The present invention relates to a uniform temperature roller system for uniform temperature exchange by supercritical fluid, especially to a uniform temperature roller system used for making film products and having uniform temperature exchange by supercritical fluid during manufacturing process.
Generally, devices for industrial production such as laminating machines, food preparation machines, chemical machines, 3C film manufacturing equipment, knitting machines, etc. often use hot rollers for squeezing, pressing or embossing as equipment for continuous production. Along with wide applications of flexible electronics during manufacturing processes of liquid crystal display (LCD), electronic paper, thin-film solar cell or RFID, roll-to-roll technology which creates electronic components or material on a roll of flexible plastic or metal foil by rolling begins to receive more attention.
Refer to
As shown in
Besides the temperature difference problem, the conventional rollers such as can only use liquid fluid such as water, kerosene, etc. as the heat-conducting medium due to the design of channels. The liquid heat-conducting medium not only easily causes rusting but also results in non-uniform temperature distribution. Thus there is room for improvement and there is a need to provide a uniform temperature roller which provides more efficient and synchronous thermal diffusion over the whole diffusion area to replace the roller with fluid medium. The uniform temperature roller can be applied to hot/cold squeezing, pressing or embossing processes.
Therefore it is a primary object of the present invention to provide a uniform temperature roller system for uniform temperature exchange by using supercritical fluid, which provides rapid and uniform heating/or cooling of the products to be processed during the heating or cooling process for improving the product quality, the yield rate of the products and the service life of rollers.
The present invention provides a uniform temperature roller system for uniform temperature exchange by using supercritical fluid comprising: a roller body which includes a roller shell having an internal hollow portion divided into a first chamber, a second chamber, and a third chamber by a pair of separation plates wherein the second chamber is an enclosed space; a pair of rotary shafts which are disposed on two side plates of the roller shell, respectively; a plurality of heating/cooling modules mounted in the second chamber and each of which having two ends connected to the pair of the separation plates correspondingly; and a supercritical fluid which is filled into the second chamber and out of the plurality of heating/cooling modules to use for transferring temperature between the heating/cooling modules and the roller shell.
Implementation of the present invention at least produces the following advantageous effects:
1. The uniform temperature roller system can be used for either heating or cooling by replacement of the temperature regulating medium filled therein.
2. The heat energy or energy required for cooling can be transferred and exchanged rapidly and uniformly by diffusion of the supercritical fluid with large contact area in the second chamber so as to achieve a uniform temperature of the roller shell.
3. Both quality and yield rate of the products are improved due to uniform heating/cooling provided by the present system.
4. Owing to improved temperature uniformity, different thermal expansion and contraction at different positions of the roller shell can be avoided. Thereby the roller has a longer service life.
5. The reduction of the service life of the roller caused by rust can be avoided.
The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein:
Refer to
The pressure roller is mainly used for generating contact pressure to effectively interact with an object (such as film) 50 to be processed, such as squeezing, pressing, embossing, cooling, heating, etc, during manufacturing and forming processes of the products.
The pressure roller can be a conventional common pressure roller which is a rubber roller or a metal roller. The present uniform temperature roller system 20 can also be used as the pressure roller.
The uniform temperature roller system 20 is used in combination with the pressure roller 10 to squeeze and press at least one object 50. Thereby the uniform temperature roller system 20 together with the pressure roller 10 holds the object 50 to be processed so that the object 50 can be manufactured effectively.
During manufacturing of certain products, the uniform temperature roller system 20 can also be used alone (without the pressure roller). For example, the uniform temperature roller system 20 is used to act on an object 50 on a platform 40.
As shown in
The roller body 21 includes a cylindrical hollow roller shell 201. Generally, the roller body 21 is a metal roller. By a pair of separation plates 211, an internal hollow portion of the roller shell 201 is divided into a first chamber 212, a second chamber 213, and a third chamber 214, which are separated from one another. The second chamber 213 is a pressure-resistant closed space and mainly used for enabling the roller shell 201 of the roller body 21 to achieve a uniform temperature rapidly.
In order to make the roller body 21 rotate, the two rotary shafts 22 are formed on two side plates 215 of the roller body 21.
The heating/cooling modules 23 are mounted in the second chamber 213 and two ends of the respective heating/cooling modules 23 are connected to the pair of separation plates 211, respectively.
In order to make the roller shell 201 of the roller body 21 reach a uniform temperature quickly, the second chamber 213 is filled with at least one supercritical fluid (SCF) 70 and the supercritical fluid 70 is out of the plurality of heating/cooling modules 23. With low surface tension, low viscosity and gas-like high diffusivity, the supercritical fluid 70 is used for transferring temperature (such as heat/cool) between the heating/cooling modules 23 and the roller shell 201.
As shown in
Refer to
Refer to
As shown in
Moreover, two ends of each temperature exchange module 234 communicate with the first chamber 212 and the third chamber 214, respectively. A channel 221 is mounted in each of the rotary shafts 22 for input and output of a temperature regulating medium 60. The channels 221 communicate with the first chamber 212 and the third chamber 214, respectively.
The above temperature regulating medium 60 can be hot water, cold water, refrigerant, kerosene, etc. While in use, the temperature regulating medium 60 flows into the first chamber 212 through the channel 221 of one of the rotary shafts 22 for effective expansion in the space of the first chamber 212. Then the temperature regulating medium 60 passes through the temperature exchange modules 234 to be gathered in the third chamber 214 again. Lastly the temperature regulating medium 60 flows out through the channel 221 of the other rotary shaft 22. While the temperature regulating medium 60 flowing through the temperature exchange modules 234, heat exchange occurs between the temperature regulating medium 60 and the roller shell 201 by the supercritical fluid 70 in the second chamber 213 due to heat convection of the supercritical fluid 70 which involves molecular diffusion of the supercritical fluid 70.
More specifically, the temperature regulating medium 60 with high heat capacity is required when the uniform temperature roller system 20 with the temperature exchange modules 234 is used to heat the products to be processed. For example, 100° C. hot water or 150° C. kerosene flows into the first chamber 212 through one of the rotary shafts 22 and passes through the temperature exchange modules 234. Thereby the heat is diffused quickly into the roller shell 201 through the supercritical fluid 70. Hence the roller shell 201 is heated and used for heating the products to be processed.
While the uniform temperature roller system 20 with the temperature exchange modules 234 is used to cool the products to be processed, a low-temperature temperature regulating medium 60 such as 5° C. water or 5° C. kerosene is selected and used. The cold water or kerosene flows into the first chamber 212 through one of the rotary shafts 22 and passes through the temperature exchange module 234. Thereby the heat the roller shell 201 absorbed during the cooling of the 120° C. products to be processed is diffused quickly into the temperature exchange modules 234 through the supercritical fluid 70. Then heat exchange occurs again between the hot temperature exchange modules 234 and the cold temperature regulating medium 60. Thereby the cooling of the uniform temperature roller system 20 is achieved.
The supercritical fluid 70 can be carbon dioxide, water, methane, ethane, propane, ethylene, propene, methanol, ethanol, acetone or their combinations. The respective supercritical fluids 70 have different critical temperatures. According to the working temperature of the uniform temperature roller system 20 required, different types of supercritical fluid 70 are selected and used.
For effective replenishment, adjustment or replacement of the supercritical fluid 70, a check valve 216 is arranged at one of the side plates 215 of the roller body 21. The check valve 216 communicate with the second chamber 213 so that the supercritical fluid 70 in the second chamber 213 can be replenished, adjusted or replaced quickly by the check valve 216.
The above description is only the preferred embodiments of the present invention, and is not intended to limit the present invention in any form. Although the invention has been disclosed as above in the preferred embodiments, they are not intended to limit the invention. A person skilled in the relevant art will recognize that equivalent embodiment modified and varied as equivalent changes disclosed above can be used without parting from the scope of the technical solution of the present invention. All the simple modification, equivalent changes and modifications of the above embodiments according to the material contents of the invention shall be within the scope of the technical solution of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
105139129 | Nov 2016 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4053277 | Bos et al. | Oct 1977 | A |
4452587 | Laws et al. | Jun 1984 | A |
4631016 | Hay, II | Dec 1986 | A |
4943831 | Geraets et al. | Jul 1990 | A |
5009825 | Lurie | Apr 1991 | A |
5404936 | Niskanen et al. | Apr 1995 | A |
6095237 | Haag | Aug 2000 | A |
6202556 | Lagger | Mar 2001 | B1 |
6289984 | Lagger | Sep 2001 | B1 |
9296146 | Thielman | Mar 2016 | B1 |
20010001402 | Jin et al. | May 2001 | A1 |
20020011688 | Nodono et al. | Jan 2002 | A1 |
20020130430 | Castor | Sep 2002 | A1 |
20040089654 | Kitano et al. | May 2004 | A1 |
20050115059 | Fuseya | Jun 2005 | A1 |
20050219352 | Yamagishi | Oct 2005 | A1 |
20050244527 | Koyanagi | Nov 2005 | A1 |
20060003044 | DiNello | Jan 2006 | A1 |
20070138162 | Tonomura et al. | Jun 2007 | A1 |
20080017061 | Muller et al. | Jan 2008 | A1 |
20100330336 | Guillot et al. | Dec 2010 | A1 |
20110014408 | Fujiwara et al. | Jan 2011 | A1 |
20110030927 | Okano | Feb 2011 | A1 |
20110277494 | Kikuno | Nov 2011 | A1 |
20120073567 | Winston | Mar 2012 | A1 |
20120104648 | Yiflach | May 2012 | A1 |
20130270730 | Kawachi et al. | Oct 2013 | A1 |
20140086610 | Williams et al. | Mar 2014 | A1 |
20150043943 | Osaka et al. | Feb 2015 | A1 |
20150119484 | Osaka et al. | Apr 2015 | A1 |
20150174799 | Sumi | Jun 2015 | A1 |
20150190545 | Oral et al. | Jul 2015 | A1 |
20150267039 | Osaka | Sep 2015 | A1 |
20160138222 | Trani et al. | May 2016 | A1 |
20160256902 | Lyon | Sep 2016 | A1 |
20160318218 | Nakamura | Nov 2016 | A1 |
20160338374 | Seo et al. | Nov 2016 | A1 |
20160339761 | Enomoto et al. | Nov 2016 | A1 |
20160343637 | Axelrod et al. | Nov 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20200230672 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15696691 | Sep 2017 | US |
Child | 16786505 | US |