher et al., “Computer Assisted Orthopaedic Surgery with Image Based Individual Templates,” Clinical Orthopaedics and Related Research, vol. 354, pp. 28-38, Sep. 1998.
Rohlfing et al., “Quo Vadis, Atlas-Based Segmentation?”, The Handbook of Medical Image Analysis: Segmentation and Registration Models (Kluwer), pp. 1-55, (http://www.stanford.edu/˜rohlfing/publications/2005-rohlfing-chapter-quo—vadis—atlas—based—segmentation.pdf).
Rosset et al., “General Consumer Communication Tools for Improved Image Management and Communication in Medicine,” Journal Digital Imaging, 2005;18(4):270-9.
Shakespeare D., “Conventional Instruments in Total Knee Replacement: What Should We Do With Them?” Knee. 2006;13(1):1-6.
Shepstone et al., “The shape of the Distal Femur: A Palaeopathological Comparison of Eburnated and Non-Eburnated Femora,” Ann. Rheum Dis. 1999, 58:72-8.
Shirley at al., Realistic Ray Tracing, Second Edition, AK Peters, Natick, MA, 7 pages (Table of Contents), 2003.
Siston et al., “The Variability of Femoral Rotational Alignment in Total Knee Arthroplasty,” Journal Bone Joint Surg Am. 2005;87(10):2276-80.
Siston et al., “Averaging Different Alignment Axes Improves Femoral Rotational Alignment in Computer-Navigated Total Knee Arthroplasty,” Journal Bone Joint Surg Am. 2008;90(10):2098-104.
Soudan et al., “Methods, Difficulties and Inaccuracies in the Study of Human Joint Kinematics and Pathokinematics by the Instant axis Concept. Example: The Knee Joint,” Journal Biomech. 1979;12(1):27-33.
Spencer et al., “Initial Experience with Custom-Fit Total Knee Replacement: Intra-operative Events and Long-Leg Coronal alignment,” International Orthopaedics (SICOT), 2009:In Press.
Strothotte et al., Non-Photorealistic Computer Graphics—Modeling, Rendering, and Animation, Morgan Kaufmann Publishers, San Francisco, CA, 9 pages (Table of Contents), 2002.
Stulberg et al., “Computer- and Robot-Assisted Orthopaedic Surgery”, Computer-Integrated Surgery Technology and Clinical Applications, edited by Taylor et al., Massachusetts Institute of Technology, Chapter 27, pp. 373-378, 1996.
Teeny et al., “Primary Total Knee Arthroplasty in Patients with Severe Varus Deformity. A Comparative Study,” Clin Orthop Relat Res. 1991(273):19-31.
Vande Berg et al., “Assessment of Knee Cartilage in Cadavers with Dual-Detector Spiral CT Arthrography and MR Imaging,” Radiology, vol. 222, No. 2, pp. 430-436, Feb. 2002.
Wright Medical Technology, Inc., “Prophecy Pre-Operative Naviation Guides Surgical Technique,” 2009.
Wikipedia, the Free Encyclopedia, “CNC,” (date unknown) located at http://en.wikipedia.org/wiki/CNC>, 6 pages, last visited on Apr. 12, 2007.
U.S. Appl. No. 13/923,093, filed Jun. 20, 2013, Park.
Related Publications (1)
Number Date Country
20100152741 A1 Jun 2010 US
Provisional Applications (1)
Number Date Country
61122842 Dec 2008 US