Unique global identifier header for minimizing prank emergency 911 calls

Information

  • Patent Grant
  • 9401986
  • Patent Number
    9,401,986
  • Date Filed
    Friday, September 11, 2015
    9 years ago
  • Date Issued
    Tuesday, July 26, 2016
    8 years ago
Abstract
A prank call server that performs 911 prank call filtering over a 911 emergency call system, prior to routing a 911 call to a PSAP. The inventive prank call server identifies prank calling devices, regardless of current service subscription, by retrieving and analyzing emergency call data pertaining to detected prank 911 calls. The prank call server assigns a unique global identifier to each 911 call detected on the 911 emergency call system. Unique global identifiers enable a PSAP to uniquely identify prank 911 calls that are identified thereon. A PSAP transmits a prank call signal and a relevant unique global identifier to the prank call server, for each prank 911 call that is detected. A prank call signal/unique global identifier combination triggers the prank call server to store all available call data for a referenced prank 911 call in to a prank call database, for subsequent prank call filtering analysis.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates generally to telecommunications. More particularly, it relates to distributed Emergency Call Systems.


2. Background of Related Art


A 911 emergency call system bridges local government entities and call service providers, to route 911 voice calls to proper emergency dispatch personnel.


In particular, the 911 emergency call system routes a 911 voice call to a Public Safety Answering Point (PSAP) (i.e. a 911 dispatcher/emergency call center) to administer proper emergency services. The 911 emergency call system preferably routes a 911 voice call to a Public Safety Answering Point (PSAP) within closest geographic proximity to an originating communication device.



FIG. 5 demonstrates a conventional 911 call system call flow.


In particular, a 911 voice call is placed via an originating communication device (e.g. a landline communication device, a wireless communication device, etc.), as depicted in step 500. In step 510, a call service provider servicing the originating communication device detects that a 911 voice call has been placed. If the originating communication device is not able to be serviced by an affiliated call service provider (e.g. the communication device is outside the service jurisdiction of an affiliated call service provider, the communication device is not subscribed to any service(s) provided by a call service provider, etc.), 911 call processing is defaulted to a call service provider servicing a geographic location established for the originating communication device. In step 520, an applicable call service provider routes the detected 911 voice call to an appropriate Public Safety Answering Point (PSAP) via conventional call routing procedures. In step 530, the detected 911 voice call is received on an appropriate Public Safety Answering Point (PSAP), and emergency service personnel are thereby dispatched accordingly.


Enhanced 911 (E911) is a reformed version of the 911 emergency call system, employed in response to advancements achieved in current communication technologies. In particular, Enhanced 911 (E911) provides accurate 911 call routing services to a wide array of previously unsupported communication devices (e.g. wireless devices, VoIP devices, etc.) In operation, Enhanced 911 retrieves E911 voice information and relevant emergency call data (e.g. a subscriber number and a geographic location) pertaining to each E911 voice call that is detected. Relevant call data is subsequently routed to an appropriate Public Safety Answering Point (PSAP).


Wireless Enhanced 911 is a particular denomination of Enhanced 911, responsible for routing 911 voice calls originated on a wireless communication device. Wireless Enhanced 911 identifies a Mobile Subscriber Identification Number (MSIN) and a current geographic location for each device that is party to a Wireless E911 voice call. Accordingly, an associated MSIN/geographic location combination is routed to an appropriate Public Safety Answering Point (PSAP) with each Wireless E911 call that is detected.


A Mobile Subscriber Identification Number (MSIN) identifying an originating 911 calling device is retrieved for Wireless E911 call processing via an Automatic Number Identification (ANI) Service.


In particular, a unique Mobile Subscriber Identification Number (MSIN) is assigned to each communication device that is subscribed to service(s) administered by a wireless/call service provider. Furthermore, each instantiation of a Mobile Subscriber Identification Number (MSIN) to a particular communication device is recorded in a database maintained by the Automatic Number Identification (ANI) service.



FIG. 6 conveys a conventional use of an Automatic Number Identification (ANI) service within a Wireless E911 call system call flow.


In particular, a Wireless E911 call is detected upon the 911 emergency call system, as depicted in step 600. Upon detection, the Automatic Number Identification (ANI) service retrieves a Mobile Subscriber Identification Number (MSIN) stored for an originating communication device, as depicted in step 610. Once retrieved, the Automatic Number Identification (ANI) service transmits the Mobile Subscriber Identification Number (MSIN) to a wireless service provider administering E911 call routing, as shown in step 620. The Mobile Subscriber Identification Number (MSIN) is subsequently received on an appropriate wireless service provider and forwarded to a Public Safety Answering Point (PSAP), as conveyed in step 630. The Mobile Subscriber Identification Number (MSIN) is thereafter received on a Public Safety Answering Point (PSAP) and emergency service personnel are thereby dispatched accordingly, as depicted in step 640.


A geographic location may be determined for an originating communication device via an active location service (e.g. GPS) residing on the calling handset. Moreover, a geographic location for an originating communication device may alternatively be determined based upon the location of a base station servicing a corresponding E911 call. A location for an originating communication device is conventionally used to route an E911 call to an appropriate Public Safety Answering Point (i.e. a Public Safety Answering Point (PSAP) within closest geographic proximity to an originating communication device). Furthermore, a geographic location for an originating communication device promotes efficient dispersal of emergency services when routed to a Public Safety Answering Point (PSAP) administering E911 call dispatching.


According to a Federal Communications Commission (FCC) mandate, all wireless devices must be permitted access to 911 emergency call services, regardless of current service subscription. Thus, the 911 emergency call system must be capable of detecting and routing 911 voice calls placed via wireless devices that are disconnected from service.


A geographic location for a disconnected wireless device may be determined for E911 call processing via conventional handset-based/network-based device location techniques. Yet, a source of an E911 voice call originated on a disconnected wireless device is not easily identifiable. In particular, a wireless device that is disconnected from service is not attributed a Mobile Subscriber Identification Number (MSIN) corresponding to a particular subscriber account. Therefore, identification of a 911 calling party may not be automatically obtained via the Automatic Number Identification (ANI) service. Moreover, it is not possible to accurately ascertain the ownership of a disconnected wireless device. Hence, 911 calls that are placed via a disconnected wireless device are fundamentally anonymous.


To reduce anonymity, wireless service providers often designate arbitrary number identifiers (e.g. MSIN, IMSI, etc.) to wireless devices that are not subscribed to service. An arbitrary number identifier is routed to a Public Safety Answering Point (PSAP) for each E911 voice call that is originated on a corresponding wireless device.


Unfortunately, the 911 emergency call system is currently afflicted with prank 911 calls originating on wireless devices that are disconnected from service.


Presently, the only information that is obtainable for an E911 voice call placed via a disconnected wireless device, is a geographic location and an arbitrary number identifier. Although a means of filtering prank 911 calls would be useful, prank 911 calls placed via disconnected wireless devices may not be filtered based solely upon an arbitrary number identifier (e.g. MSIN, IMSI, etc.) assigned to an originating communication device. First, a number identifier assigned to a disconnected wireless device is not guaranteed to be unique. Furthermore, a disconnected wireless device may change hands at any given time, e.g., a device may be sold, borrowed, traded, etc. Therefore, it is possible, e.g., that a non-prank caller may purchase a disconnected wireless device with a number identifier depicting a device used to generate prank 911 calls. In this case, if a prank 911 call placed via a disconnected wireless device is filtered according to a device's arbitrary number identifier, it is likely that a non-prank caller may be denied access to E911 emergency call services.


Due to a lack of source information, it is difficult to prevent the routing of prank 911 calls originating on wireless devices that are disconnected from service. Hence, there is a need for a solution that may accurately identify prank 911 calling devices, regardless of current service subscription, and filter the routing of 911 calls that are placed thereon.


SUMMARY OF THE INVENTION

In accordance with the principles of the present invention, a method and apparatus to provide 911 prank call filtering over a 911 emergency call system comprises transmitting, to a physical prank call server, a prank call signal associated with a unique global identifier assigned to a given 911 call, if the given 911 call is detected at a PSAP to be a prank 911 calling device. A prank call database is queried for correlation between a calling device of said given 911 call with a pre-identified prank calling device. If information maintained within the prank call database correlates a detected 911 call with an identified prank calling device, then the detected prank 911 call is dropped.





BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the drawings, in which:



FIG. 1 depicts an exemplary network structure for a prank call server implemented over the 911 emergency call system, in accordance with the principles of the present invention.



FIG. 2 demonstrates an exemplary call filtering process performed by a prank call server implemented within the 911 emergency call system, in accordance with the principles of the present invention.



FIG. 3 portrays exemplary data accumulation performed by the prank call server for a prank 911 call detected on the 911 emergency call system, in accordance with the principles of the present invention.



FIG. 4 depicts an exemplary call filtering process for a 911 call placed by a communication device that is subscribed to wireless service(s), in accordance with the principles of the present invention.



FIG. 5 demonstrates a conventional 911 call system call flow.



FIG. 6 conveys a conventional use of the Automatic Number Identification (ANI) service within a Wireless E911 call system.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The present invention provides a prank call server that administers 911 prank call filtering over a 911 emergency call system. In particular, the inventive prank call server identifies prank calling devices (i.e. devices generating prank 911 calls) by retrieving and analyzing emergency call data (i.e. a subscriber number, an arbitrary number identifier, a geographic location, etc.) pertaining to prank 911 calls detected on the 911 emergency call system.


In accordance with the principles of the present invention, the inventive prank call server is implemented during 911 emergency call routing to prevent 911 calls originated on identified prank calling devices from being routed to a public safety answering point (PSAP).


In accordance with the principles of the present invention, the inventive prank call server assigns a unique global identifier to each 911 call that is detected on the 911 emergency call system. Global identifiers attributed to detected 911 voice calls permit a public safety answering point (PSAP) to uniquely reference each prank 911 call that is identified thereon. A public safety answering point (PSAP) transmits a prank call signal and a relevant unique global identifier to the prank call server, for each prank 911 call that is detected. A prank call signal/unique global identifier combination, triggers the inventive prank call server to retrieve emergency call data pertaining to a corresponding prank 911 call. Prank call data is logged in an inventive prank call database.


The inventive prank call database is queried for each 911 call that is detected on the 911 emergency call system, in accordance with the principles of the present invention. If information maintained within the prank call database correlates a detected 911 voice call with an identified prank calling device, then the detected 911 voice call is dropped, and corresponding call data is logged in the prank call database for subsequent call filtering analysis.



FIG. 1 depicts an exemplary network structure for a prank call server implemented over the 911 emergency call system, in accordance with the principles of the present invention.


In particular, a prank call server 110 is integrated within the 911 emergency call system 100 to mitigate the volume of prank 911 calls routed to a public safety answering point (PSAP) 120. A public safety answering point (PSAP) 120 transmits a prank call signal and a relevant unique global identifier to the prank call server 110, each instance a prank 911 call is detected.


The inventive prank call server 110 utilizes a prank call database 130 to store data pertaining to prank 911 calls detected on the 911 emergency call system 100. The prank call server 110 additionally queries the prank call database 130 to determine if emergency call data retrieved for a detected 911 voice call, corresponds to information stored for an identified prank calling device. The prank call server 110 utilizes information compiled within the prank call database 130 to perform 911 prank call filtering, prior to routing a 911 voice call to a public safety answering point (PSAP) 120.


In a preferred embodiment, a prank calls and caller audit system 140 is implemented to provide a user interface to the prank call database 130. In particular, a prank calls and caller audit system 140 preferably permits an authoritative entity (e.g. a law enforcement officer, an emergency call dispatcher, etc.) to view and/or modify (e.g. add and/or delete) prank call data maintained within the prank call database 130.



FIG. 2 demonstrates an exemplary call filtering process performed by a prank call server implemented within the 911 emergency call system, in accordance with the principles of the present invention.


In particular, a 911 voice call is detected on the 911 emergency call system, as depicted in step 200. Upon detection, the inventive prank call server designates a unique global identifier to the 911 call, as shown in step 210. In step 220, the prank call server queries the prank call database, using conventional emergency call data (i.e. a subscriber number, an arbitrary number identifier, a geographic location, etc.) retrieved for the detected 911 voice call. The prank call database is queried to determine if call data pertaining to the 911 voice call correlates with data stored for an identified prank calling device.


If the query to the prank call database (performed in step 220) indicates that the 911 voice call is originated on an identified prank calling device (step 230), the 911 call is dropped, as depicted in step 240. Relevant emergency call data is subsequently logged in the inventive prank call database, as shown in step 250.


Alternatively, if the query to the prank call database (performed in step 220) does not indicate that the 911 call is originated on an identified prank calling device (step 230), the 911 call and an assigned unique global identifier are routed to an appropriate public safety answering point (PSAP), as shown in step 260.



FIG. 3 portrays exemplary data accumulation performed by the prank call server for a prank 911 call detected on the 911 emergency call system, in accordance with the principles of the present invention.


In particular, a 911 voice call and a unique global identifier are received on a public safety answering point (PSAP), as depicted in step 300. If the 911 call (received in step 300) is not a prank 911 call (step 310), the public safety answering point (PSAP) performs conventional 911 call dispatching services, as depicted in step 320.


Alternatively, if the 911 call (received in step 300) is a prank 911 call (step 310), the public safety answering point (PSAP) transmits a predetermined prank call signal and a corresponding unique global identifier to the prank call server, as depicted in step 330. Upon receipt, the prank call server retrieves all information available to the 911 emergency call system for the 911 call referenced by the received unique global identifier, as depicted in step 340. The prank call server subsequently logs all data retrieved for the prank 911 call in to the prank call database, as depicted in step 350.


In accordance with the principles of the present invention, the prank call server may identify prank calling devices for the performance of 911 prank call filtering, regardless of a particular device's current service subscription. In particular, 911 calls generated on prank calling devices that are affiliated with a particular subscriber account, may be filtered via a corresponding subscriber identification number, e.g., MSIN, IMSI, etc. Alternatively, calls generated on prank calling devices that are not subscribed to service, may be identified via prank call trends and prank call history, established/accumulated within the inventive prank call database.


Communication devices that are subscribed to service(s) provided by a wireless/call service provider are assigned a unique mobile subscriber identification number (MSIN), corresponding to a particular subscriber account. In a particular embodiment, once a communication device affiliated with a wireless/call service provider has exceeded a maximum number of permissible prank 911 calls, that particular communication device is classified as an identified prank calling device. Consequently, when the 911 emergency call system detects that a mobile subscriber identification number (MSIN) retrieved for an originating communication device, matches a mobile subscriber identification number (MSIN) stored for an identified prank calling device, the 911 call is dropped, thereby blocking the prank calling device from accessing 911 emergency call services.



FIG. 4 depicts an exemplary call filtering process for a 911 call placed by a communication device that is subscribed to wireless service(s), in accordance with the principles of the present invention.


In particular, a 911 call is detected on the 911 emergency call system, as depicted in step 400. Upon detection, the prank call server assigns the 911 call a unique global identifier, as shown in step 410. In step 420, the automatic number identification (ANI) service retrieves a mobile subscriber identification number (MSIN) affiliated with an originating communication device. In step 430, the prank call server queries the prank call database to determine if the mobile subscriber identification number (MSIN) identified for the originating communication device, matches a mobile subscriber identification number (MSIN) stored for an identified prank calling device. If the query to the prank call database indicates a match (step 440), the detected 911 voice call is dropped and corresponding emergency call data is logged in the prank call database, as depicted in step 450. Alternatively, if the query to the prank call database does not indicate a match (step 440), the relevant 911 call and a corresponding unique global identifier are routed to an appropriate public safety answering point (PSAP), as depicted in step 460.


Alternatively, wireless devices that are disconnected from service are not assigned a mobile subscriber identification number (MSIN) corresponding to a particular subscriber account. Yet, wireless service providers often designate arbitrary number identifiers (e.g. MSIN, IMSI, etc.) to disconnected wireless devices, to aid 911 emergency call processing.


In accordance with the principles of the present invention, an originating geographic location (e.g. exact geographic coordinates, cell-tower information, PIDF-LO, etc.) and an arbitrary number identifier (e.g. MSIN, IMSI, etc.) are stored in the prank call database, for prank 911 calls placed by wireless devices without subscription to wireless/call service(s). Prank call trends may then be identified based upon geographic location/arbitrary number identifier combinations maintained within the prank call database. For instance, if an arbitrary number identifier and a geographic location retrieved for a 911 call detected on the 911 emergency call system, are both stored in combination in the prank call database, then the prank call server recognizes that the 911 call has been originated on an identified prank calling device, and the 911 call is dropped. Relevant emergency call data is then stored in the prank call database for future call filtering analysis.


Furthermore, if multiple prank 911 calls originating from various geographic locations, are affiliated with the same arbitrary number identifier (i.e. the calling device is moving), then all calls affiliated with that particular arbitrary number identifier may be blocked for a given period of time.


Being that wireless devices that are disconnected from service may change hands at any given time (e.g. a device may be sold, borrowed, traded, etc.), a geographic location/arbitrary number identifier combination stored in the prank call database for a particular disconnected wireless device, should expire after a given period of time. Requiring prank call data stored for disconnected wireless devices to expire, may potentially prevent non-prank callers from being denied access to 911 emergency call services.


In an alternate embodiment, rather than dropping a 911 call originated on an identified prank calling device, the emergency call routing system may alternatively route the particular 911 call to a public safety answering point (PSAP), accompanied by an appropriate indicator (i.e. warning). A public safety answering point (PSAP) may then decide on an appropriate punitive action, depending, e.g., on present call volume, 911 call policy, etc.


While the invention has been described with reference to the exemplary embodiments thereof, those skilled in the art will be able to make various modifications to the described embodiments of the invention without departing from the true spirit and scope of the invention.

Claims
  • 1. A method of detecting a prank emergency call, comprising: logging, to a physical prank call database, a unique global identifier assigned to a first prank emergency call from a given wireless device;logging, to said physical prank call database, a first current location of said given wireless device initiating said first prank emergency call;subsequently receiving a subsequent emergency call;obtaining a subsequent current location of a subsequent wireless device while making said subsequent emergency call;querying said physical prank call database for a correlation between said subsequent current location of said subsequent emergency call, and said first current location of said first prank emergency call; anddropping said subsequent emergency call when said correlation is established between said first current location of said first prank emergency call and said subsequent current location of said subsequent emergency call.
  • 2. The method of detecting a prank emergency call according to claim 1, wherein: said correlation corresponds to a match between said first current location and said subsequent current location.
  • 3. The method of detecting a prank emergency call according to claim 2, wherein: said unique global identifier is a mobile subscriber identification number; andsaid correlation corresponds to a match between a mobile subscriber identification number associated with said first prank emergency call, and a mobile subscriber identification number associated with said subsequent emergency call.
  • 4. The method of detecting a prank emergency call according to claim 1, wherein: said unique global identifier is a mobile subscriber identification number; andsaid correlation corresponds to a match between a mobile subscriber identification number associated with said first prank emergency call, and a mobile subscriber identification number associated with said subsequent emergency call.
  • 5. The method of detecting a prank emergency call according to claim 1, further comprising: assigning a unique global identifier to said subsequent emergency call.
  • 6. The method of detecting a prank emergency call according to claim 1, wherein: said physical prank call database assigns said unique global identifier.
  • 7. The method of detecting a prank emergency call according to claim 1, further comprising: expiring said logging of said first prank emergency call after a predetermined period of time.
  • 8. The method of detecting a prank emergency call according to claim 1, wherein: said given wireless device is identified in said physical prank call database with a unique global identifier.
  • 9. The method of detecting a prank emergency call according to claim 8, further comprising: assigning said unique global identifier to said given wireless device at a physical 911 call server.
  • 10. The method of detecting a prank emergency call according to claim 1, wherein: said given wireless device is identified in said physical prank call database with an automatic number identification (ANI) service.
  • 11. The method of detecting a prank emergency call according to claim 1, wherein: said given wireless device is identified in said physical prank call database with an mobile subscriber identification number (MSIN).
  • 12. The method of detecting a prank emergency call according to claim 1, further comprising: storing emergency call data pertaining to said first prank emergency call in said physical prank call database.
  • 13. The method of detecting a prank emergency call according to claim 1, further comprising: said first prank emergency call is a voice call.
  • 14. The method of detecting a prank emergency call according to claim 1, wherein: said given wireless device is not subscribed to a wireless carrier.
  • 15. Apparatus to detect a prank emergency call, comprising: means for logging, to a physical prank call database, a unique global identifier assigned to a first prank emergency call from a given wireless device;means for logging, to said physical prank call database, a first current location of said given wireless device initiating said first prank emergency call;means for subsequently receiving a subsequent emergency call;means for obtaining a subsequent current location of a subsequent wireless device while making said subsequent emergency call;means for querying said physical prank call database for a correlation between said subsequent current location of said subsequent emergency call, and said first current location of said first prank emergency call; andmeans for dropping said subsequent emergency call when said correlation is established between said first current location of said first prank emergency call and said subsequent current location of said subsequent emergency call.
  • 16. The apparatus to detect a prank emergency call according to claim 15, wherein: said correlation corresponds to a match between said first current location and said subsequent current location.
  • 17. The method of detecting a prank emergency call according to claim 15, wherein: said unique global identifier is a mobile subscriber identification number; andsaid correlation corresponds to a match between a mobile subscriber identification number associated with said first prank emergency call, and a mobile subscriber identification number associated with said subsequent emergency call.
  • 18. The method of detecting a prank emergency call according to claim 15, further comprising: means for expiring said logging of said first prank emergency call after a predetermined period of time.
  • 19. The method of detecting a prank emergency call according to claim 15, wherein: said given wireless device is identified in said physical prank call database with an automatic number identification (ANI) service.
  • 20. The method of detecting a prank emergency call according to claim 15, wherein: said given wireless device is not subscribed to a wireless carrier.
Parent Case Info

The present application is a continuation of U.S. application Ser. No. 14/448,320, entitled “Unique Global Identifier Header for Minimizing Prank 911 Calls”, to Goswami et al., filed on Jul. 31, 2014; which is a continuation of U.S. application Ser. No. 13/632,313,entitled “Unique Global Identifier Header for Minimizing Prank Emergency 911 Calls”, to Goswami et at., filed on Oct. 1, 2012, now U.S. Pat. No. 8,831,556; which claims priority from U.S. Provisional No. 61/541,615, entitled “Unique Global Identifier Header for Minimizing Prank Emergency 911 Calls”, to Goswami et al., filed Sep. 30, 2011; the entirety of which are explicitly incorporated herein by reference.

US Referenced Citations (817)
Number Name Date Kind
1103073 O'Connell Jul 1914 A
4445118 Taylor et al. Apr 1984 A
4494119 Wimbush Jan 1985 A
4651156 Martinez Mar 1987 A
4706275 Kamil Nov 1987 A
4737916 Ogawa Apr 1988 A
4891638 Davis Jan 1990 A
4891650 Sheffer Jan 1990 A
4939662 Numura Jul 1990 A
4952928 Carroll Aug 1990 A
4972484 Theile Nov 1990 A
5014206 Scribner May 1991 A
5043736 Darnell Aug 1991 A
5055851 Scheffer Oct 1991 A
5068656 Sutherland Nov 1991 A
5068891 Marshall Nov 1991 A
5070329 Jasinaki Dec 1991 A
5081667 Drori Jan 1992 A
5119104 Heller Jun 1992 A
5126722 Kamis Jun 1992 A
5144283 Arens Sep 1992 A
5161180 Chavous Nov 1992 A
5166972 Smith Nov 1992 A
5177478 Wagai Jan 1993 A
5193215 Olmer Mar 1993 A
5208756 Song May 1993 A
5214789 George May 1993 A
5218367 Sheffer Jun 1993 A
5223844 Mansell Jun 1993 A
5239570 Koster Aug 1993 A
5265630 Hartmann Nov 1993 A
5266944 Carroll Nov 1993 A
5283570 DeLuca Feb 1994 A
5289527 Tiedemann Feb 1994 A
5293642 Lo Mar 1994 A
5299132 Wortham Mar 1994 A
5301354 Schwendeman Apr 1994 A
5311516 Kuznicke May 1994 A
5325302 Izidon Jun 1994 A
5327529 Fults Jul 1994 A
5334974 Simms Aug 1994 A
5335246 Yokev Aug 1994 A
5343493 Karimulah Aug 1994 A
5347568 Moody Sep 1994 A
5351235 Lahtinen Sep 1994 A
5361212 Class Nov 1994 A
5363425 Mufti Nov 1994 A
5365451 Wang Nov 1994 A
5374936 Feng Dec 1994 A
5379451 Nakagoshi Jan 1995 A
5381338 Wysocki Jan 1995 A
5387993 Heller Feb 1995 A
5388147 Grimes Feb 1995 A
5389934 Kass Feb 1995 A
5390339 Bruckery Feb 1995 A
5394158 Chia Feb 1995 A
5396227 Carroll Mar 1995 A
5398190 Wortham Mar 1995 A
5406614 Hara Apr 1995 A
5418537 Bird May 1995 A
5422813 Schuchman Jun 1995 A
5423076 Westergren Jun 1995 A
5434789 Fraker Jul 1995 A
5454024 Lebowitz Sep 1995 A
5461390 Hosher Oct 1995 A
5470233 Fruchterman Nov 1995 A
5479408 Will Dec 1995 A
5479482 Grimes Dec 1995 A
5485161 Vaughn Jan 1996 A
5485163 Singer Jan 1996 A
5488563 Chazelle Jan 1996 A
5494091 Freeman Feb 1996 A
5497149 Fast Mar 1996 A
5504491 Chapman Apr 1996 A
5506886 Maine Apr 1996 A
5508931 Snider Apr 1996 A
5513243 Kage Apr 1996 A
5515287 Hakoyama May 1996 A
5517199 DiMattei May 1996 A
5519403 Bickley May 1996 A
5530655 Lokhoff Jun 1996 A
5530914 McPheters Jun 1996 A
5532690 Hertel Jul 1996 A
5535434 Siddoway Jul 1996 A
5539395 Buss Jul 1996 A
5539398 Hall Jul 1996 A
5539829 Lokhoff Jul 1996 A
5543776 L'Esperance Aug 1996 A
5546445 Dennison Aug 1996 A
5552772 Janky Sep 1996 A
5555286 Tendler Sep 1996 A
5557254 Johnson Sep 1996 A
5568119 Schipper Oct 1996 A
5568153 Beliveau Oct 1996 A
5574648 Pilley Nov 1996 A
5579372 Angstrom Nov 1996 A
5588009 Will Dec 1996 A
5592535 Klotz Jan 1997 A
5594780 Wiedeman Jan 1997 A
5604486 Lauro Feb 1997 A
5606313 Allen Feb 1997 A
5606618 Lokhoff Feb 1997 A
5606850 Nakamura Mar 1997 A
5610815 Gudat Mar 1997 A
5614890 Fox Mar 1997 A
5615116 Gudat Mar 1997 A
5621793 Bednarek Apr 1997 A
5628051 Salin May 1997 A
5629693 Janky May 1997 A
5633912 Tsoi May 1997 A
5636122 Shah Jun 1997 A
5636276 Brugger Jun 1997 A
5661652 Sprague Aug 1997 A
5661755 Van de Kerkhof Aug 1997 A
5682600 Salin Oct 1997 A
5684951 Goldman Nov 1997 A
5689245 Noreen Nov 1997 A
5689269 Norris Nov 1997 A
5689809 Grube Nov 1997 A
5699053 Jonsson Dec 1997 A
5727057 Emery Mar 1998 A
5731785 Lemelson Mar 1998 A
5740534 Ayerst Apr 1998 A
5761618 Lynch Jun 1998 A
5765152 Erickson Jun 1998 A
5767795 Schaphorst Jun 1998 A
5768509 Gunluk Jun 1998 A
5771353 Eggleston Jun 1998 A
5774533 Patel Jun 1998 A
5774670 Montulli Jun 1998 A
5774824 Streit Jun 1998 A
5787357 Salin Jul 1998 A
5794142 Vantilla Aug 1998 A
5797094 Houde Aug 1998 A
5797096 Lupien Aug 1998 A
5801700 Ferguson Sep 1998 A
5802492 DeLorrme Sep 1998 A
5806000 Vo Sep 1998 A
5809415 Rossmann Sep 1998 A
5812086 Bertiger Sep 1998 A
5812087 Krasner Sep 1998 A
5822700 Hult Oct 1998 A
5828740 Khuc Oct 1998 A
5841396 Krasner Nov 1998 A
5857201 Wright, Jr. Jan 1999 A
5864667 Barkam Jan 1999 A
5874914 Krasner Feb 1999 A
5896369 Warsta Apr 1999 A
5920821 Seaholtz Jul 1999 A
5922074 Richard Jul 1999 A
5926118 Hayashida Jul 1999 A
5930250 Klok Jul 1999 A
5944768 Ito Aug 1999 A
5953398 Hill Sep 1999 A
5960362 Grob Sep 1999 A
5974054 Couts Oct 1999 A
5978685 Laiho Nov 1999 A
5982301 Ohta Nov 1999 A
5983099 Yao Nov 1999 A
5983109 Montoya Nov 1999 A
5987323 Huotari Nov 1999 A
5998111 Abe Dec 1999 A
5999124 Sheynblat Dec 1999 A
6002936 Roel-Ng Dec 1999 A
6014602 Kithil Jan 2000 A
6032051 Hall Feb 2000 A
6035025 Hanson Mar 2000 A
6035253 Hayashi Mar 2000 A
6049710 Nilsson Apr 2000 A
6052081 Krasner Apr 2000 A
6058300 Hanson May 2000 A
6058338 Agashe et al. May 2000 A
6061018 Sheynblat May 2000 A
6061346 Nordman May 2000 A
6064336 Krasner May 2000 A
6064875 Morgan May 2000 A
6067045 Castelloe May 2000 A
6070067 Nguyen May 2000 A
6075982 Donovan Jun 2000 A
6081229 Soliman Jun 2000 A
6081508 West Jun 2000 A
6085320 Kaliski, Jr. Jul 2000 A
6091957 Larkins Jul 2000 A
6101378 Barabash Aug 2000 A
6108533 Brohoff Aug 2000 A
6115611 Kimoto Sep 2000 A
6122503 Daly Sep 2000 A
6122520 Want Sep 2000 A
6124810 Segal Sep 2000 A
6131067 Girerd Oct 2000 A
6133874 Krasner Oct 2000 A
6134316 Kallioniemi Oct 2000 A
6134483 Vayanos Oct 2000 A
6138003 Kingdon Oct 2000 A
6148197 Bridges Nov 2000 A
6148198 Anderson Nov 2000 A
6149353 Nilsson Nov 2000 A
6150980 Krasner Nov 2000 A
6154172 Piccionelli Nov 2000 A
6169516 Watanabe Jan 2001 B1
6169891 Gorham Jan 2001 B1
6169901 Boucher Jan 2001 B1
6169902 Kawamoto Jan 2001 B1
6173181 Losh Jan 2001 B1
6178505 Schnieder Jan 2001 B1
6178506 Quick, Jr. Jan 2001 B1
6181935 Gossman Jan 2001 B1
6181939 Ahvenainen Jan 2001 B1
6182006 Meek Jan 2001 B1
6182227 Blair Jan 2001 B1
6185426 Alperovich Feb 2001 B1
6188354 Soliman Feb 2001 B1
6188752 Lesley Feb 2001 B1
6188909 Alanara Feb 2001 B1
6188957 Bechtolsheim Feb 2001 B1
6189098 Kaliski, Jr. Feb 2001 B1
6195557 Havinis Feb 2001 B1
6198431 Gibson Mar 2001 B1
6199045 Giniger Mar 2001 B1
6199113 Alegre Mar 2001 B1
6204844 Fumarolo Mar 2001 B1
6205330 Winbladh Mar 2001 B1
6208290 Krasner Mar 2001 B1
6208854 Roberts Mar 2001 B1
6215441 Moeglein Apr 2001 B1
6219557 Havinis Apr 2001 B1
6223046 Hamill-Keays Apr 2001 B1
6226529 Bruno May 2001 B1
6239742 Krasner May 2001 B1
6247135 Feaugue Jun 2001 B1
6249680 Wax Jun 2001 B1
6249742 Friederich Jun 2001 B1
6249744 Morita Jun 2001 B1
6249873 Richard Jun 2001 B1
6253074 Carlsson Jun 2001 B1
6253203 O'Flaherty Jun 2001 B1
6260147 Quick, Jr. Jul 2001 B1
6266614 Alumbaugh Jul 2001 B1
6275692 Skog Aug 2001 B1
6275849 Ludwig Aug 2001 B1
6278701 Ayyagari Aug 2001 B1
6278936 Jones Aug 2001 B1
6289373 Dezonno Sep 2001 B1
6297768 Allen, Jr. Oct 2001 B1
6307504 Sheynblat Oct 2001 B1
6308269 Proidl Oct 2001 B2
6313786 Sheynblat Nov 2001 B1
6317594 Gossman Nov 2001 B1
6317684 Roeseler Nov 2001 B1
6321091 Holland Nov 2001 B1
6321092 Fitch Nov 2001 B1
6321158 DeLorme Nov 2001 B1
6321257 Kotala Nov 2001 B1
6324542 Wright, Jr. et al. Nov 2001 B1
6327473 Soliman Dec 2001 B1
6327479 Mikkola Dec 2001 B1
6331825 Ladner Dec 2001 B1
6333919 Gaffney Dec 2001 B2
6360093 Ross Mar 2002 B1
6360102 Havinis Mar 2002 B1
6363254 Jones Mar 2002 B1
6366782 Fumarolo Apr 2002 B1
6366856 Johnson Apr 2002 B1
6367019 Ansell Apr 2002 B1
6370389 Isomursu Apr 2002 B1
6377209 Krasner Apr 2002 B1
6397143 Peschke May 2002 B1
6400314 Krasner Jun 2002 B1
6400943 Montoya Jun 2002 B1
6400958 Isomursu Jun 2002 B1
6411254 Moeglein Jun 2002 B1
6415224 Wako Jul 2002 B1
6421002 Krasner Jul 2002 B2
6427001 Contractor Jul 2002 B1
6429808 King Aug 2002 B1
6433734 Krasner Aug 2002 B1
6434381 Moore Aug 2002 B1
6441752 Fomukong Aug 2002 B1
6442384 Shah Aug 2002 B1
6442391 Johansson Aug 2002 B1
6449473 Raivisto Sep 2002 B1
6449476 Hutchison, IV Sep 2002 B1
6456852 Bar Sep 2002 B2
6463272 Wallace Oct 2002 B1
6466788 Carlsson Oct 2002 B1
6477150 Maggenti Nov 2002 B1
6504491 Christians Jan 2003 B1
6505049 Dorenbosch Jan 2003 B1
6510387 Fuchs Jan 2003 B2
6512922 Burg Jan 2003 B1
6512930 Sandegren Jan 2003 B2
6515623 Johnson Feb 2003 B2
6519466 Pande Feb 2003 B2
6522682 Kohli Feb 2003 B1
6526026 Menon Feb 2003 B1
6529500 Pandharipande Mar 2003 B1
6529722 Heinrich Mar 2003 B1
6529829 Turetzky Mar 2003 B2
6531982 White Mar 2003 B1
6538757 Sansone Mar 2003 B1
6539200 Schiff Mar 2003 B1
6539232 Hendrey et al. Mar 2003 B2
6539304 Chansarkar Mar 2003 B1
6542464 Takeda Apr 2003 B1
6542734 Abrol Apr 2003 B1
6542743 Soliman Apr 2003 B1
6549522 Flynn Apr 2003 B1
6549776 Joong Apr 2003 B1
6549844 Egberts Apr 2003 B1
6556832 Soliman Apr 2003 B1
6560461 fomukong May 2003 B1
6560534 Abraham May 2003 B2
6563824 Bhatia May 2003 B1
6564261 Gudjonsson May 2003 B1
6570530 Gaal May 2003 B2
6571095 Koodli May 2003 B1
6571174 Rigazio May 2003 B2
6574558 Kohli Jun 2003 B2
6580390 Hay Jun 2003 B1
6584552 Nishimura Jun 2003 B1
6587691 Granstam Jul 2003 B1
6594500 Bender Jul 2003 B2
6597311 Sheynblat Jul 2003 B2
6600927 Hamilton Jul 2003 B2
6603973 Foladare Aug 2003 B1
6606495 Korpi Aug 2003 B1
6606554 Edge Aug 2003 B2
6609004 Morse Aug 2003 B1
6611757 Brodie Aug 2003 B2
6618670 Chansarkar Sep 2003 B1
6621423 Cooper Sep 2003 B1
6621452 Knockeart Sep 2003 B2
6621810 Leung Sep 2003 B1
6628233 Knockeart Sep 2003 B2
6633255 Krasner Oct 2003 B2
6640184 Rabe Oct 2003 B1
6640185 Yokota et al. Oct 2003 B2
6643516 Stewart Nov 2003 B1
6650288 Pitt Nov 2003 B1
6661353 Gopen Dec 2003 B1
6661372 Girerd Dec 2003 B1
6665540 Rantalainen et al. Dec 2003 B2
6665541 Krasner Dec 2003 B1
6665613 Duvall Dec 2003 B2
6665715 Houri Dec 2003 B1
6671620 Garin Dec 2003 B1
6677894 Sheynblat Jan 2004 B2
6680694 Knockeart Jan 2004 B1
6687504 Raith Feb 2004 B1
6691019 Seeley Feb 2004 B2
6694258 Johnson Feb 2004 B2
6697629 Grilli Feb 2004 B1
6698195 Hellinger Mar 2004 B1
6701144 Kirbas Mar 2004 B2
6703971 Pande Mar 2004 B2
6703972 Van Diggelen Mar 2004 B2
6704651 Van Diggelen Mar 2004 B2
6707421 Drury Mar 2004 B1
6714793 Carey Mar 2004 B1
6718174 Vayanos Apr 2004 B2
6720915 Sheynblat Apr 2004 B2
6721578 Minear Apr 2004 B2
6721652 Sanqunetti Apr 2004 B1
6721716 Gross Apr 2004 B1
6721871 Piispanen Apr 2004 B2
6724342 Bloebaum Apr 2004 B2
6725159 Krasner Apr 2004 B2
6728701 Stoica Apr 2004 B1
6731940 Nagendran May 2004 B1
6734821 Van Diggelen May 2004 B2
6738013 Orler May 2004 B2
6738800 Aquilon May 2004 B1
6741842 Goldberg May 2004 B2
6744856 Karnik Jun 2004 B2
6744858 Ryan Jun 2004 B1
6745038 Callaway, Jr. Jun 2004 B2
6747596 Orler Jun 2004 B2
6748195 Phillips Jun 2004 B1
6751464 Burg Jun 2004 B1
6756938 Zhao Jun 2004 B2
6757266 Hundscheidt Jun 2004 B1
6757544 Rangarajan Jun 2004 B2
6757545 Nowak Jun 2004 B2
6766174 Kenyon Jul 2004 B1
6771639 Holden Aug 2004 B1
6771742 McCalmont Aug 2004 B2
6772340 Peinado Aug 2004 B1
6775267 Kung Aug 2004 B1
6775534 Lindgren Aug 2004 B2
6775655 Peinado Aug 2004 B1
6775802 Gaal Aug 2004 B2
6778136 Gronemeyer Aug 2004 B2
6778885 Agashe Aug 2004 B2
6781963 Crockett Aug 2004 B2
6788249 Farmer Sep 2004 B1
6795444 Vo Sep 2004 B1
6795699 McCraw Sep 2004 B1
6799049 Zellner Sep 2004 B1
6799050 Krasner Sep 2004 B1
6801159 Swope Oct 2004 B2
6801850 Wolfson Oct 2004 B1
6804524 Vandermeijden Oct 2004 B1
6807534 Erickson Oct 2004 B1
6810323 Bullock Oct 2004 B1
6810405 LaRue Oct 2004 B1
6813264 Vassilovski Nov 2004 B2
6813501 Kinnunen Nov 2004 B2
6813560 Van Diggelen Nov 2004 B2
6816111 Krasner Nov 2004 B2
6816710 Krasner Nov 2004 B2
6816719 Heinonen Nov 2004 B1
6816734 Wong Nov 2004 B2
6816782 Walters Nov 2004 B1
6819919 Tanaka Nov 2004 B1
6820269 Baucke et al. Nov 2004 B2
6829475 Lee Dec 2004 B1
6829532 Obradovich Dec 2004 B2
6832373 O'Neill Dec 2004 B2
6839020 Geier Jan 2005 B2
6839021 Sheynblat Jan 2005 B2
6839417 Weisman Jan 2005 B2
6839630 Sakamoto Jan 2005 B2
6842696 Silvester Jan 2005 B2
6842715 Gaal Jan 2005 B1
6845321 Kerns Jan 2005 B1
6847822 Dennison Jan 2005 B1
6853916 Fuchs Feb 2005 B2
6856282 Mauro Feb 2005 B2
6861980 Rowitch Mar 2005 B1
6865171 Nilsson Mar 2005 B1
6865395 Riley Mar 2005 B2
6867733 Sandhu Mar 2005 B2
6867734 Voor Mar 2005 B2
6873854 Crockett Mar 2005 B2
6882850 McConnell et al. Apr 2005 B2
6885874 Grube Apr 2005 B2
6885940 Brodie Apr 2005 B2
6888497 King May 2005 B2
6888932 Snip May 2005 B2
6895238 Newell May 2005 B2
6895249 Gaal May 2005 B2
6895329 Wolfson May 2005 B1
6898516 Pechatnikov May 2005 B2
6900758 Mann May 2005 B1
6903684 Simic Jun 2005 B1
6904029 Fors Jun 2005 B2
6907224 Younis Jun 2005 B2
6907238 Leung Jun 2005 B2
6910818 McLoone Jun 2005 B2
6912230 Salkini Jun 2005 B1
6912395 Benes Jun 2005 B2
6912545 Lundy Jun 2005 B1
6915208 Garin Jul 2005 B2
6917331 Gronemeyer Jul 2005 B2
6925603 Naito Aug 2005 B1
6930634 Peng Aug 2005 B2
6934705 Tu Aug 2005 B2
6937187 Van Diggelen Aug 2005 B2
6937872 Krasner Aug 2005 B2
6940950 Dickinson et al. Sep 2005 B2
6941144 Stein Sep 2005 B2
6944535 Iwata Sep 2005 B2
6944540 King Sep 2005 B2
6947772 Minear Sep 2005 B2
6950058 Davis Sep 2005 B1
6957068 Hutchison Oct 2005 B2
6957073 Bye Oct 2005 B2
6961562 Ross Nov 2005 B2
6963557 Knox Nov 2005 B2
6963748 Chithambaram Nov 2005 B2
6965754 King Nov 2005 B2
6965767 Maggenti Nov 2005 B2
6968044 Beason Nov 2005 B2
6970871 Rayburn Nov 2005 B1
6970917 Kushwaha Nov 2005 B1
6973320 Brown Dec 2005 B2
6975266 Abraham Dec 2005 B2
6978453 Rao Dec 2005 B2
6980816 Rohler Dec 2005 B2
6985747 Chithambaram Jan 2006 B2
6990081 Schaefer Jan 2006 B2
6993355 Pershan Jan 2006 B1
6996720 DeMello Feb 2006 B1
6999782 Shaughnessy Feb 2006 B2
7024321 Deninger Apr 2006 B1
7024393 Peinado Apr 2006 B1
7047411 DeMello May 2006 B1
7058506 Kawase Jun 2006 B2
7065351 Carter Jun 2006 B2
7065507 Mohammed Jun 2006 B2
7072667 Olrik Jul 2006 B2
7079857 Maggenti Jul 2006 B2
7089110 Pechatnikov Aug 2006 B2
7092385 Gallant Aug 2006 B2
7103018 Hansen Sep 2006 B1
7103574 Peinado Sep 2006 B1
7106717 Rousseau Sep 2006 B2
7110773 Wallace Sep 2006 B1
7136466 Gao Nov 2006 B1
7136838 Peinado Nov 2006 B1
7142163 Fukano Nov 2006 B2
7142196 Connor Nov 2006 B1
7142205 Chithambaram Nov 2006 B2
7145900 Nix Dec 2006 B2
7151946 Maggenti Dec 2006 B2
7167187 Scott Jan 2007 B2
7171220 Belcea Jan 2007 B2
7171304 Wako Jan 2007 B2
7177397 McCalmont Feb 2007 B2
7177398 Meer Feb 2007 B2
7177399 Dawson Feb 2007 B2
7184418 Baba Feb 2007 B1
7200380 Havlark Apr 2007 B2
7202801 Chou Apr 2007 B2
7209758 Moll Apr 2007 B1
7209969 Lahti Apr 2007 B2
7218940 Niemenna May 2007 B2
7221959 Lindquist May 2007 B2
7245900 Lamb Jul 2007 B1
7245910 Osmo Jul 2007 B2
7260186 Zhu Aug 2007 B2
7260384 Bales Aug 2007 B2
7266376 Nakagawa Sep 2007 B2
7286929 Staton Oct 2007 B2
7330899 Wong Feb 2008 B2
7333480 Clarke Feb 2008 B1
7340241 Rhodes Mar 2008 B2
7369508 Parantainen May 2008 B2
7369530 Keagy May 2008 B2
7424293 Zhu Sep 2008 B2
7426380 Hines Sep 2008 B2
7428571 Ichimura Sep 2008 B2
7436785 McMullen Oct 2008 B1
7440442 Grabelsky Oct 2008 B2
7450951 Vimpari Nov 2008 B2
7453990 Welenson Nov 2008 B2
7477903 Wilcock Jan 2009 B2
7495608 Chen Feb 2009 B1
7522581 Acharya Apr 2009 B2
7565157 Ortega Jul 2009 B1
7602886 Beech Oct 2009 B1
7623447 Faccin Nov 2009 B1
7627331 Winterbottom Dec 2009 B2
7653544 Bradley Jan 2010 B2
7660321 Cortes Feb 2010 B2
7702081 Klesper Apr 2010 B1
7711094 Olshansky May 2010 B1
7739033 Murata Jun 2010 B2
7747258 Farmer Jun 2010 B2
7751614 Funakura Jul 2010 B2
7774003 Ortega Aug 2010 B1
7783297 Ishii Aug 2010 B2
7822823 Jhanji Oct 2010 B2
7881233 Bieselin Feb 2011 B2
7881730 Sheha Feb 2011 B2
7895263 Kirchmeier Feb 2011 B1
7937067 Maier May 2011 B2
20010011247 O'Flaherty Aug 2001 A1
20010015756 Wilcock Aug 2001 A1
20010016849 Squibbs Aug 2001 A1
20020032036 Nakajima Mar 2002 A1
20020037735 Maggenti Mar 2002 A1
20020052214 Maggenti May 2002 A1
20020061760 Maggenti May 2002 A1
20020069239 Katada Jun 2002 A1
20020069529 Wieres Jun 2002 A1
20020077083 Zellner Jun 2002 A1
20020077084 Zellner Jun 2002 A1
20020077118 Zellner Jun 2002 A1
20020077897 Zellner Jun 2002 A1
20020085538 Leung Jul 2002 A1
20020086683 Kohar Jul 2002 A1
20020102996 Jenkins Aug 2002 A1
20020102999 Maggenti Aug 2002 A1
20020111172 DeWolf Aug 2002 A1
20020112047 Kushwaha Aug 2002 A1
20020118650 Jagadeesan Aug 2002 A1
20020123327 Vataja Sep 2002 A1
20020123354 Nowak Sep 2002 A1
20020126656 Park Sep 2002 A1
20020130906 Miyaki Sep 2002 A1
20020158777 Flick Oct 2002 A1
20020164998 Younis Nov 2002 A1
20020169539 Menard Nov 2002 A1
20020173317 Nykanen Nov 2002 A1
20020191595 Mar Dec 2002 A1
20030009277 Fan Jan 2003 A1
20030009602 Jacobs Jan 2003 A1
20030012148 Peters Jan 2003 A1
20030013449 Hose Jan 2003 A1
20030014487 Iwakawa Jan 2003 A1
20030016804 Sheha Jan 2003 A1
20030026245 Ejzak Feb 2003 A1
20030032448 Bulthuis Feb 2003 A1
20030036848 Sheha Feb 2003 A1
20030036949 Kaddeche Feb 2003 A1
20030037163 Kitada Feb 2003 A1
20030040272 Lelievre Feb 2003 A1
20030045327 Kobayashi Mar 2003 A1
20030054835 Gutowski Mar 2003 A1
20030060938 Duvall Mar 2003 A1
20030065788 Salomaki Apr 2003 A1
20030072318 Lam Apr 2003 A1
20030078054 Okuda Apr 2003 A1
20030078064 Chan Apr 2003 A1
20030081557 Mettala May 2003 A1
20030096623 Kim May 2003 A1
20030101329 Lahti May 2003 A1
20030101341 Kettler May 2003 A1
20030103484 Oommen Jun 2003 A1
20030108176 Kung Jun 2003 A1
20030114157 Spitz Jun 2003 A1
20030119521 Tipnis Jun 2003 A1
20030119528 Pew Jun 2003 A1
20030125064 Koskinen Jul 2003 A1
20030126250 Jhanji Jul 2003 A1
20030137961 Tsirtsis Jul 2003 A1
20030149526 Zhou Aug 2003 A1
20030151501 Teckchandani Aug 2003 A1
20030153340 Crockett Aug 2003 A1
20030153341 Crockett Aug 2003 A1
20030153342 Crockett Aug 2003 A1
20030153343 Crockett Aug 2003 A1
20030161298 Bergman Aug 2003 A1
20030165254 Chen Sep 2003 A1
20030182053 Swope Sep 2003 A1
20030186709 Rhodes Oct 2003 A1
20030196105 Fineburg Oct 2003 A1
20030201931 Durst Oct 2003 A1
20030204640 Sahineja Oct 2003 A1
20030223381 Schroderus Dec 2003 A1
20030231190 Jawerth Dec 2003 A1
20030236618 Kamikawa Dec 2003 A1
20040002326 Maher Jan 2004 A1
20040002814 Gogic Jan 2004 A1
20040008225 Campbell Jan 2004 A1
20040021567 Dunn Feb 2004 A1
20040032485 Stephens Feb 2004 A1
20040041729 Rowitch Mar 2004 A1
20040043775 Kennedy Mar 2004 A1
20040044623 Wake Mar 2004 A1
20040047342 Gavish Mar 2004 A1
20040047461 Weisman et al. Mar 2004 A1
20040054428 Sheha Mar 2004 A1
20040068724 Gardner Apr 2004 A1
20040076277 Kuusinen Apr 2004 A1
20040098497 Banet May 2004 A1
20040124977 Biffar Jul 2004 A1
20040132465 Mattila Jul 2004 A1
20040146040 Phan-Anh Jul 2004 A1
20040181689 Kiyoto Sep 2004 A1
20040184584 McCalmont Sep 2004 A1
20040186880 Yamamoto Sep 2004 A1
20040190497 Knox Sep 2004 A1
20040198332 Lundsgaard Oct 2004 A1
20040198375 Schwengler Oct 2004 A1
20040198386 Dupray Oct 2004 A1
20040204829 Endo Oct 2004 A1
20040204847 Yanai Oct 2004 A1
20040205151 Sprigg Oct 2004 A1
20040205517 Lampert Oct 2004 A1
20040220957 McDonough Nov 2004 A1
20040229632 Flynn Nov 2004 A1
20040242238 Wang Dec 2004 A1
20040267445 De Luca Dec 2004 A1
20050027445 McDonough Feb 2005 A1
20050028034 Gantman Feb 2005 A1
20050031095 Pietrowicz Feb 2005 A1
20050039178 Marolia Feb 2005 A1
20050041578 Huotari Feb 2005 A1
20050043037 Ioppe Feb 2005 A1
20050043038 Maanoja Feb 2005 A1
20050053209 D'Evelyn Mar 2005 A1
20050062636 Conway Mar 2005 A1
20050063519 James Mar 2005 A1
20050071671 Karaoguz Mar 2005 A1
20050078612 Lang Apr 2005 A1
20050083911 Grabelsky Apr 2005 A1
20050085999 Onishi Apr 2005 A1
20050086467 Asokan Apr 2005 A1
20050090236 Schwinke Apr 2005 A1
20050101335 Kelly May 2005 A1
20050107673 Ball May 2005 A1
20050112030 Gaus May 2005 A1
20050119012 Merheb Jun 2005 A1
20050125148 Van Buer Jun 2005 A1
20050134504 Harwood Jun 2005 A1
20050135569 Dickinson Jun 2005 A1
20050136885 Kaltsukis Jun 2005 A1
20050149430 Williams Jul 2005 A1
20050159883 Humphries Jul 2005 A1
20050174991 Keagy Aug 2005 A1
20050190746 Xiong Sep 2005 A1
20050190892 Dawson Sep 2005 A1
20050192822 Hartenstein Sep 2005 A1
20050201528 Meer Sep 2005 A1
20050201529 Nelson Sep 2005 A1
20050209995 Aksu Sep 2005 A1
20050213716 Zhu Sep 2005 A1
20050219067 Chung Oct 2005 A1
20050232252 Hoover Oct 2005 A1
20050239458 Hurtta Oct 2005 A1
20050242168 Tesavis Nov 2005 A1
20050255857 Kim Nov 2005 A1
20050259675 Tuohino Nov 2005 A1
20050261002 Cheng Nov 2005 A1
20050265318 Khartabil Dec 2005 A1
20050271029 Iffland Dec 2005 A1
20050282518 D'Evelyn Dec 2005 A1
20050287979 Rollender Dec 2005 A1
20050289097 Trossen Dec 2005 A1
20060008065 Longman et al. Jan 2006 A1
20060019724 Bahl Jan 2006 A1
20060023747 Koren et al. Feb 2006 A1
20060026288 Acharya Feb 2006 A1
20060041375 Witmer Feb 2006 A1
20060053225 Poikselka Mar 2006 A1
20060058102 Nguyen et al. Mar 2006 A1
20060068753 Karpen Mar 2006 A1
20060069503 Suomela Mar 2006 A1
20060072729 Lee et al. Apr 2006 A1
20060074547 Kaufman Apr 2006 A1
20060077911 Shaffer Apr 2006 A1
20060088152 Green Apr 2006 A1
20060104306 Adamczyk May 2006 A1
20060120517 Moon Jun 2006 A1
20060128395 Muhonen Jun 2006 A1
20060135177 Winterbottom Jun 2006 A1
20060188083 Breen Aug 2006 A1
20060193447 Schwartz Aug 2006 A1
20060200359 Khan Sep 2006 A1
20060212558 Sahinoja Sep 2006 A1
20060212562 Kushwaha Sep 2006 A1
20060224752 Parekh Oct 2006 A1
20060233338 Venkata Oct 2006 A1
20060234639 Kushwaha Oct 2006 A1
20060234698 Fok Oct 2006 A1
20060239205 Warren Oct 2006 A1
20060250987 White Nov 2006 A1
20060258380 Liebowitz Nov 2006 A1
20060259365 Agarwal et al. Nov 2006 A1
20060268120 Funakura Nov 2006 A1
20060270421 Phillips Nov 2006 A1
20060281437 Cook Dec 2006 A1
20060293024 Benco Dec 2006 A1
20060293066 Edge Dec 2006 A1
20070003024 Olivier Jan 2007 A1
20070004461 Bathina Jan 2007 A1
20070014282 Mitchell Jan 2007 A1
20070019614 Hoffmann Jan 2007 A1
20070021908 Jaugilas Jan 2007 A1
20070022011 Altberg et al. Jan 2007 A1
20070026854 Nath Feb 2007 A1
20070026871 Wager Feb 2007 A1
20070027997 Polk Feb 2007 A1
20070030539 Nath Feb 2007 A1
20070032244 Counts Feb 2007 A1
20070036139 Patel Feb 2007 A1
20070049288 Lamprecht Mar 2007 A1
20070054676 Duan Mar 2007 A1
20070060097 Edge Mar 2007 A1
20070072553 Barbera Mar 2007 A1
20070081635 Croak Apr 2007 A1
20070083911 Madden Apr 2007 A1
20070115941 Patel May 2007 A1
20070121601 Kikinis May 2007 A1
20070139411 Jawerth Jun 2007 A1
20070149166 Turcotte Jun 2007 A1
20070149213 Lamba Jun 2007 A1
20070162228 Mitchell Jul 2007 A1
20070182631 Berlinsky Aug 2007 A1
20070201623 Hines Aug 2007 A1
20070206568 Silver Sep 2007 A1
20070206613 Silver Sep 2007 A1
20070208687 O'Connor Sep 2007 A1
20070242660 Xu Oct 2007 A1
20070253429 James Nov 2007 A1
20070254625 Edge Nov 2007 A1
20070263610 Mitchell Nov 2007 A1
20070270164 Maier Nov 2007 A1
20070291733 Doran Dec 2007 A1
20080032703 Krumm Feb 2008 A1
20080037715 Prozeniuk Feb 2008 A1
20080045250 Hwang Feb 2008 A1
20080063153 Krivorot Mar 2008 A1
20080065775 Polk Mar 2008 A1
20080077324 Hatano Mar 2008 A1
20080117859 Shahidi May 2008 A1
20080129475 Breed Jun 2008 A1
20080162637 Adamczyk Jul 2008 A1
20080176582 Ghai Jul 2008 A1
20080186164 Emigh Aug 2008 A1
20080195314 Green Aug 2008 A1
20080200182 Shim Aug 2008 A1
20080214202 Toomey Sep 2008 A1
20080220747 Ashkenazi Sep 2008 A1
20080288166 Onishi Nov 2008 A1
20090003535 Grabelsky Jan 2009 A1
20090067417 Kalavade Mar 2009 A1
20090097450 Wallis Apr 2009 A1
20090113346 Wickramasuriya Apr 2009 A1
20090128404 Martino May 2009 A1
20090177557 Klein Jul 2009 A1
20090224931 Dietz Sep 2009 A1
20090298488 Snapp Dec 2009 A1
20090328163 Preece Dec 2009 A1
20100003976 Zhu Jan 2010 A1
20100004993 Troy Jan 2010 A1
20100042592 Stolz Feb 2010 A1
20100067444 Faccin Mar 2010 A1
20100069034 Dickinson Mar 2010 A1
20100167760 Kim Jul 2010 A1
20100172482 Fotta Jul 2010 A1
20100188992 Raleigh Jul 2010 A1
20100268848 Maurya Oct 2010 A1
20110113060 Martini May 2011 A1
20110165861 Wilson et al. Jul 2011 A1
Foreign Referenced Citations (6)
Number Date Country
WO9921380 Apr 1999 WO
WO0145342 Jun 2001 WO
WO0211407 Feb 2002 WO
WO2004025941 Mar 2004 WO
WO2007027166 Jun 2005 WO
WO 2005051033 Jun 2005 WO
Non-Patent Literature Citations (18)
Entry
Le-Pond Chin, Jyh-Hong Wen, Ting-Way Liu, The Study of the Interconnection of GSM Mobile Communications Systems Over IP Based Network, May 6, 2001, IEEE, Vehicular Technology Conference, vol. 3, pp. 2219-2223.
Qualcomm CDMA Technologies, LBS Control Plane Roaming—80-VD377-1NP A, 2006, pp. 1-10.
Qualcomm CDMA Technologies, MS Resident User Plane LBS Roaming—80-VC718-1 E, 2006, pp. 1-37.
3rd Generation Partnership Project 2, Position Determination Service Standard for Dual Mode Spread Spectrum Systems, Feb. 16, 2001, pp. i-X, 1-1—1-5, 2-1—2-2, 3-1—3-51, 4-1—4-66, A-1—A2, B-1—B-2, C-1—C-2, D-1—D-2.
Intrado Inc., Qwest Detailed SR/ALI to MPC/GMLC Interface Specification for TCP/IP Implementation of TIA/EIA/J-STD-036 E2 with Phase I Location Description Addition, Intrado Informed Response; Apr. 2004; Issue 1.11; pp. 1-57.
Extended European Search Report from EPO in European Appl. No. 06827172.5 dated Dec. 29, 2009.
Qualcomm CDMA Technologies, LBS Control Plane/User Plane Overview—80-VD378-1NP B, 2006, pp. 1-36.
Bhalla et al, TELUS, Technology Strategy—LBS Roaming Summit, Sep. 19, 2006.
Alfredo Aguirre, Ilusacell, First and Only Carrier in Mexico with a 3G CDMA Network, 2007.
Mike McMullen, Sprint, LBS Roaming Summit, Sep. 19, 2006.
Nars Haran, U.S. Cellular, Packet Data—Roaming and LBS Overview, Nov. 2, 2007, pp. 1-15.
Location Based Services V2 Roaming Support (non proprietary), 80-V8470-2NP A, dated Jan. 27, 2005, pp. 1-56.
Yilin Ahao, Efficient and reliable date transmission for cellular and GPS based mayday systems, Nov. 1997, IEEE, IEEE Conference on Intelligent Transportation System, 1997. ITSC 97, 555-559.
Examiner's Office Letterin Japanese Patent Application No. 2006-542691 dated Sep. 7, 2009.
JP Laid-Open Gazette No. 2004-158947 (English abstract only).
JP Laid-Open Gazette No. 2007-507123 (counterpart English text US Patent Application Publication No. 2007/0054676).
T. Hattori, “Wireless Broadband Textbook,” IDG Japan, Jun. 10, 2002, p. 142-p. 143. (no English text).
Schulzrinne et al., Emergency Services for Internet Telephony Systems draft-schulzrinne-sipping-emergency-arch, IETF Standard Working Draft, Feb. 4, 2004, 1-22.
Related Publications (1)
Number Date Country
20160006869 A1 Jan 2016 US
Provisional Applications (1)
Number Date Country
61541615 Sep 2011 US
Continuations (2)
Number Date Country
Parent 14448320 Jul 2014 US
Child 14851480 US
Parent 13632313 Oct 2012 US
Child 14448320 US