The present invention relates to the field of uniflow cyclone separators. More specifically, the invention relates to stackable uniflow cyclone separators with a continuous, uninterrupted, and stable vortex through each stage.
A cyclone separator is a device for separating solid particles from contaminated gas streams and has long been used in industrial applications such as power generations, gas turbines, chemical processes, and so forth.
There are well-established theories on cyclone performance. Stoke's Law describes the terminal velocity of a particle settling in a fluid in Equation 1 below:
Vt=gDp2(ρP−ρG)/(18μG) (Eq 1)
In this equation g is gravitation, DP is particle diameter, ρP is particle density, ρG is gas density, and μG is gas viscosity. Once the cyclone design has been set, the number of revolutions the gas makes in the cyclone barrel is set as is the distance traveled. The inlet velocity dictates how fast the gas and particles flow thru the cyclone and the gravitational forces are determined.
(DP)th=(9μGw/πNsvi(ρP−ρG)0.5 (Eq. 2)
Using Equation 2 above, a particle with a given diameter will settle a distance w when the gas velocity, number of revolutions in the barrel, the gas viscosity, the gas density, and the particle density are all known. Equation 2 can be rearranged to find the distance w that a particle of a given size will settle. Further, if the distance w is divided by the annular distance between the outlet tube and the cyclone barrel, the collection efficiency for any given particle size can be computed by Equation 3 below:
Effth=(DP2πNs(ρP−ρG)/(9μGwc))100% (Eq. 3)
Equation 3 does not take into account the interactions that occur between particles. Large particles settle faster than smaller particles. Large particles will collide with smaller particles on their way to the cyclone wall, so when the loading of larger particles in the gas entering the cyclone is increased, the probability of larger particle encountering a smaller particle is also increased. Indeed, it has been observed that increasing the dust loading to a cyclone will tend to increase the collection efficiency of the smaller particles.
Equation 3 likewise does not consider the migration of gas from the primary vortex to the inner vortex. The rate at which this migration takes place depends on the individual cyclone design. Even then the calculation has assumptions, such as equal migration at each elevation. These phenomena will reduce the efficiency of particles below a certain size.
Another shortcoming of Equation 3 is that it does not take into account gas and solids by-passing to the outlet tube at the cyclone inlet.
This simple theoretical approach is useful because it establishes a baseline to which experimental work may be compared. The closer a cyclone develop program gets to this performance, the better.
One way to improve the predictions of Equation 3 is to use modern mathematical modeling tools, such as computational fluid dynamics (CFD). CFD does a very good job of predicting gas flow patterns in cyclones of various designs.
As good as CFD work is, it still struggles to predict the interaction between particles in the vortex. That is, accurately predict the effects of particle loading on the grade efficiency curve.
The current use of cyclone separators is very common in the petroleum refining industry mainly for the retention of catalyst fines in FCC Units. For simplicity, the FCC Unit is used as an example of how cyclone separators and the present invention can be used. More specifically, the FCC Unit regenerator and third-stage separator devices will be used.
There are many different types of cyclones but for the present disclosure only two will be discussed: (1) the reverse flow, commonly called a Stairmand cyclone, and (2) the uniflow cyclone.
The regenerator uses air to burn coke from the catalyst in the regenerator to restore activity. The flue gas from this activity exits the top of the regenerator. However, any entrained catalyst must first be removed from the flue gas and returned to the process. This is achieved using two stages of cyclones located above the normal fluidized bed of the regenerator. Flue gas enters the first stage which is designed to remove about 90% of the entrained fines. The fines exit the bottom of the cyclone through a dust hopper which empties into a dip leg. The dip leg extends from the bottom of the dust hopper to a fluidized bed below. The catalyst in the dip leg accumulates until a level is reached at which the head at the bottom of the dip leg is sufficient to overcome the cyclone head loss, then it exits the dip leg through either a trickle valve or flapper valve into the bed below.
The flue gas exits the first stage cyclone and is ducted directly into a second stage where the same process is repeated but at a higher velocity and, therefore, higher g-forces. The second stage removes finer particles from the flue gas but many 20-micron minus particles remain. The cyclone pair is generally designed to reduce the catalyst loading down to approximately 400 mg of catalyst/Nm3 of flue gas, depending on the FCC Unit's specifications.
The arrangement of cyclone separators in a fluidized bed, as shown in FIG. 1 of U.S. Pat. No. 6,110,356 (Hedrick et al.), depicts a bubbling bed regenerator and shows how the cyclones, dust hoppers and dip legs work (other types of regenerators exist but they have similar catalyst separation and return systems). It does not show multiple cyclone-sets, as most units have multiple sets. The '356 patent is hereby incorporated by reference.
The remaining flue gas fines are detrimental to health and downstream power recovery equipment. To further reduce the fines, especially for power recovery equipment but sometimes for final flue gas clean-up, a third-stage separator can be employed.
However, there are problems and limitations to consider.
Gas by-passing and non-uniform vortex profiles contribute to reduced efficiency in this type of cyclone. When gas short cuts from the inlet to the outlet tube drawing solids with it. Instability in the vortex can lead to solids in the collected zone being drawn into the inner vortex and out the outlet tube.
Generally speaking, the capacity of the containment vessel for cyclones in a fluidized bed is limited by the number of cyclones that can be physically fitted into the vessel. When a process unit is originally designed, it is usually for a specific gas superficial velocity in the fluidized bed and for a specific velocity through the cyclone separators. These velocities vary from vendor to vendor. At a later date the unit may be revamped for higher capacity. When this happens, it is very expensive to replace the actual vessel but relatively inexpensive to add more cyclones and to operate the vessel at a higher superficial velocity. Since there is a limit to how many cyclones can actually fit into the vessel, they limit the ultimate capacity of the vessel.
Uniflow cyclones are used in FCCU third-stage separators (TSS) and are generally smaller in size. The cyclones are mounted between two tube sheets. Gas enters from above, flows thru vanes creating a vortex. The fines flow to the wall and, after a predetermined barrel length, the gas accelerates into an outlet tube of smaller diameter then through the second tube sheet. The solids continue down the wall of the main barrel below the outlet tube inlet. At some point above the second tube sheet, the solids exit the barrel through a slot into the space between the two tube sheets and flows to an outlet tube. A full description of this can be found in U.S. Pat. No. 7,316,733 B1, to Hedrick et al. and U.S. Pat. No. 6,673,133, B2, to Sechrist et al. The '733 patent and the '133 patent are hereby incorporated by reference. FIG. 5 was extracted from the '133 patent and shows multiple cyclones mounted in the vessel and the tube sheets. There are three notable problems with this type of cyclones.
First, the gas enters the cyclone at the top (60), passes through the vanes, then proceeds through the cyclone barrel (62). When the gas clears the vane, it expands into the all the space available. At this point, the vortex has a significant reduction in tangential velocity as the gas rushes to the center of the cyclone. This causes solids collected in the vane zone to pull away from the wall.
Second, the gas accelerates in order to enter the outlet tube (70). When this happens, most of the solids remain at the wall and continue down into the lower section of the cyclone, i.e., the cyclone barrel. However, this rapid movement of gas to the outlet tube draws some of the collected particles with it into the outlet tube.
Third, the lower section of the cyclone has its own primary vortex which proceeds to the bottom of the barrel, but there is also a reverse vortex inside the primary vortex that hugs the outlet tube wall. This reverse vortex takes excess gas from the primary vortex back to the outlet tube entrance. It also takes with it some of the collected solids to the outlet tube entrance.
In summary, the two cyclone types in the current state of the art have several shortcomings as listed below.
Specific embodiments of the disclosed invention overcome the shortcomings of prior art devices by including features such as:
Until the invention of the present application, these and other problems in the prior art went either unnoticed or unsolved by those skilled in the art. The present invention provides a unique uniflow cyclone separator which performs the desired functions with associated devices without sacrificing efficiency.
There is disclosed herein an improved uniflow cyclone separator which avoids many of the disadvantages of prior devices while affording additional structural and operating advantages.
Generally speaking, the uniflow cyclone separator is used for removing solids from a fluid vortex and comprises a first (or single) stage separator having a barrel, a center pipe, a gas inlet, a vane, a peripheral channel, and a tangential solids ejection port. The barrel includes first and second ends and is comprised of a cylindrical wall having a predetermined height. The center pipe is positioned within the barrel and extends for at least the entire height of the cylindrical wall. The gas inlet injects a fluid (preferably a gas) into the barrel proximate the first end, while the vane is attached to the center pipe proximate the gas inlet and creates a vortex from the injected fluid. The peripheral channel is positioned within the cylindrical wall proximate the second end of the barrel, and the tangential solids ejection port connects the peripheral channel to a dust hopper. In operation, the created vortex remains relatively undisturbed and continues through the barrel past the peripheral channel, and entrained solids within the vortex are removed by entering the dust hopper via the peripheral channel.
In specific embodiments, the uniflow cyclone separator includes a dip leg connected to the dust hopper. Preferably, the dip leg comprises a length to build sufficient head to overcome cyclone pressure drop and discharge solids into a cyclone inlet zone.
In specific embodiments, the uniflow cyclone separator further includes a second stage separator stacked onto the first stage separator. Preferably, the second stage separator is constructed substantially similar to the first stage separator. That is, the second stage separator comprises an extension of the cylindrical wall from the second end to an extended end, an extension of the center pipe to extend the center pipe for at least the entire height of the cylindrical wall and the extension of the cylindrical wall, a second vane attached to the extension of the center pipe above the peripheral channel, the second vane being for maintaining the vortex of the injected fluid, a second peripheral channel positioned within the extension of the cylindrical wall proximate the second end of the barrel, and a second tangential solids ejection port connecting the second peripheral channel to a second dust hopper. Preferably, the created and maintained vortex remains relatively undisturbed and continues through the barrel past the second peripheral channel and entrained solids within the vortex are removed by entering the second dust hopper via the second peripheral channel.
In specific embodiments, the vortex is modified by the second vane with a pitch to change the velocity in the vortex by changing the vortex angle.
In specific embodiments, the uniflow cyclone separator comprises a plurality of cyclone separator stages—i.e., multiple stages—stacked consecutively onto the first stage separator. Each of the plurality of cyclone separator stages comprises an extension of the cylindrical wall from a previous stage wall to an extended end, an extension of the center pipe to extend the center pipe for at least the entire height of the cylindrical wall and the extension of the cylindrical wall, a tertiary vane attached to the extension of the center pipe for maintaining the vortex of the injected fluid, a tertiary peripheral channel positioned within the extension of the cylindrical wall, and a tertiary tangential solids ejection port connected to the tertiary peripheral channel. Preferably, the created and maintained vortex remains relatively undisturbed and continues through the barrel past each tertiary peripheral channel and entrained solids within the vortex are removed by entering the tertiary peripheral channel.
In specific embodiments, the uniflow cyclone separator further comprises a tertiary dust hopper connected to the tertiary peripheral channel of at least one of the plurality of stages in a multiple stage embodiment.
In other specific embodiments, the uniflow cyclone separator further comprises an open area between two tube sheets positioned between consecutive stacked stages of the plurality of stages in a multiple stage design—including the first stage of the separator—wherein entrained solids are ejected from the tertiary solids ejection port into the open area.
These and other aspects of the invention may be understood more readily from the following description and the appended drawings.
For the purpose of facilitating an understanding of the subject matter sought to be protected, there are illustrated in the accompanying drawings, embodiments thereof, from an inspection of which, when considered in connection with the following description, the subject matter sought to be protected, its construction and operation, and many of its advantages should be readily understood and appreciated.
Note: all data used to prepare appended graphs and simulations is theoretical based on Eq. 3 and Eq. 4 above.
While the disclosed uniflow cyclone separator invention is susceptible of embodiments in many different forms, there is shown in the appended drawings and will herein be described in detail at least one preferred embodiment of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the broad aspect of the invention to any of the specific embodiments illustrated. Features and alterations described and/or illustrated for one specific embodiment may be applicable to other embodiments, even though not explicitly stated, as would be understood by a person of skill in the art.
Single-Stage Cyclone
A simple form of the invention is shown in
Two-Stage/Multi-Stage Cyclone
Another unique feature of the disclosed cyclone 10 is that stages can be stacked one upon another without changing vortex direction.
First, the vortex created in the disclosed design of
Second, the disclosed cyclone 110 induces a major direction change and gas acceleration at the inlet 40 to the device and then has a minor modification and small acceleration at the second vane 124. The classic cyclone has a similar major direction change and acceleration at the inlet, with a subtle direction change between the primary and secondary vortices, then a major acceleration into the outlet tube, followed by a major direction change and velocity change entering the second stage. The second stage of the classic cyclone has a further pressure drop as the gas flows from the primary to the secondary vortex, then to the outlet tube before exiting.
Third, in a classic cyclone the gas enters between the top of the cyclone and about halfway down the barrel through an inlet duct. That means gas entering at the top of the cyclone has approximately two revolutions in the barrel while gas entering at the bottom of the inlet duct has only about one revolution. In the disclosed cyclone 10, 110, all of the gas enters the barrel 12 at the same approximate elevation. As a result, all of the gas undergoes the same number of rotations. If the barrels are of equal length (classic vs. present design), then the disclosed uniflow cyclone 10, 110 will have a longer effective barrel length and thus a higher potential efficiency than its classic counterpart. Likewise, a designer could decide to build a shorter cyclone barrel, for example about 75% of conventional barrel length, for an efficiency similar to the longer barreled classic design.
Fourth, the disclosed cyclone 110 has a smaller footprint than the conventional voluted cyclone pair with the same gas capacity and barrel diameter.
While the disclosed cyclone 10, 110 can be used to increase the gas handling capacity of the vessel 50 beyond what is possible with conventional cyclones, it may not be practical to go that far. The superficial gas velocity will go up by the ratio of the number of cyclones, and that has a dramatic effect on the disengaging height. However, this capability to put more cyclones in the regenerator coupled with the higher efficiency of the cyclones could be used to reduce cyclone inlet velocity and prolong cyclone life.
Fifth, the stacked pair of cyclones 110 has similar elevation requirements as conventional cyclones with the same gas capacity.
The barrel 112 above the second particle collection channel 118 would be welded to the plenum chamber. The classic cyclone second stage outlet tube is also typically welded to the plenum chamber. The overall height of the two devices is very similar, approximately 210.5 inches for the classic cyclone and approximately 181 inches for a preferred embodiment of the disclosed cyclone. If credit is taken for the superior vortex length of cyclone 110, this design could be shortened by approximately 36 inches to give equivalent primary vortex lengths.
Containment vessel tangent length is determined by one of two factors; either the necessary dip leg length to overcome cyclone pressure drop or the disengaging height. The “disengaging height” is the elevation at which the particle entrainment rate has stabilized. The disclosed cyclone 110 would seem to have a shorter disengaging height than the classic cyclone shown in
Additionally, the stacked cyclone described herein would have longer dip leg clearances, which would reduce tangent length in cases where the dip leg length is controlling.
In
3rd Stage Separator
The disclosed cyclone 10 can be used on third-stage separators, as well. The third-stage separator (TSS) is located downstream of a FCCU regenerator and was originally developed to remove any 10 micron and larger particles from a flue gas upstream of power recovery turbines. The ten microns plus (10+) particles cause considerable wear on turbine blades. More recently, the efficiency of the TSS has improved such that they are sometimes employed as air pollution devices and can be designed to remove four-plus (4+) micron particles and even smaller. As air pollution regulations become more restrictive, use of a TSS becomes less viable as final flue gas clean-up devices.
These devices are somewhat smaller than those used in the regenerator with barrels sized in the 10 to 12 inch diameter range. Cyclones used in regenerators are normally sized between 50 and 60 inches in diameter. Because the particle loading to the TSS is much lower than in the regenerator (approx. 400 mg/Nm3 vs. approx. 0.7 lbs/ft3), they can be operated at much higher velocities, generally around 250 ft/sec.
An embodiment of the overall cyclone 210 is shown in
The matter set forth in the foregoing description and accompanying drawings is offered by way of illustration only and not as a limitation. While particular embodiments have been shown and described, it will be apparent to those skilled in the art that changes and modifications may be made without departing from the broader aspects of applicants' contribution. The actual scope of the protection sought is intended to be defined in the following claims when viewed in their proper perspective based on the prior art.
The current disclosure claims the filing priority of U.S. Provisional Application No. 63/269,721 titled “Uniflow Cyclone Separator With Stable Vortex And Tangential Heavy Phase Extraction,” filed on Mar. 22, 2022. The '721 Provisional Application is hereby incorporated in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
1735298 | Pfeffer | Nov 1929 | A |
3895930 | Campolong | Jul 1975 | A |
3917568 | Klein et al. | Nov 1975 | A |
4289611 | Brockmann | Sep 1981 | A |
4569687 | Feng | Feb 1986 | A |
5034099 | Nilsson | Jul 1991 | A |
5462585 | Niskanen et al. | Oct 1995 | A |
5690709 | Barnes | Nov 1997 | A |
5861052 | Meinander | Jan 1999 | A |
6478962 | Brockhoff | Nov 2002 | B1 |
7066987 | Stanbridge | Jun 2006 | B2 |
7799106 | Rother | Sep 2010 | B2 |
7857879 | Egger | Dec 2010 | B2 |
8202356 | Meinander et al. | Jun 2012 | B2 |
8322434 | Fielding et al. | Dec 2012 | B2 |
10036319 | Murray | Jul 2018 | B2 |
10137462 | Goulds et al. | Nov 2018 | B2 |
20080006250 | Bula | Jan 2008 | A1 |
20100275561 | Lundquist | Nov 2010 | A1 |
20120103423 | Schook | May 2012 | A1 |
20150328571 | Son | Nov 2015 | A1 |
20200353394 | Chen | Nov 2020 | A1 |
20210291095 | Peterson | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
2009100485 | Jul 2009 | AU |
2082808 | Jul 2009 | EP |
20120001032 | Jan 2012 | KR |
Entry |
---|
David Cannon, Centrifugal Separators: Working Principle, Benefits, and Applications Discussed, Oct. 16, 2019. |
Number | Date | Country | |
---|---|---|---|
20230302467 A1 | Sep 2023 | US |
Number | Date | Country | |
---|---|---|---|
63269721 | Mar 2022 | US |