The invention relates to corona producing apparatus.
Electroreprographic systems, and xerographic systems in particular, use corona producing devices to produce electric fields to, for example, charge retentive photoresponsive surfaces, such as photoreceptor belt or drum surfaces. Various types of such corona charge generating devices include wires, while others include pins or teeth. In all cases, charge uniformity is desirable, and various solutions have been presented to make the fields produced by corona charge generating devices more uniform. U.S. Pat. Nos. 5,324,942, 2,777,957, 2,965,754, 3,937,960, 4,112,299, 4,456,365, 4,638,397, and 5,025,155 disclose various prior art corona charge producing devices; the disclosures of these patents are incorporated by reference into the disclosure of the instant patent application. Xerox Disclosure Journal (Vol. 10, No. 3; May/June 1985) teaches, at pp. 139-140, an alternate approach; the disclosure of this article is also incorporated by reference into the instant patent application.
This effect can be understood from the symmetry and shielding of electric field by neighboring elements. The elements that lie inside the array have symmetrical flow of corona current on both sides, but the elements that lie near the edges have corona current only on one side of the pins. The electric field at the heads of inside elements, therefore, is reduced. As the voltage applied to the array is raised, the outside elements begin to glow first because the threshold field for air breakdown is reached there first. With further rise of voltage, other elements also glow, but the respective current is lower. This can be seen in the lower intensity of glow at these elements. The voltage profile deposited by a corotron or scorotron with such a uniform element projection profile has peaks under the outside edges.
To overcome such non-uniform voltage profiles, embodiments provide a charging apparatus that applies a substantially uniform charge to a charge retentive surface. The apparatus comprises a corona producing device, spaced from the charge retentive surface, that emits corona ions, but with corona producing elements of varying heights. The height of the elements near the edges is reduced so that the distance between the surface to be charged and the ends of the edge elements is greater than that between the surface to be charged and the ends of the inner elements. The actual height is found, for example, by iterative calculation as will be shown below.
While exemplary embodiments will be described, there is no intent to limit the invention to the embodiments described. On the contrary, the intent is to cover all alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
For a general understanding of the present invention, reference is made to the drawings. In the drawings, like reference numerals have been used throughout to designate identical elements.
Referring particularly now to
The present invention is an apparatus that improves on prior art solutions, such as altering the relative spacing between a flexible scorotron grid and a charge retentive surface, such as a photoreceptor, to achieve a more uniform charge density and charge potential profile across the usable portion of the surface. More specifically, the corona producing elements in a corona producing/charge producing array, be they pins, teeth, or the like, have varying heights to achieve a more uniform charge density and potential profile. Elements toward a center of the array are taller than elements toward edges of the array to overcome shielding and other effects.
Embodiments include at least one array 100 of elements 110, comprising at least one plurality of corona producing elements 110 directed at and spaced from a charge retentive surface, such as a photoreceptor belt. The elements 110 are arranged in a profile that reduces shielding effects, and are connected to a power source. The array is supported in a housing that can be mounted in an electrophotographic marking device, such as a xerographic multifunction device.
As seen in
As an example of an alternative to pins for the corona producing elements, the at least one plurality of corona producing elements can comprise an array of teeth projecting toward the charge retentive surface, as seen in
Determining the potential at points throughout the region between a charge, producing array in, for example, a corotron, and the photoreceptor of a marking machine involves calculating the potential in one area as being equal to the average of the potential in the regions adjacent to this area. For example, in the sample field shown in Table I, the potential of areas F would be equal to the average of the potentials in areas B, E, G and J. The potential of area J would be equal to the average of the potentials in areas F, I, K and N.
Performing a large number of iterations will yield a sufficiently accurate representation of the potential at areas throughout the region between the corotron and the surface.
In the calculations performed, the corotron elements were assumed to be at one potential and the surface was assumed to be at another potential. The ends of the region were set up to display a reflection of the potential of the region. In
The program used to perform the calculations was also programmed to provide a rough estimation of the magnitude of the electric field at each point by averaging the absolute value of the difference between the potential of each point and the points adjacent to that point. For example, this quantity for point F in Table I would be the average of the difference in potential between points F and B, points F and E, points F and G, and points F and J. This data was used to generate plots of the relative gradient throughout the region between the corotron and the surface. In these calculations, the mesh size unit has been assumed to be of unit length.
More generally, this formula can be expressed as:
where (x,y) represent the matrix coordinates of the pin of interest.
Whatever the type of corona producing elements employed, the profile is determined, for example, by iterative adjustment of the elements of the at least one plurality of corona producing elements so that an electric field at substantially all points is substantially equal. In particular, the profile can be determined by applying the formula:
where (x,y) represent matrix coordinates of a point of interest, and Gx,y is an electric field at the point of interest, to achieve a substantially uniform value of G for all points (x,y) between the at least one corona producing element and the charge retentive surface.
Thus, to substantially uniformly charge a charge retentive surface, one can attach at least one plurality of corona charging elements to a power source and determine a respective electric field distribution over each plurality of the at least one plurality of corona charging elements using, for example, the formula above. If the respective electric field is substantially non-uniform, then one adjusts the degree of projection of the elements of the respective at least one plurality of corona charging elements. These actions would be repeated until each respective electric field, and the overall field, is substantially uniform.
While this invention has been described in conjunction with preferred embodiments thereof, many alternatives, modifications, and variations may arise that are not currently foreseeable to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.
This application is based on a Provisional Patent Application No. 60/407,215, filed Aug. 29, 2002.
Number | Name | Date | Kind |
---|---|---|---|
1959154 | Bremer | May 1934 | A |
2777957 | Walkup | Jan 1957 | A |
2965754 | Bickmore et al. | Dec 1960 | A |
3888578 | Eto | Jun 1975 | A |
3937960 | Matsumoto et al. | Feb 1976 | A |
4112299 | Davis | Sep 1978 | A |
4344104 | Habets et al. | Aug 1982 | A |
4456365 | Yuasa | Jun 1984 | A |
4638397 | Foley | Jan 1987 | A |
5025155 | Hattori | Jun 1991 | A |
5324942 | Mishra et al. | Jun 1994 | A |
6070033 | Hiraoka et al. | May 2000 | A |
6185397 | Kumar et al. | Feb 2001 | B1 |
Number | Date | Country |
---|---|---|
0 274 894 | Jul 1988 | EP |
0 917 012 | May 1999 | EP |
Number | Date | Country | |
---|---|---|---|
20040105701 A1 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
60407215 | Aug 2002 | US |