An improved integrated design and method of centralizing unison rings used in gas turbine engines is provided. More particularly, a design and method to accommodate for thermal variations between components such as the engine casing and unison ring is provided.
Gas turbine engines commonly utilize variable vane assemblies to control the flow of a fluid, usually air or combustion products, through various compression and expansion stages of the engine. Typically, they comprise Inlet Guide Vanes (IGVs) or Stator Vanes (SVs) disposed within the flow passages of the engine adjacent to rotor blade assemblies, usually in the compressor stages or fans of the engine although variable stator vanes may also be used in power turbines. Air passing between the vanes is directed at an appropriate angle of incidence for the succeeding rotating blades.
Each vane in a variable vane assembly is rotatably mounted about its longitudinal axis within the flow path of a compressor or turbine. The vane is connected at its radially outer end to a lever which, in turn, is pivotally connected to a unison ring. The unison ring is mounted on carriers so that it is rotatable about its central axis, which coincides with the engine axis.
The unison ring is rotated by means of one or more actuators, acting on the ring. The actuators exert a tangential load on the unison ring causing the ring to rotate about its central axis. Rotation of the unison ring actuates each of the levers causing the vanes to rotate, in unison, about their respective longitudinal axes. The vanes can thus be adjusted in order to control the flow conditions within the respective compressor or turbine stages.
It is known that when a unison ring is not properly centralized around the engine casing, it may impart vane angle errors within the variable vane assembly. Unison ring decentralization may be caused by gravity, assembly loads, the number of actuators, warpage, or a variety of operating conditions. In addition, the engine casing often experiences thermal expansion during operation. This thermal expansion can vary the gap between the unison ring and the engine casing. Attempts to properly center the unison ring on the engine casing must accommodate the varying tolerances caused by such thermal expansion.
Overcoming these concerns would be helpful, could improve vane angle accuracy, and could minimize variations caused by thermal expansion.
While the claims are not limited to a specific illustration, an appreciation of the various aspects is best gained through a discussion of various examples thereof. Referring now to the drawings, exemplary illustrations are shown in detail. Although the drawings represent the illustrations, the drawings are not necessarily to scale and certain features may be exaggerated to better illustrate and explain an innovative aspect of an example. Further, the exemplary illustrations described herein are not intended to be exhaustive or otherwise limiting or restricted to the precise form and configuration shown in the drawings and disclosed in the following detailed description. Exemplary illustrations are described in detail by referring to the drawings as follows:
A centralizing assembly is described herein and is shown in the attached drawings. A gas turbine engine assembly utilizes a centralizing assembly to maintain the unison ring in proper orientation around the engine casing. The present disclosure describes such a system. In addition, the present disclosures describes a method of centralizing a unison ring around an engine casing that is adapted to accommodate thermal expansion of the engine casing.
Air entering the intake 12 is accelerated by the fan 14 to produce a bypass flow and a core flow. The bypass flow travels down the bypass duct 34 and exits the bypass exhaust nozzle 36 to provide the majority of the propulsive thrust produced by the engine 10. The core flow enters in axial flow series the intermediate pressure compressor 18, high pressure compressor 20 and the combustor 22, where fuel is added to the compressed air and the mixture burnt. The hot combustion products expand through and drive the high, intermediate and low-pressure turbines 24, 26, 28 before being exhausted through the nozzle 30 to provide additional propulsive thrust. The high, intermediate and low-pressure turbines 24, 26, 28 respectively drive the high and intermediate pressure compressors 20, 18 and the fan 14 by interconnecting shafts 38, 40, 42.
The engine assembly 10 includes variable vane arrangement in various locations throughout the assembly to control the air flow passing through the engine core and to improve the performance of the engine.
The angle of the variable vanes 50 may be affected if the unison ring 54 is not properly centered on the engine casing 52. Deviations of a unison ring 54 away from center may impart vane angle errors to some of the variable vanes 50. Maintaining the unison ring 54 centered on the engine casing 52 is useful not only on production engines, but is important for engine development and vane angle optimization testing purposes. Therefore, a centralizing assembly 60, as shown in
A spacing gap 64 is present between the unison ring 54 and the engine casing 52. The spacing gap 64 may vary due to thermal expansion of the engine casing 52 during engine operation. During startup or partial power operations as illustrated in
Current centralizer designs utilize a cold build gap between a centralizer and the engine casing to account for the thermal expansion 68 of the engine casing 52. This is to allow the thermal expansion 68 to increase to the minimum spacing gap 70 without biding the unison ring 54 to the engine casing 52. Such a binding could result in a loss of control of the vane angles. Unfortunately, this means that current centralizer designs must leave a gap between any centralizer and the engine casing 52 during partial power in order to prevent binding at maximum power. This presents issues at partial power wherein the cold gap can allow the unison ring 54 to float and move off center changing vane angles and reducing the surge margin. The centralizing assembly 60 disclosed, however, does not require a cold build gap and does not float at partial power.
A detailed view of the centralizing assembly 60 is illustrated in
The conical spring washers 76 may be stacked in a variety of fashions. In
The described centralizing assembly 60 can be implemented in a variety of novel fashions due to its flexibility and customization at teach centralizer element 62 location. In one exemplary example shown in
Finally, the centralizing assembly 60 can be implemented to tailor the centralizing needs of specific engine designs or even specific engines at times during their operation lifespans. A method 300 for centralizing a unison ring around an engine casing is illustrated in
The method then contemplates mounting a plurality of centralizer elements around the unison ring, each centralizer element comprising a plunger element movably mounted to the unison ring and a plurality of conical spring washers mounted to the plunger element, wherein each plunger element spans a spacing gap between the unison ring and the engine casing and exerts a centralizing force on the engine casing 330. The locations of these centralizer elements are preferably symmetrically distributed around the unison ring. The method then individually adjusting the number of conical spring washers on each plunger element to accommodate the thermal expansion characteristics and the dimensional tolerance characteristics such that the unison ring is centralized around the engine casing between a maximum spacing gap and a minimum spacing gap 340. This allows precise control of centralization forces and deflections that directly correspond to the individually determined characteristics of a specific gas turbine engine. As a result an improvement in both vane accuracy as well as thermal expansion tolerance is accomplished.
Although step 340 may be accomplished in a variety of fashions, in one exemplary example it is performed by adjusting the number of conical spring washers stacked in parallel on each plunger element to maintain a centralizing force on the engine casing 350. The step is further performed by adjusting the number of conical spring washers stacked in series on each plunger element to allow each plunger to maintain contact with the engine casing between a maximum spacing gap and a minimum spacing gap, wherein the spacing gap moves between the maximum spacing gap and the minimum spacing gap in response to thermal expansion of the engine casing 360. It should be understood that the precise arrangement conical spring washers in parallel, series, or a combination parallel and series may be configured in a variety of fashions in response to design and performance considerations.
It will be appreciated that the aforementioned method and devices may be modified to have some components and steps removed, or may have additional components and steps added, all of which are deemed to be within the spirit of the present disclosure. Even though the present disclosure has been described in detail with reference to specific embodiments, it will be appreciated that the various modifications and changes can be made to these embodiments without departing from the scope of the present disclosure as set forth in the claims. The specification and the drawings are to be regarded as an illustrative thought instead of merely restrictive thought.
This application claims priority to U.S. Provisional Patent Application No. 62/056,931 filed Sep. 29, 2014, the contents of which are hereby incorporated in its entirety.
This disclosure was made with government support under FA8650-07-C-2803 awarded by the Department of Defense. The government has certain rights in the disclosure.
Number | Date | Country | |
---|---|---|---|
62056931 | Sep 2014 | US |