The history of the steam engine is one of long and continuous innovation, with the principal goal being the increase in efficiency of the engine in converting fuel to work. This efficiency was initially extremely low (approximately 1%), and gradually increased through the 19th Century to approximately 20% in large engines. Modern central power stations, using very high pressure steam, minimum exhaust temperatures, turbines having 50 or more stages of steam expansion, and a large amount of ancillary equipment approach 40% efficiency. There is nonetheless a need for small scale power generators and co-generators of heat and electricity that are able to burn waste biomass, as produced from crop processing in rural communities that are not served by commercial power services. It is important that such small scale generators be as efficient as possible to maximize the amount of electricity that can be produced from available biomass, as well as to minimize carbon dioxide emissions per kilowatt-hour generated.
Later efforts to improve the efficiency of the steam engine focused on increasing the pressure of the steam produced in the boiler, and reducing the duration of steam admission to the cylinder, in relation to the time required for a complete piston stroke, so that a large portion of the work done by the steam could be done by its expansion, and not simply by its displacement of the piston at boiler pressure. The expansion of steam causes a drop in its pressure and temperature, which required provisions to minimize the contact of hot boiler pressure steam with the cool exhaust steam and cooler surfaces of the engine. In addition, expansion of steam is accompanied by the condensation of a portion of the steam to water, which is extremely detrimental to the efficiency of the engine if the water remains in the cylinder. Some of the most successful steam engine designs were quite complex, having ingenious mechanisms to time the opening and closure of the steam inlet and exhaust valves, or having multiple cylinders of successively larger size, so that the high pressure, high temperature steam could be partially expanded in the small cylinder, before passing sequentially to the larger medium pressure cylinder, and finally to the largest high pressure cylinder. This design became virtually standard for marine applications, having the benefit of minimizing the heat loss from the high pressure to the low pressure steam, but also providing more equal and constant loads on the crankshaft.
One of the last innovations in reciprocating steam engine design, especially for stationery motive power, was the “Uniflow” engine, fully developed by the German inventor Stumpf in the first decade of the 20th century. The uniflow engine was both comparatively efficient, as well as very simple. It was the first engine to have only its steam inlet valves in the cylinder heads, the exhaust being accomplished by ports or openings in the wall of the cylinder, midway along the length of the cylinder. The uniflow engine could achieve a high degree of expansion of the steam in a single cylinder, because the heads were not cooled by contact with wet, low temperature, low pressure exhaust steam. The uniflow design was licensed to steam engine manufacturers worldwide, in particular Skinner in the United States.
Further development of the steam engine during the 20th century was arrested or severely limited by the development of the internal combustion engine for mobile applications, and the steam turbine for large scale electric power generation. The reciprocating steam engine nonetheless continued to play a very important role through the end of WWII, powering a majority of freighters and troop transport ships, as well as the majority of locomotives. An obvious advantage of the steam engine over the internal combustion engine is its ability to burn low cost solid fuels, including coal and biomass. Less well known advantages of the steam engine over the steam turbine for small scale applications include its much lower cost and its ability to operate efficiently at partial load. These advantages are relevant to the production of electricity from biomass fuels in rural communities in developing countries, as well as the cogeneration of heat and electricity from biomass fuels, where the heat load, being extremely variable in building heating and many other applications, dictates the amount of power that can be generated.
A steam engine for use as a small scale power generator is disclosed. The steam engine utilizes a uniflow architecture, where steam enters at both ends of the cylinder and is released in the center of the cylinder. The valves used at either end are optimized so as to be pressure actuated, such that they open when the cylinder pressure is equal to or nearly equal to the boiler pressure. These valves eliminate the need for valve operating mechanisms, thereby reducing cost and complexity of the engine. Additionally, the steam engine utilizes inlet valves and piston seals that do not require lubrication, eliminating the use and expense of oil in the engine operation.
a-e is a sequence showing the operation of the engine according to one embodiment.
a illustrates a spring valve for use with the engine of
b shows a cross-section of the spring valve of
a illustrates an upper valve plate for use with the engine of
b shows a cross-section of the upper valve plate of
a illustrates lower valve plate for use with the engine of
b shows a cross-section of the lower valve plate of
a is an exploded view of a piston for use in one embodiment.
b is an assembled piston for use in one embodiment.
c is a cross-section of the piston of
Improvements to the steam engine for the purpose of small scale generation of electricity using biomass fuels and for co-generation of heat and electricity using biomass fuels in both developed and less developed countries are described. The engine is particularly well adapted to co-generation where the thermal load, as in building heating and many process applications, is extremely variable, because of its ability to operate efficiently under partial load. For the same reason, it would be suited to solar generated steam. Experiments have been conducted with steam as the working fluid. The design may in some or all respects be applied to other working fluids.
As described above, a uniflow steam engine is disclosed. The uniflow steam engine of the present invention includes various innovations.
First, the steam engine utilizes steam inlet valves that are pressure actuated, that is, valves which open when cylinder pressure is equal to or nearly equal to boiler pressure, and which close due to a small pressure difference caused by the flow of steam into the cylinder. The present inlet valves do not require the use of a valve operating mechanism, present on previous steam engines, reducing the cost and complexity of the engine. The present valves automatically close and open in a manner that is optimal for maximum efficiency, and close earlier in response to an increase in engine speed, partially reducing the need for a speed governor.
Additionally, the steam engine includes inlet valves and piston seals which do not require lubrication, eliminating the expense of steam cylinder oil in engine operation, and the difficulty in separating oil from the exhaust steam and condensate, as well as the environmental hazard of disposing of used oil.
The operation of the engine of the present invention is best understood from the sequence of illustrations shown as
The cylinder has two opposite ends, which interface with an upper steam chest 6 and a lower steam chest 7, respectively. One or more exhaust ports 5 are disposed on the walls of the cylinder. The cylinder is separated from the upper steam chest 6 by an upper valve plate 2, and is separated from the lower steam chest 7 by a lower valve plate 3. The upper valve plate 2 and the lower valve plate 3 are shown in more detail in
The first figure (
The second figure (
The third figure (
The fourth figure (
The fifth figure (
a shows one embodiment of an inlet valve 10, which forms part of the upper valve plate 2 and lower valve plate 3 (see
The inlet valves 10 in the present engine are stainless steel leaf springs, preformed lengthwise into an arched shape, therefore requiring a small pressure toward the engine cylinder to close against the valve seats. While stainless steel may be used, other materials may be suitable, such as any material that maintains its spring stiffness at elevated temperatures.
The use of a thin flexible material for the inlet valves 10 enables the valves to close quickly and with little impact force against the valve seats, and makes a leak resistant closure against the valve seats, even after they have uneven wear. Valves having single and multiple valve ports have been tested under a single valve spring, the latter arrangement being favorable for reducing the stress on the valve spring due to steam pressure (as the individual valve ports are typically smaller), and for providing reduced pressure drop across the valve ports, important for engines having larger cylinders and for high engine speeds.
The thickness of the leaf springs depends upon the length of the springs and the size of the ports, and is related to the piston diameter of the engine as well as the steam pressure supplied to the engine. Similarly, the spring constant is related to the total area of the valve ports. In one embodiment using test engines having cylinder diameters of approximately 4″, leaf springs having a length of 5″ and a thickness of 0.032″ were utilized for the upper valves, while leaf springs having a length of 4″ and a thickness of 0.024″ were utilized for the lower valves at steam pressures up to 300 psi (20 bar), which steam was superheated to 700 degrees F. In other embodiments, larger steam chests may be utilized, which enable thicker, stronger leaf springs to be used, since longer inlet valves can be accommodated. The port diameters are 0.5″ for the smaller inlet valves, and can be as large as 0.75″ for the stronger, longer inlet valves.
Other shapes of thin flexible inlet valves are within the scope of this disclosure, including valves comprised of circles of thin flexible material, either single circles or rings or multiple concentric rings, and other shapes (as have been previously used in air compressors).
a shows an upper valve plate 2 used in one embodiment of the present invention.
As seen in
An important advantage of the pressure actuated inlet valve is its inherent tendency to close earlier in the piston's stroke as the engine speed increases, and to close later as the engine speed is reduced, in response to a decrease or increase in load (resistive torque) on the engine, respectively. This causes an engine fitted with these inlet valves 10 to be somewhat speed regulated without resorting to an external speed regulating mechanism (governor). Whereas accurate speed regulation under large load fluctuations or fluctuations in boiler pressure would require a governor, or manual adjustment of the camshaft position by the operator, an ungoverned engine of the present design, or an engine subjected to a governor failure, would be much less likely to be damaged and to damage its connected equipment due to over speed.
Another advantage of the present inlet valve design is that the engine may not be damaged due to the presence of water in the cylinder of the engine, which is a frequent occurrence in steam engines during start up. Conventional steam engines required considerable care during start up, or the use of condensate relief valves at the ends of the cylinder, to avoid water becoming trapped between the piston and cylinder heads. Water is almost entirely incompressible, and can break the cylinder heads or other parts of a conventional steam engine fitted with mechanically operated valves. The present inlet valves 10 open as cylinder pressure equals or exceeds boiler pressure, thereby eliminating any risk to the engine from entrapped water.
A final advantage of the present inlet valve 10 is its ability to operate without lubrication. The only friction experienced by the inlet valve 10 is due to the very slight movement of the ends of the inlet valve 10, against the supporting surfaces of the valve plate or cylinder head as the inlet valve 10 flexes (see insert on
An important characteristic of the present pressure actuated inlet valves 10, which distinguish them from a common check valve, is that they are formed in an arch shape so that they are normally open. It is important that the inlet valves remain in the open position, against the camshaft lobe 11, until the pressure drop across the inlet valve 10, proportional to steam flow, is sufficient to close the inlet valve 10. In practice, shown in
b shows a cross-sectional view of the upper valve plate 2. This upper valve plate 2 is disposed between the upper cylinder 8 and the upper steam chest 6 (see
As can be readily seen, the inlet valve 10 is held in place on both sides of the valve ports 13. The valve ports 13 allow the passage of steam from the upper steam chest 6 into the upper cylinder 8, as can be seen in
In some embodiments, one or more bolts 14 are used on each side of the valve ports 13 to retain the inlet valve 10 in place. A valve retainer 15 may be disposed above the inlet valve 10 so as to hold it in place, while allowing some movement during opening and closing. As described above, in some embodiments, a snubber spring 12 is used to control the rate at which the inlet valve 10 opens and to spread the load of valve contact with the control cam over a larger area of the valve. In some embodiments, the snubber spring 12 may be disposed above the valve retainer 15, as shown in the insert on
a shows a lower valve plate 3.
Like the upper valve plate 2, the lower valve plate 3 may include a lower cam 18 to control the amount that the inlet valves 10 can open. However, due to the presence of the piston rod 4, the shape of the lower cam 18 may differ from the shape of the cam 11 used in the upper valve plate 2. A valve cam fork 17 may be disposed on the inlet valves 10 to serve as a contact surface for the valves, which surface is displaced laterally and is of larger radius than the surface of the cam. This functions similar to the snubber described above. As described above, the inlet valves 10 may be retained using valve retainer 15 and bolts 14.
a, 4b also show a pilot valve 20, which may aid in regulating the passage of steam, especially during startup. This pilot valve 20 is described in more detail below.
A significant limitation imposed by the pressure actuated inlet valve 10 is that it will not open until the cylinder pressure nearly equals the boiler pressure, or, more accurately, the steam pressure in the chamber directly above the inlet valve 10. Normally, such high cylinder pressure is not achieved until the engine is running at a certain minimum speed. This problem may be overcome in the present engine by installing a small plunger on the piston rod 4 which enters the central valve port 13 of the upper cylinder head and pushes open the inlet valve 10 slightly as the piston reaches top dead center. This engine is then started by relieving all steam pressure from the engine steam chests (chambers) 6,7, and manually placing the flywheel in a position that is a few degrees either side of top dead center. When steam is allowed to enter the engine, its pressure will act downwards on the top of the piston 1 through the open upper inlet valve 10, which is prevented from closing by the fact that the piston 1 is not yet in rapid motion. The lower inlet valve 10 closes quickly due to unrestricted steam flow from the lower steam chest 7 through the exhaust ports 5 being open toward the lower end of the cylinder. The engine accelerates rapidly even though the lower inlet valve 10 may not open until a certain minimum speed is achieved.
Another solution that may be used to ensure opening of the inlet valves 10 at boiler pressures in excess of the pressure achieved by recompression of exhaust steam, which was found in one prototype to be 15 to 20 Bar, when the engine exhausts to atmospheric pressure, is to install a small pilot valve 20 in each of the cylinder heads. One such pilot valve 20 is shown in
A pilot valve 20 is also shown in
When the plunger is moved, it admits sufficient steam into the small volume of the lower cylinder 9 (see
In summary, a novel inlet valve for engines is disclosed. The inlet valve is designed to control the duration of admission of a compressed gas, including but not limited to steam, to the cylinder of the engine, so as to control the power and speed of said engine, and to use the energy of expansion of said gas to provide power to the engine after closure of the inlet valve, thereby maximizing engine efficiency. This inlet valve is comprised of a spring, or incorporates a spring separate from the valve itself, which holds the inlet valve open with a light pressure against an externally adjustable stop, such as a cam. The inlet valve has the important characteristics of exerting a governing effect on the speed of the engine, and does not require lubrication.
The design of a conventional steam engine is such that the piston 1 is subject to little or no side loading, since the reaction force of the angled connecting rod, acting perpendicular to the line of piston travel, is supplied by a guide assembly, called a cross head, that is independent of the piston and separately lubricated. The nature of a steam engine therefore allows for the possibility of oil-free operation. This was not attempted in most previous steam engines because most engines used metallic piston seals or piston rings, which exert a large rubbing force on the cylinder. A few engines which did not employ piston rings required a very close clearance between the piston and cylinder to provide a very imperfect seal, sometimes improved by the use of paraffin and/or a flexible packing rope.
The present engine requires the use of exhaust ports 5 cut through the cylinder wall to exhaust steam from the cylinder near the end of the piston's stroke. For this reason, it is not possible for the present engine to use a flexible rope packing, or other sealing material that is subject to tearing, abrasion, or ablation. As the present engine is also intended to operate in co-generation, where the exhaust steam may be distributed for building heating and other applications, it is valuable to eliminate the use of oil in lubrication of the steam piston and piston seals. Furthermore, the elimination of oil as a lubricant in the steam cylinder enables the engine to operate with higher temperature steam, improving its efficiency, and avoids oil contamination of the inside of the boiler, and eventually the environment.
The nature of a split or segmented piston ring, floating in a groove in the piston, is that it exerts a contact pressure on the cylinder wall equal to the difference in the pressure of the gas (or steam) acting across the ring. As an example, a piston ring having a thickness of 0.2 inch, providing a seal between a cylinder pressure of 300 pounds per square inch and an exhaust pressure of 15 pounds per square inch in a cylinder of 4 inch diameter exerts a contact pressure against the cylinder of 300−15=285 pounds per square inch, and a total contact force of:
0.2 inch×4 inch×3.14×285 pounds/square inch=716 pounds
It is apparent that the sliding of a force of this magnitude at the high speed of an engine piston requires that the friction between the sealing ring and cylinder of the engine be minimized in order to reduce the power loss due to friction and to make the engine long lasting. In engines having metallic piston rings, including the majority of steam engines and virtually all internal combustion engines, this is done by the use of an oil film.
The present disclosure has identified various approaches to eliminate the need for oil in its steam engine cylinder. These are shown in
b shows an assembled piston 1 that an attached piston rod 4.
A lower nut 30 is disposed on the piston rod 4. A lower seal assembly 31 is then disposed on the lower nut 30. The lower seal assembly 31 includes one or more piston discs 34, seal springs 35, graphite rings 36, as described in more detail below. The lower seal assembly 31 also includes a lower piston cap 39 (see
A piston body 32 is disposed on the lower seal assembly 31. The piston body 32 has a radius smaller than the cylinder, and may be constructed of aluminum or another material. An annular graphite bushing or sleeve 33 is disposed over the piston body 32. One or more piston discs 34 are disposed above the graphite bushing 33. These piston discs 34 may be brass or some other suitable material. In some embodiments, the piston discs 34 may be metal, however, in other embodiments, non-metallic materials, such as ceramic or carbon fiber may be utilized. As best seen in
In some embodiments, the upper and lower piston caps 37, 39 are threaded on to the piston rod 4 and locked in place with nuts 30,38.
The upper piston cap 37, the graphite rings 36, the seal springs 35 and the piston discs 34, 34a described above form a upper seal assembly. This upper seal assembly may identical in configuration to the lower seal assembly 31 (see
Thin segmented graphite rings 36 provide an effective gas seal for reducing steam leakage past the piston, are reasonably long wearing, and do not require lubrication. These graphite rings 36 may comprise graphite, however composites or other compounds that include graphite are also within the scope of the disclosure. For example, the rings 36 may be constructed of metal impregnated graphite or a graphite/carbon fiber material. In other embodiments, the rings 36 may be made from another form of carbon. Thus, the term “graphite rings” as used in this disclosure, includes rings containing pure graphite, rings containing a combination of graphite and one or more other materials, or rings containing other forms of carbon.
As stated above, one or more deep but thin segmented graphite rings 36 are installed within deep grooves in the piston body, or between piston discs 34 and 34a. As stated above, the piston discs 34 may be made of polished brass, or another material, which may be found not to abrade the sides of the graphite ring 36, nor to be abraded due to light contact with the cylinder.
In some embodiments, the segmented graphite rings 36 have a thin metal seal spring 35 acting against the inside circumference of the graphite ring 36, in order to urge the graphite ring 36 outward and maintain contact between the graphite ring 36 and the cylinder, particularly when there is no gas pressure acting across the graphite ring 36. Such seal springs 35 may be slightly wider than the graphite segmented ring 36, and be retained by recesses in the sides of the piston grooves located in piston disc 34a, in order to prevent a seal spring 35 from leaving the piston groove in the event of graphite ring disintegration.
In some embodiments, as seen in the insert to
c shows one piston disc 34, one piston disc with a retaining groove 34a, two spacer rings 40 and two graphite rings 36. However, the disclosure is not limited to this embodiment. Indeed, any number of piston discs 34 and piston discs with retaining grooves 34a may be included in the piston 1. One or more graphite rings 36 may be disposed between each pair of adjacent piston discs 34, 34a. Thus, while two graphite rings 36 are shown in the upper seal assembly of
The deep grooves in the portion of the piston that accommodate the piston rings may be constructed of multiple rigid discs of polished brass, or other suitable material, and the balance of the piston made of aluminum to reduce the weight of the piston. This allows the graphite seal springs 35 to be installed during assembly of the piston on its piston rod.
In some embodiments, the outer circumference of the graphite bushing or sleeve 33 and the outer circumference of the segmented graphite seals 36 are greater than the outer circumference of the piston discs 34. In this way, only components constructed of graphite are able to contact the sidewall of the cylinder.
The piston 1 of a steam engine is typically symmetric, consisting of upper and lower elements, each enclosing one or more piston rings, as described above. In the case of the uniflow type of steam engine, including the present engine, the upper and lower piston elements are separated by a spacer bushing, such as piston body 32, such that the overall length of the piston is approximately equal to the overall length of the cylinder minus the length of the cylinder exhaust ports, this quantity divided by two. It has been found convenient, for the purpose of minimizing or eliminating contact between the outside edges of the piston discs 34 and the engine cylinder, to install a graphite bushing 33 around this piston body 32, and between said upper and lower piston assemblies. This graphite bushing 33 may be slightly larger in diameter than the piston discs 34, at engine operating temperature, such that the only surfaces of the piston contacting the cylinder at engine operating temperature are the graphite rings 36 and the graphite bushing 33.
It has been discovered that graphite acquires increased toughness when used as the sealing rings in a steam engine, due to the absorption of moisture by the graphite. This is true even when the steam used in the engine is superheated to several hundred degrees Fahrenheit above the saturation temperature.
The use of graphite in the graphite rings 36 and the graphite bushing 33 reduces the amount of friction between the piston 1 and the inner walls of the cylinder. In some embodiments, this reduction in friction is significant so as to eliminate the need for a lubricant in the cylinder.
While the disclosure refers to the graphite rings 36 are being segmented, other embodiments are within the scope of the disclosure. For example, the graphite rings 36 may be split or elastic.
In addition, in some embodiments, the inner walls of the cylinder are coated with a nitride. This improves corrosion resistance of the cylinder, but may also reduce friction on the graphite rings 36, increasing seal life and engine efficiency.
The present disclosure is not to be limited in scope by the specific embodiments described herein. Indeed, other various embodiments of and modifications to the present disclosure, in addition to those described herein, will be apparent to those of ordinary skill in the art from the foregoing description and accompanying drawings. These other embodiments and modifications are intended to fall within the scope of the present disclosure. Furthermore, although the present disclosure has been described herein in the context of a particular implementation in a particular environment for a particular purpose, those of ordinary skill in the art will recognize that its usefulness is not limited thereto and that the present disclosure may be beneficially implemented in any number of environments for any number of purposes. Accordingly, the claims set forth below should be construed in view of the full breadth and spirit of the present disclosure as described herein.
This application claim priority of U.S. Provisional Patent Application Ser. No. 61/753,514 filed Jan. 17, 2013, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61753514 | Jan 2013 | US |