The present invention relates generally to the front end systems. In particular, the present invention relates to a unified analog input front end apparatus and method.
Many specialized circuits exist to measure specific types of signals. The diversity of these circuits makes it difficult to plan exactly what quantities and which types should be included in a particular application. This is especially the case for an application that requires re-use on different types of platforms, such as on different types of aircraft.
Accordingly, it is desirable to have a unified analog input front end that can be utilized for different types of applications and on different types of platforms.
One aspect of the invention relates to an analog input front end. The analog input front end includes a configurable gain stage and an analog-to-digital converter. The configurable gain stage receives an analog input signal, such as a differential analog input signal, and provides a gain value to the analog input signal so as to output a gain-adjusted analog signal within a particular voltage range compatible with the input range of the Analog to Digital Converter. The analog-to-digital converter receives the gain-adjusted analog input signal and performs analog-to-digital conversion on the gain-adjusted analog input signal, so as to output a digital signal that is indicative of the analog input signal.
Another aspect of the invention relates to a method of converting an analog input signal to a digital signal, which includes receiving, by a configurable gain stage, the analog input signal. The method also includes providing, by the configurable gain stage, a gain value to the analog input signal so as to output a gain-adjusted analog input signal that is within a particular voltage range between a maximum and a minimum value. The method further includes receiving, by an analog-to-digital converter, the gain-adjusted analog input signal output from the configurable gain stage. The method still further includes performing, by the analog-to-digital converter, analog-to-digital conversion on the gain-adjusted analog input signal, so as to output a digital signal that is indicative of the analog input signal.
Yet another aspect of the invention relates to a configurable gain stage, which includes a positive differential input signal stage that includes a first resistor having a first resistance value, a second resistor having a second resistance value, and a first operational amplifier. The configurable gain stage also includes a negative differential input signal stage that includes a third resistor having the first resistance value, a fourth resistor having the second resistance value, and a second operational amplifier. The configurable gain stage further includes first through sixth switches, the first and second switches being provided on the positive differential input signal stage, the third and fourth switches being provided on the negative differential input signal stage, the fifth switch being provided between the positive and negative differential input signal stages, and the sixth switch being provided between a ground potential and at least one of the positive and negative differential input signal stages. The configurable gain stage is capable of operating in a first mode of operation providing a gain value greater than unity to an input differential signal pair, a second mode of operation providing a unity gain value to the input differential signal pair, and a third mode of operation provide a gain value greater than zero but less than unity to the input differential signal pair
Yet another aspect of the invention relates to a calibration circuit for a gain stage and analog-to-digital converter unit. The calibration circuit includes an operational amplifier, a digital-to-analog converter, a resistor ladder provided between the operational amplifier and the digital-to-analog converter, a voltage reference unit connected to the digital-to-analog converter and a plurality of switches that provide an on/off connection to the gain stage and the analog-to-digital converter unit. The calibration circuit is configured to maintain a total error of the gain stage and the analog-to-digital converter unit to be less than a predetermined value, for all operating modes of the gain stage and the analog-to-digital converter.
Other features and advantages of the present invention will become apparent to those skilled in the art from the following detailed description and accompanying drawings. It should be understood, however, that the detailed description and specific examples, while indicating preferred embodiments of the present invention, are given by way of illustration and not limitation. Many modifications and changes within the scope of the present invention may be made without departing from the spirit thereof, and the invention includes all such modifications.
The exemplary embodiments will hereafter be described with reference to the accompanying drawings, wherein like numerals depict like elements, and:
In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be evident to one skilled in the art, however, that the exemplary embodiments may be practiced without these specific details. In other instances, structures and device are shown in diagram form in order to facilitate description of the exemplary embodiments.
Referring now to
The unified analog input front end is capable of performing signal processing and conversion for analog input signals from D.C. up to a predetermined frequency. In the preferred embodiment, the predetermined frequency is 500 Hz, but of course it may be set to any desired frequency to suit a particular purpose, as known to one of ordinary skill in the art (e.g., a value between 50 Hz and 10 kHz).
The unified analog input front is designed to have a 14 bit resolution and an accuracy of better than 1% full scale. This is accomplished with a carefully developed and very flexible topology and by the use of custom designed components, such as ones manufactured by Maxim Integrated Products, Inc., and by Alpha, Inc.
A first embodiment of the invention will be described with reference to
In the preferred embodiment, the configurable gain stage 110 provides three (3) separate gain settings, and the analog-to-digital converter 120 provides four (4) separate gain settings (actually, full scale settings for the A/D), to thereby have 3×4=12 full-scale ranges for the unified analog input front end 100.
Referring to
In
The configurable gain stage 110 serves three basic purposes: a) to attenuate large signals which are beyond the A/D converter's 120 input signal range and that could damage the A/D converter 120, b) to amplify small signals which less than the input signal range of the A/D converter 120, and c) to serve as a high input impedance/low output impedance buffer for signal sources which may be attenuated by the relatively low input impedance (around 15K Ohm) of the A/D converter 120.
The three different gain configurations of the configurable gain stage 110 are selectable by way of digitally controlled analog switches S1–S6. R1–R3 and R4–R6 are preferably resistors custom-packaged in threes, such as ones sold by Alpha, Inc. In the preferred embodiment, each of the resistor packs meet a 19:1:32 resistance ratio with 0.02% accuracy.
OpAmps U1 and U2 are preferably high precision, low bias current, low offset voltage operational amplifiers. Capacitors C1 and C2 are 10 pF capacitors in the preferred embodiment, whereby they are included so as to provide some filtering and oscillation protection to the OpAmps U1 and U2, while keeping the high end of the low-pass filter they create well above a predetermined frequency range. In the preferred embodiment, the predetermined frequency range (for signals input to the unified analog input front end 100) is D.C. (0 Hz) to 500 Hz, which is the range of signals the unified analog input front end 100 is designed to measure. Zener Diodes D1 and D2 are used to protect the OpAmps U1 and U2 and the switches S1–S6 from voltages beyond their rails, whereby the Zener Diodes D1 and D2 are configured as back-to-back diodes (for bipolar signals).
In this mode of operation, the configurable gain stage 110 functions as a voltage divider, whereby the gain of the configurable gain stage 110 is:
G−=(R2+RS1)/(R1+R2+RS1) (for the neg. leg) (1)
G+=(R5+RS4+RS6)/(R4+R5+RS4+RS6) (for pos. leg) (2)
In this case, there is no gain provided by the op-amps U1 and U2, whereby the voltage drops across resistors R3 and R6 are dependant only on the bias current of the inverting inputs to the op amps U1 and U2.
So, the gain of a differential signal is computed as:
where K=Vincm/Vindiff, the ratio of input common mode to input differential.
In an ideal case, in the preferred embodiment, R1=R4=615.6 kΩ, R2=R5=32.4 kΩ, and all switch resistances are zero, for a gain of:
G=G+=G−=32.4/(615.6+32.4)=0.05000 (8)
Gain Error is introduced by the tolerance of the resistors (0.02% tolerance for the resistors used in the preferred embodiment) and the resistance of the switches (3–5 Ω for the Max 4665 switches used in the preferred embodiment). From Equation #7, above, it can be seen that Gain Error can occur either as a result of an average error common to both the positive and negative differential legs (in the first term) or mismatched error proportional to the common mode ratio K (in the second term).
Maximum and minimum gains for each leg are computed as:
In a case where the signal is evenly distributed across ground (Vincm=K=0), the largest error would correspond to the pair of gains above which have the greatest absolute average difference from 0.05. Thus,
G=(G+MAX+G−MAX)/2=0.050030001 (13)
For a Gain Error of 0.060001%.
The largest error is dependent on the largest average error of the two legs for K≦0.5 (the point at which the negative leg is grounded). For K>0.5, the maximum error % is computed as:
GERRMAX%=(G+MAX+G−MAX)/2−0.05+K(G+MAX+G−MAX))/0.05*100 (14)
So, error is proportional to common mode, and becomes a limiting factor of common mode, based upon the percent of the error budget being used by offset in the configurable gain stage 110 and error figures of the A/D converter 120.
−40° C.<TA<125° C. Thus, the offset error in the preferred embodiment is:
for one leg of the circuit. As the errors can be positive of negative, the absolute worst case would occur when one leg's error is opposite the other leg's error, giving a total error of 2.647 mV+2.647 mV=5.294 mV. On a ±10V full-scale range of the A/D 120, this would correspond to a 0.05294% error. On the smallest full-scale A/D range likely to be used in the preferred embodiment, ±1.25V, this would correspond to a 0.424% error.
As it is, the ideal gains for the configurable gain stage in the gain mode are:
Error in the configurable gain stage 110 is caused by bias currents and offset voltages in the operational amplifiers U1, U2, which cause offset errors similar to those discussed for the Gain=1 operation mode. Error in the configurable gain stage 110 is also caused by resistance ratio errors due to the tolerances of resistors R5 and R6, and the finite resistance values of switches S3 and S4, when theoretically acting as closed switches, all of which creates a gain error.
Offset in the negative leg of the configurable gain stage 110 is the same as in the Gain=1 case, 2.647 mV. Offset in the positive leg of the configurable gain stage 110 differs because of the 32.4 kΩ resistor R5 is switched in (by switches S3, S4 and S5 being closed), whereby negative current is split between the 32.4 kΩ resistor R5 and the 226.8 kΩ resistor R6. Also, since the error due to this combination is added to the output rather than to the input, it should be divided by gain to reference it to the input. The expression for offset is then computed as:
VOS+(IBIAS+IOFFSET)*615.6 kΩ*⅛*226.8 kΩ(IBIAS+IOFFSET) . . . (32.4 kΩ/(226.8 kΩ+32.4 kΩ)=1.92 mV (20)
In the worst possible case, the polarities of the two operational amplifiers U1, U2 would be oriented so that the positive leg and the negative leg offsets would be in opposite directions, resulting in a total offset of their sum: VOS=2.647 mV+1.92 mV=4.567 mV, as referenced to the input.
Including error terms, the DC gain equation is:
The lowest gain would occur with resistor R6 at the negative end of its tolerance, with resistor R5 at the positive end of its tolerance, and with both switches at 5 Ω, which results in:
for a gain error of −0.00526.
The highest gain would occur with resistor R6 at the positive end of its tolerance, with resistor R5 at the negative end of its tolerance, and with both switches at zero (0) resistance, which results in:
GHIGH=(226845+32893.5)/(32395.5)=0.00280 (24)
for a gain error of 0.00280.
The discussion will now turn to the Analog-to-Digital Converter 120, which forms part of the unified analog input front end 100. As discussed above, the Analog-to-Digital Converter 120 corresponds to an ACGO 4-Channel, 14-bit differential A-D converter in the preferred embodiment, but one of ordinary skill in the art will recognize that any type or model of A-D converter may be utilized, while remaining within the spirit and scope of the present invention.
A range selection circuit 620, which is implemented as a programmable gate array in the preferred embodiment, allows the A-D converter 120 to be configured for a plurality of different ranges on a channel-by-channel basis by way of digital commands (signals D0, D1) input to the A-D Converter 120. In the preferred embodiment, the different ranges correspond to: ±10V, ±5V, ±2.5V, ±1.25V. One of ordinary skill in the art will recognize that the number of possible ranges, and the actual values of those ranges, may be different from the ones discussed above with respect to the preferred embodiment, while remaining within the spirit and scope of the invention.
As shown in
Error specifications for the A-D Converter 120 according to the preferred embodiment of the invention are provided by the manufacturer (Maxim) as end-to-end tolerances (mostly in LSB, or least significant bits), including errors resident in all stages of the A-D Converter 120. Errors can be classified as either offset errors (errors independent of input and temperature) or gain errors (errors dependent upon input). The offset error sum for the A-D Converter 120 according to the preferred embodiment of the invention is equal to ±11 LSB=0.122% full scale. The gain error sum for the A-D Converter 120 according to the preferred embodiment of the invention is equal to 158 LSB=1.929% full scale.
It is desirable to keep the gain error to an acceptable low value. To do this requires the use of a calibration circuit. The previous discussion of the configurable gain stage 110 somewhat overestimates the effect of bias currents on the operational amplifiers U1, U2 when calculating offset error for the three states (or modes of operation) of the configurable gain stage 110 (also, offset calculation was neglected entirely for the Gain=1 state). Bias and offset current sizes used in the previous calculations were taken from “Max” specification values from a datasheet for the OP4177 operational amplifiers utilized in the preferred embodiment, and it is assumed that matching between any two gates (even in the same package) is a random distribution from −Max to +Max. This is a simplistic approach that does not take into account the actual temperature behavior of the OP4177 operational amplifiers.
As such, the offset voltages for the configurable gain stage 110 may be calculated as:
where VOSopamp is the specified offset voltage of the particular type of operational amplifiers used for operational amplifiers U1, U2, and where IBIAS
Accordingly, the offset voltages are:
G=0.05->VOS=0.4203 mV
G=1->VOS=0.8298 mV
G=8->VOS=0.6930 mV
With gain and offset errors existing for both the configurable gain stage 110 and for the A-D Converter 120 of the unified analog input front end 100, a block diagram can be constructed to show the error effects on the entire system, and
So, full scale error percentage can be found by subtracting ADCMAX from Equation (29), and dividing by ADCMAX. Since ADCMAX is the ideal full scale input response and is equal to FSIN*CGSGAIN, a simplified expression for FSERROR% is:
If the error terms are small, the product of any two error terms is very small. Considering any error product to be negligible, FSERROR% can be approximated as:
which corresponds to the sum of all of the relative errors in the unified analog input front end 100, as one might intuitively expect.
Using Equation (31), Full Scale Error % (FSErr %) is tabulated in Table 1, below, for twelve Gain/Range combinations for the unified analog input front end 100 of the preferred embodiment.
As can be seen in Table 1, channel errors are above 1%. This means that to achieve a target accuracy of <1%, some form of calibration has to be performed on the unified analog input front end 100. ADC Gain Error and 8×Gain Error in the configurable gain stage 110 appear to be the largest error sources, and so a calibration method and apparatus should be designed so as to greatly reduce and/or eliminate those errors specifically.
As shown in
By switching switch S9 open and closed, the output can be changed by 2.5*(−226.8/615.6)=−0.92105 V. Due to the precision of the resistors and the accuracy of the 2.5 V reference, this delta is very accurate, and it is on this accuracy that the calibration scheme mainly relies. The accuracy of the DAC 810 is not very important, and it is only used to move the calibration point. A moveable calibration point is desirable when dealing with ADC's (such as ADC 120) that may be set to several ranges. Also, by finding gain errors near multiple points in the same ADC range and averaging them, this method avoids being corrupted by an unrepresentative local gain error caused by nonlinearity in the ADC. Since Differential Non-Linearity (DNL) is even-symmetric around all major carriers, a set of calibration points regularly spaced across the scale should minimize the effect of any one local DNL on an overall gain error measurement. Additionally, the measure-switch-measure approach to finding the delta caused by closing switch S9 ensures that any offset errors in the unified analog input front end 100 or in the calibration circuit 800 are canceled out by the subtraction of one measurement from another. This method focuses on gain error only, and offsets have no effect on the accuracy of the gain calibration constant being calculated.
Error in the calibration measurement is caused only by inaccuracy in the reference voltage, mismatch in the 615.6 kΩ and 226.8 kΩ resistors, and noise differences between the first and second measurements. Unfiltered noise on the output of the DAC 120 is not negligible, but its effects are mitigated in this embodiment by the inherent averaging of the moving calibration point approach. Additional averaging at each calibration point and/or state of switch S9 can also be performed, in an alternative configuration of a calibration method in accordance with an embodiment of the present invention.
A gain calibration factor for a certain calibration point is found by the following equation, where X1=measured value with switch S9 open, and X2=measured value with switch S9 closed:
GCF=0.92105/(X1−X2)
Values of GCF acquired at different calibration points are then averaged, to obtain a calibration point for the unified analog input front end 100. Error in this factor is related only to error sources that cannot be arithmetically canceled out by the subtraction X1−X2: the error of the reference voltage and the gain error of the 226.8 kΩ/615.6 kΩ amplification around the operational amplifier U3. Gain calibration factor error is computed as:
GCFERR=(((REF+REFERR)((226.8±0.02%)/(615.6±0.02%)))/0.92105)−1 (33)
With an ADR421A component used as the voltage reference unit in the preferred embodiment of the calibration circuit 800, REFERR is ±3 mV, assuming that calibration will take place once, at a temperature of around 25° C.
GCFERRHI=((2.503(226.84536/615.47688))/0.92105)−1=0.16% (34)
GCFERRLO=((2.497(226.75464/615.72312))/0.92105)−1=−0.16% (35)
So, GCF has an accuracy of ±0.16%.
GCF is the ratio of ideal gain to actual gain, and GCFERROR is the factor by which GCF itself is in error. So, the actual value is:
GCFACTUAL=GCF(1+GCFERR)=(1/GACTUAL)(1+GCFERR) (36)
The effect of the gain error on output is:
Vout=Vin GACTUAL (37)
So, multiplying by the calculated GCFACTUAL results in:
So, in effect, calibration replaces the ADC gain error with the error of the calibration method. The errors involved are only those errors present when the calibration actually occurs. If calibration is performed at room temperature, temperature errors in the calibration reference may be ignored, as in Equations #34 and #35 above, but temperature related errors in input circuit gain are not included in the calibration and thus should be included in a sum of ADC gain errors.
Since calibration preferably occurs near the middle of the temperature range, maximum temperature excursion from the calibration point is only one-half of that range, and temperature related gain error is based on one-half of the number calculated previously from internal reference temperature. Specified offset error plus initial internal reference error is a factor which is replaced by GCFERR.
Calibration Error % for different range/gain configurations of the unified analog input front end 100 is tabulated below in Table 2, calculated as in Table 1 (CGSOFF, CGSGERR and ADCOFF values are the same as those shown in Table 1, and thus are not shown in Table 2.
As can be seen by the values in Table 2, the calibration circuit 800 lessens the error for the unified analog input front end 100 to an acceptable level of <1% for all but the last range/gain configuration (whereby that one is only slightly above 1%).
In a third embodiment of the invention, referring back to
In a fourth embodiment of the invention, referring back to
Many other changes and modifications may be made to the present invention without departing from the spirit thereof. The scope of these and other changes will become apparent from the appended claims. For example, the configurable gain stage may be utilized to provide an impedance buffer and/or an input signal dynamic range adjustment mechanism for other devices other than A/Ds that are to receive signals output by the configurable gain stage, and that are to process those signals in some way.
Number | Name | Date | Kind |
---|---|---|---|
4016557 | Zitelli et al. | Apr 1977 | A |
5089820 | Gorai et al. | Feb 1992 | A |
5146155 | Trinh Van et al. | Sep 1992 | A |
5841385 | Xie | Nov 1998 | A |
6603416 | Masenas et al. | Aug 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20060071838 A1 | Apr 2006 | US |