This invention relates to a uniformity and stabilizing system for dampening the effects of vibration on a tire/wheel assembly of a motor vehicle, and more particularly to a uniformity and stabilizing system comprising a stabilizing ring used in conjunction with a balanced tire wheel assembly wherein the stabilizing ring destroys, absorbs, and dampens vibrations including those caused by non-uniformities in the tire.
A typical motor vehicle is generally characterized as comprising an unsprung mass and a sprung mass. The unsprung mass generally consists of all of the parts of the vehicle not supported by the vehicle suspension system such as the tire/wheel assembly, steering knuckles, brakes and axles. The sprung mass, conversely is all of the parts of the vehicle supported by the vehicle suspension system. The unsprung mass can be susceptible to disturbances and vibration from a variety of sources such as worn joints, misalignment of the wheel, brake drag, irregular tire wear, etc. Because vehicular tires support the sprung mass of a vehicle on a road surface and such tires are resilient, any irregularities in the uniformity or dimensions of the tire, any dimensional irregularities in the wheel rim, and/or any dynamic imbalance or misalignment of the tire/wheel assembly will cause disturbances and vibrations to be transmitted to the sprung mass of the vehicle thereby producing an undesirable or rough vehicle ride, as well as reducing handling and stability characteristics of the vehicle. Severe vibration can result in dangerous conditions such as wheel tramp or hop and wheel shimmy (shaking side-to-side).
It is now standard practice to reduce these adverse vibrational effects by balancing the wheel rim and tire assembly by using a balance machine and clip-on lead weights or lead tape weights. The lead balance weights are placed on the rim flange of the wheel and clamped in place in a proper position, or adhered to the wheel in the case of tape weights, as directed by the balancing machine. In general terms, balance is the uniform distribution of mass about an axis of rotation, where the center of gravity is in the same location as the center of rotation. A balanced tire/wheel assembly is one where the mass of the tire/wheel assembly mounted on the vehicle's axle is uniformly distributed around the axle. Balancing is an improvement and will reduce the vibration of the tire/wheel assembly in comparison to an unbalanced tire/wheel assembly.
Another method of balancing is provided by balancing rings. Balancing rings typically comprise a 360 degree annular tube partially filled with weights (typically less than 50% of the tube) in combination with a damping fluid which typically fills the remainder of the tube. The tubes are typically attached adjacent the wheel flange. The most common commercial balancing ring is produced by Centramatic, which uses steel shot in oil. The balance ring works by making use of centrifugal force to distribute the steel shot inside the tube to compensate for dynamic tire balance. As the tire/wheel assembly rotates, the steel shot in the tube will flow away from a heavy spot of the tire until such time as the out of balance situation is corrected. The centrifugal force holds the weight against the outside of the balancing tube. The key to balancing rings is that the weight in the ring must be able to move within the tube to counter the heavy spot of the tire. Therefore a balance ring does not have a constant mass about its circumference, either at rest or in use on a tire/wheel assembly.
However, even perfect balancing of the tire/wheel assembly does not necessarily mean that the tire will roll smoothly. Even a perfectly balanced tire can have severe vibrations due to non-uniformities in the tire which result in unequal forces within the tire footprint.
A level of non-uniformity is inherent in all tires. In the art of manufacturing pneumatic tires, rubber flow in the mold or minor differences in the dimensions of the belts, beads, liners, treads, plies of rubberized cords or the like, sometimes cause non-uniformities in the final tire. When non-uniformities are of sufficient magnitude, they will cause force variations on a surface, such as a road, against which the tires roll and thereby produce vibrational and acoustical disturbances in the vehicle upon which the tires are mounted. Regardless of the cause of the force variations, when such variations exceed the acceptable minimum level, the ride of a vehicle utilizing such tires will be adversely affected.
While gains have been made in the ability of the average tire shop to diagnose, measure, and correct vibration of a tire/wheel assembly due to imbalance, run out, and non-uniformity force variations, there remains a need in the art to provide stability to the unsprung mass of the vehicle to combat tires that may have excessive force variations due to non-uniformity. It is unrealistic to believe or expect that all of the tires that do not meet the radial force limitations of the vehicle will not find their way onto a vehicle. Accordingly, it would be an advantage to provide a uniformity and stabilizing system to help improve the performance of the population of tire/wheel assemblies as a whole.
At least one advantage over the prior art is provided by a uniformity and stabilizing system for a tire/wheel assembly comprising: a wheel; a tire mounted on the wheel; and at least one annular stabilizing ring made of a weight material, the stabilizing ring having an approximately constant mass around its arcuate circumference, and being affixed to a non-pressurized side of the wheel such that the stabilizing ring and the wheel are coaxial.
At least one advantage is also provided by a uniformity and stabilizing system for a tire/wheel assembly comprising: a wheel rim; a tire mounted on the wheel rim; and at least one stabilizing ring comprising an annular cartridge comprising an interior chamber completely filled with a weight material, the stabilizing ring having an approximately constant mass around its circumference, and being affixed to a non-pressurized side of the wheel such that the stabilizing ring and the wheel are coaxial.
An advantage is also provided by a method of stabilizing a tire/wheel assembly comprising the steps of: providing a tire/wheel assembly; using force variation measuring equipment to determine a radial force value of the tire/wheel assembly; providing at least one stabilizing ring comprising an approximately constant mass around its circumference, wherein the mass is directly proportional to the measured radial force value of the tire/wheel assembly; and attaching the stabilizing ring to a non-pressurized side of a tubewell of the wheel or a rim flange of the wheel.
These and other advantages will be apparent upon a review of the drawings and detailed description of the invention.
This invention will now be described in further detail with reference to the accompanying drawings, in which:
This invention will now be described in detail with reference to various embodiments thereof. The first embodiments relate to the balance weight cartridge of earlier related parent applications. The stabilizer ring, which is the focus of the present application, is intended to be used in conjunction with the cartridge balance weights in at least one embodiment of the invention. Referring now to
The cartridge 20 forms a container and is typically made of a molded or extruded rubber or plastic material that will not react with the metallic surface of a wheel, however the cartridge 20 is not intended to be limited to such materials and any suitable material such as a fabricated aluminum cartridge is also contemplated. The cartridge 20 comprises a tube 22 that may be cut or molded to the desired length. The flowable media 40 is inserted in the tube 22 which is then sealed, most commonly with at least one plug 24 or a heat weld seal may also be used. The cartridge 20 may be formed in a rigid longitudinally arcuate section of an angle Θ equivalent to an angle of one hundred eighty degrees or less, or it may be formed in a flexible straight section and positioned into an arcuate section of one hundred eighty degrees or less when attached to a wheel as described in greater detail below. The walls of the tube 22 which make up the interior chamber 30 should be of a smooth surface finish that will promote flow of the flowable media 40.
Some possible variations of the tube 22 used for the cartridge 20 are shown in
Another variation of tube is shown in
The flowable material 40 may be metallic balls as best shown in
The amount of flowable material 40 within the balance weight 10 should be sufficient to enable the balance weight 10 to balance the tire/wheel assembly. In use, the balance weight 10 is preferably applied in the same manner as a standard lead balance weight using a spin balance machine. The tire/wheel assembly is mounted on the spin balancer and the out of balance condition is detected. The spin balancer recommends an amount of weight to be positioned at a particular circumferential position and at a particular predetermined distance from the axis in one or more predetermined planes. When using balance weight 10 of the present invention, the total weight of the balance weight 10 (including the cartridge 20 and flowable material 40) should be equivalent to the amount of weight called for by the balance machine. Therefore the arc length of the cartridge 20 and the amount of flowable media 40 will be proportional to the specified weight with larger imbalances requiring a larger cartridge arc length and more flowable media 40, and vise versa. It is generally contemplated that the amount of flowable material 40 used in a cartridge 20 will vary between 5 to 95 percent of the volume of the internal chamber 30. In one embodiment of the invention, the amount of flowable material 40 as shown is approximately two-thirds of the volume of the internal chamber 30, which has been shown to provide optimized dynamic balancing during current testing, however any amount sufficient to allow the flowable material to sufficiently move and balance the tire/wheel assembly is contemplated. In some applications where the lead balance weight is merely replaced, the entire volume of the interior chamber can be filled with material 40 such that the balance weight 10 acts as a fixed weight.
The prior art lead balance weights are fixed in position by an operator as directed by the spin balance machine. The lead balance weights may be attached to the wheel slightly off position by the operator. This requires the operator to rebalance. Additionally, once the tire/wheel assembly is in operation on the vehicle, tire wear, pot holes, etc. will cause the tire/wheel assembly to go out of balance. In contrast, the balance weight 10 of the present invention allows the weight of the flowable media 40 to move circumferentially as well as laterally within the cartridge 20. The operator attempts to center the balance weight 10 of the present invention at the location specified by the spin balance machine. If the operator misses the exact location slightly, the flowable media 40 is able to adjust the effective balance location of the tire/wheel assembly by moving within the cartridge 20 to obtain a balance equilibrium. Accordingly, the balance weight operator need not be as accurate, and the tire/wheel assembly stays in balance even during operation of the tire/wheel assembly as the balance location moves along the wheel. It is also contemplated that more than one balance weight 10 may be used in the present invention—just as with the prior art lead balance weights.
The balance weights of the present invention may be located on the wheel using a marking tool as disclosed by U.S. application Ser. No. 11/164,717, filed on Jan. 12, 2006 now abandoned, and hereby incorporated by reference. The operator can use the marking tool to make a straight line on the wheel to provide a reference for accurately placing the weight.
Referring now to
Referring now to
Referring now to
The uniformity and stabilizing system for a tire/wheel assembly will now be discussed in detail. While it is contemplated that the balance weight cartridge 10 may be used in conjunction with a uniformity and stabilizing system, the uniformity and stabilizing system can be used with conventional balance weights as well.
Referring now to
The stabilizing ring 310 comprises an approximately constant mass around the ring when installed on the wheel or tire. When the cross-sectional shape is uniform around the ring, this can be accomplished by using a weight material 340 with an approximately constant mass around the ring. In some embodiments, the distribution of mass through a cross section may not be uniform. In these embodiments, the average area density of the cross section should be approximately constant around the ring to achieve an approximately constant mass around the ring when installed on the wheel or tire. Any suitable cross-sectional shape may be used for the stabilizing ring 310. One low-profile rectangular variation of the cross-sectional shape of the stabilizing ring 310 is shown in
In the embodiment shown by the cross-section of
The solid or flowable weight material 340, 340′ is inserted in the tube 322, which is then sealed, most commonly with at least one plug 324. A heat weld seal may also be used to seal the weight material 340, 340′ into the inner chamber 330. The ends 316, 318 are approximately adjacent when the stabilizing ring is installed on a wheel or tire. It is contemplated that the first end 316 may be heat welded to the second end 318, or both ends 316, 318 be affixed to the same plug 324 to concurrently seal the weight material 340, 340′ into the cartridge and form a continuous arcuate ring shape.
The weight material 340′ generally completely fills the cartridge 320. However, as defined here, a completely filled cartridge may have a small volume remaining empty to ensure enough clearance inside the tube 322 to install the plug 324 or to heat weld the ends, accommodating manufacturing tolerances in forming and filling the tube 322. Further, depending on the selected weight material and the materials selected for the cartridge, having a small volume remaining empty may also be necessary to accommodate differences in thermal expansion properties between the materials. The cartridge style stabilizing ring 310 is not intended to directly balance the tire/wheel assembly and the weight material 340′ fills the cartridge by over 95% of the total volume such that the weight material retains a substantially constant mass. A cartridge style stabilizing ring 310 filled between 95-100% will not be able to dynamically balance a tire/wheel assembly as a balancing ring can because sufficient mass will not be able to offset any imbalance in comparison to the mass of the remainder of the stabilizing ring.
Alternately, the cartridge 320 may be directly molded around the solid or flowable weight material 340, 340′, or directly applied to the weight material 340, 340′ by spraying or dipping or other coating methods to encapsulate it. In this embodiment, it is contemplated that the walls of the cartridge 320 in
Another variation of the cartridge 320 includes more than one chamber, exemplified by the profile of
Weight material 340, 340′ may comprise any ferrous or non-ferrous metals such as steel, stainless steel, or lead. Weight material 340, 340′ may comprise ceramics, plastics, glass, alumina, or any other suitable material. Flowable weight material 340′ may be in the form of a powder, particles, granules, balls, shot, beads, or other small, flowable forms. It is also contemplated that the weight material 340′ may be a liquid, in whole or in part, such as oil, or other liquid, as long as the stabilizing ring 310 retains its generally constant mass about its arcuate circumference.
In comparing the solid and cartridge style stabilizing rings 310 it is noted that the solid stabilizing rings offer the best solution for adding the most amount of weight in the smallest package and can typically be more easily and cheaply produced. High density materials such as steel or other metallic materials can be used when a high weight ring is wanted. The higher weight adds to the rotational inertia of the unsprung mass, which adds stability to the system. The cartridge style stabilizing ring allows the use of powders, particles, pellets and the like, which although completely filled in the cartridge, still have the ability for slight movement that helps enable the weight material to absorb and cancel out vibration frequencies of the unsprung mass including those caused by tire non-uniformities.
The stabilizing ring 310 may be installed on the rim flange of the wheel, on the pressurized side of the tubewell, on the non-pressurized side of the tubewell, or in any suitable location on the wheel or tire such that the stabilizing ring is substantially coaxial with the wheel/tire assembly. The stabilizing ring 310 may be attached to a wheel 50 of a tire/wheel assembly 60 by adhesive 70. The stabilizing ring 310 may be attached to the tube well 54 using the adhesive 70, similar to that used by tape weights. In this location the stabilizing ring is not visible, which is important to some customers. In some installation locations, such as a wheel rim or flange, one or more of the clip 80 may be used to install the stabilizing ring 310. The methods of attachment are discussed in greater detail below.
Referring to
The stabilizing ring 310 of the present invention may be located on the wheel using the marking tool as disclosed by U.S. application Ser. No. 11/164,717, filed on Jan. 12, 2006 and as shown in
As previously mentioned, it is contemplated that the balance weight cartridge 10 may be used in conjunction with a uniformity and stabilizing system. As shown in
The stabilizing ring can also be attached to the wheel rim flange as previously disclosed. Referring now to
In another embodiment of the invention, as exemplarily shown in
In one embodiment, the method for attaching the stabilizing ring 310 to the wheel comprises using a force variation measurement machine to determine the force variation of a tire/wheel assembly and selecting a stabilizing ring of suitable weight based on the force variation measurements. In the first step of this method, the operator uses the mount matching technique to minimize the radial force variation as discussed in the background section. In the next step, the operator balances the tire/wheel assembly using tire-balancing equipment to determine the weight amount and location of any imbalance. One or more balance weights, such as the balance weight cartridge 10, is affixed to the wheel to correct any imbalance of the tire/wheel assembly. The operator may use a wheel marking tool to assist in placing the balance weight cartridge 10. The operator then measures the radial force variation of the tire/wheel assembly using a force variation measurement machine (such as a balancer capable of measuring force variation of a tire/wheel assembly. The operator selects a stabilizing ring 310 having a total weight directly related to the force variation measurement. The operator locates the selected stabilizing ring 310 on the wheel and affixes it by using adhesive 70 or clips 80. The operator may use a wheel marking tool to assist in placing the stabilizer ring 310 when attaching the stabilizing ring 310 to the brake well of the wheel as shown in
The present invention may also be used when force variation measuring equipment is unavailable. In the first step of this method, the operator uses the mount matching technique to minimize the radial force variation by utilizing the markings on the tire and the wheel, or at least the valve position on the wheel, as discussed in the background section. In the next step, the operator balances the tire/wheel assembly using tire-balancing equipment as discussed in the previous method. Once the tire/wheel assembly is balanced, the operator selects a stabilizing ring 310 on the wheel and affixes it by using adhesive 70 or clips 80. The tire/wheel assemblies are then mounted on a vehicle and objectively tested by the driver under various driving conditions. If vibration is still present, the tire/wheel assemblies are removed and additional or heavier stabilizer rings 310 are installed.
In testing the present invention, the inventor purchased four 275/45YR19 tires for a vehicle having nineteen inch wheels. The tire/wheel assemblies were force matched using a Hunter® GPS9700 and then balanced using a balance weight cartridge 10. The tire/wheel assemblies were then mounted on a vehicle and driven under various conditions and excessive vibration was noted. The tire/wheel assemblies were then measured for force variation using a Hunter® GPS9700. The force variations readings were sixty-two pounds for the left front tire/wheel assembly, forty-two pounds for the right front tire/wheel assembly, forty-four pounds for the left rear tire/wheel assembly, and fifteen pounds for the right rear tire/wheel assembly. According to the recommended limitations of force variation published by Hunter®, three of the four tires were beyond the limits of acceptable force variation—yet the tires were publicly sold without the consumer aware that a problem existed with the tires. Each tire/wheel assembly was then fitted with a stabilizer ring 310 formed of a plastic cartridge filled with a flowable powder, the stabilizer ring weighing 5.6 ounces total. The tire/wheel assemblies were then remounted on the vehicle and driven under various conditions for 20,000 miles. No excessive vibration was noted during operation of the vehicle. The tire/wheel assemblies were then removed and measured for tread depth, which revealed even wear in all four tires. The tire/wheel assemblies were then re-measured for force variation using the Hunter® GPS9700. The force variations readings were thirty-four pounds for the left front tire/wheel assembly, twenty-two pounds for the right front tire/wheel assembly and twenty pounds for the left rear tire/wheel assembly. The right rear tire/wheel assembly was not checked as it was within force variation limits prior to testing.
Generically, a physical system is unstable if small inputs lead to large outputs, say, if ambient forces amplify little disturbances. As discussed above, the non-uniformities in the tires created an unstable system in the unsprung mass of the vehicle resulting in vibration of the vehicle. The uniformity and stabilizing system, provided by attaching a stabilizing ring 310 to each tire/wheel assembly, results in increased rotational inertia that stabilizes the unsprung mass of the vehicle. Rotational inertia is the property of matter that relates to the tendency of an object in uniform motion to remain in uniform motion. The increased stability and dampening effects provided by the stabilizing ring 310 enables the dampening of vibrations caused by non-uniformities in the tire as well as vibration from all other sources. The increased stability in the system also worked to improve the uniformity measurement of the tires by forcing the tire/wheel assemblies to run smooth which also helped provide even tread wear.
While this invention has been described with reference to preferred embodiments thereof, it shall be understood that such description is by way of illustration and not by way of limitation. Accordingly, the scope and content of the present invention are to be defined only by the terms of the appended claims.
This application is a continuation-in-part of U.S. non-provisional patent application Ser. No. 11/559,604, filed Nov. 14, 2006, now abandoned, which is a continuation-in-part of U.S. non-provisional patent application Ser. No. 11/276,867, filed Mar. 17, 2006, now U.S. Pat. No. 7,134,731, issued Nov. 14, 2006, which is a continuation-in-part of U.S. non-provisional patent application Ser. No. 11/306,397, filed Dec. 27, 2005, now U.S. Pat. No. 7,192,096, which is a continuation of U.S. non-provisional patent application Ser. No. 10/806,671, filed Mar. 23, 2004, now U.S. Pat. No. 6,979,060, issued Dec. 27, 2005, which claims the benefit of U.S. provisional patent application Ser. No. 60/488,634, filed Jul. 18, 2003, all of which are hereby incorporated by reference. This application also claims the benefit of U.S. provisional patent application Ser. No. 60/766,560, filed Jan. 27, 2006, hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1622469 | Walter | Mar 1927 | A |
1860216 | Ash | May 1932 | A |
1906925 | Edwards | May 1933 | A |
1976546 | Doerr | Oct 1934 | A |
2024375 | Latshaw | Dec 1935 | A |
2485936 | Stroberg | Oct 1949 | A |
2525781 | Remer | Oct 1950 | A |
2632673 | Pfeiffer | Mar 1953 | A |
2660475 | Ormsby | Nov 1953 | A |
2687918 | Bell et al. | Aug 1954 | A |
2737420 | Wilborn | Mar 1956 | A |
2771240 | Gurin | Nov 1956 | A |
2801883 | Householder | Aug 1957 | A |
3006690 | Pierce | Oct 1961 | A |
3012820 | King | Dec 1961 | A |
3063754 | Pierce | Nov 1962 | A |
RE25383 | Morrill | May 1963 | E |
3094003 | Hemmeter | Jun 1963 | A |
3166356 | Sutherland et al. | Jan 1965 | A |
3177039 | Skidmore | Apr 1965 | A |
3202459 | Pierce | Aug 1965 | A |
3314726 | Rehnborg et al | Apr 1967 | A |
3316021 | Salathiel | Apr 1967 | A |
3346303 | Wesley | Oct 1967 | A |
3376075 | Mitchell | Apr 1968 | A |
3427077 | Cole et al. | Feb 1969 | A |
3462198 | Onufer | Aug 1969 | A |
3463551 | Clay | Aug 1969 | A |
3464738 | Pierce | Sep 1969 | A |
3724904 | Nixon et al. | Apr 1973 | A |
3730457 | Williams et al. | May 1973 | A |
3733923 | Goodrich et al | May 1973 | A |
3799618 | Martinoli | Mar 1974 | A |
3799619 | Labarber | Mar 1974 | A |
3897977 | de Meurisse | Aug 1975 | A |
3913980 | Cobb et al. | Oct 1975 | A |
3953074 | Cox | Apr 1976 | A |
4178041 | Rush | Dec 1979 | A |
4254985 | Kirschner | Mar 1981 | A |
4269451 | Narang | May 1981 | A |
4388841 | Gamble | Jun 1983 | A |
4674356 | Kilgore | Jun 1987 | A |
4873888 | Matsuyama | Oct 1989 | A |
5048367 | Knowles | Sep 1991 | A |
5073217 | Fogal | Dec 1991 | A |
5253928 | Patti | Oct 1993 | A |
5350220 | Atwell, Jr. | Sep 1994 | A |
5421642 | Archibald | Jun 1995 | A |
5429422 | Baldi | Jul 1995 | A |
5449054 | Wiese et al. | Sep 1995 | A |
5495879 | Cabestrero | Mar 1996 | A |
5503464 | Collura | Apr 1996 | A |
5829318 | Hannah et al. | Nov 1998 | A |
5870908 | Rushlow | Feb 1999 | A |
5941133 | Wierzba et al. | Aug 1999 | A |
6095299 | Peinemann et al. | Aug 2000 | A |
6161450 | Sandig | Dec 2000 | A |
6267450 | Gamble | Jul 2001 | B1 |
6442782 | Vande Haar | Sep 2002 | B1 |
6550868 | Kobayashi et al. | Apr 2003 | B2 |
6581658 | Nakajima et al. | Jun 2003 | B2 |
6672148 | Kunsch | Jan 2004 | B2 |
6719374 | Johnson | Apr 2004 | B2 |
6907800 | Inman | Jun 2005 | B1 |
6979060 | Fogal, Sr. et al. | Dec 2005 | B2 |
7134731 | Fogal, Sr. et al. | Nov 2006 | B2 |
7192096 | Fogal et al. | Mar 2007 | B2 |
20040095012 | Naruse et al. | May 2004 | A1 |
20060226696 | Jones | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
0 559 999 | Sep 1993 | EP |
0559999 | Sep 1993 | EP |
1359462 | Jul 1974 | GB |
1440186 | Jun 1976 | GB |
55 139542 | Oct 1980 | JP |
07-231624 | Aug 1995 | JP |
2005009759 | Sep 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070126279 A1 | Jun 2007 | US |
Number | Date | Country | |
---|---|---|---|
60766560 | Jan 2006 | US | |
60488634 | Jul 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10806671 | Mar 2004 | US |
Child | 11306397 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11559604 | Nov 2006 | US |
Child | 11626145 | US | |
Parent | 11276867 | Mar 2006 | US |
Child | 11559604 | US | |
Parent | 11306397 | Dec 2005 | US |
Child | 11276867 | US |