The present invention is directed to a unit or one or more members that allows an elevator component to withstand a force generated by a seismic event or other significant force generating event. The elevator component can be an elevator car or a counterweight. More specifically, the unit or one or more members prevent an elevator guide member mounted or otherwise connected to an elevator component from altering its operational position relative to a rail of an elevator when the elevator is subjected to a seismic or other significant force generating event. In a most preferred embodiment, the unit takes the form of an adapter assembly for connecting a guiding member (e.g., roller guide or slide guide) to a component of an elevator where a hole pattern in the component of the elevator is different from an existing hole pattern of the guiding member.
Typically, an elevator car travels along a pair of opposing guide rails located in a shaft or hoist way of a building structure. It is customary to employ four guides members (e.g., roller guides or slide guides) per elevator car to guide the elevator car along the guide rails as the car is moved in a shaft or hoist way. It is equally customary to employ guide members (e.g., roller guides or slide guides) for the counterweight for a given elevator car.
Two of the guide members are secured to the upper portion of the elevator car or a corresponding counterweight in such a manner as to engage the corresponding guide rail. The remaining two guides members are secured to the lower portion of the elevator car or a corresponding counterweight in a similar manner to engage the corresponding guide rail. The guide members may be roller guides having a plurality of rollers that engage and travel along the corresponding guide rail. Typically, each roller guide includes three or six rollers. The present invention is not limited to elevator roller guides having a particular number of rollers or guide members that have rollers. Rather, the present invention can be used with elevator roller guides having differing numbers of rollers or guide members that do not have any rollers (e.g., slide guides).
Guide members typically include a base having a fixed pattern of openings through which bolts extend to mount or connect the guides members to the corresponding component of the elevator (e.g., frame of an elevator car or component of a counterweight). The pattern of openings in the base of different guides members typically differ, i.e., no standard exists for the pattern of openings in the base of the differing types of guide member.
Over time or with advancement in guide members it becomes necessary to replace the existing guide member. This replacement process typically requires an installer to measure the existing hole pattern of the elevator component whose guide member is to be replaced. If it is determined that the existing hole pattern of the elevator component whose guides members are to be replaced differs from the hole pattern of the replacement guide member, then the installer must fabricate an adapter plate that will compensate for the two differing hole patterns. The above process of measuring and comparing the existing hole pattern of the elevator component to the hole pattern of the replacement guide member and then fabricating an adapter plate specific to the replacement guide member is extremely time consuming.
In an effort to overcome the aforementioned time-consuming process, adapter kits/mounting assemblies have been developed one of which is disclosed in U.S. Pat. No. 8,251,186 and another of which is disclosed in U.S. Pat. No. 9,708,161. However, previously developed adapter kits/mounting assemblies include one or more adjustable/moveable components which when the elevator is subjected to a seismic or other significant force generating event will cause the operational position of the guide member relative to a rail of the elevator to be altered/changed. As such, the previously known adapter kits/mounting assemblies cannot be used in geographical areas where the elevator component may be subjected to a seismic or other significant force generating event.
Hence, there exists a significant need for a device that can readily allow a guide member having a hole pattern different from the hole pattern of an elevator component to be connected to the elevator component wherein the device is configured such that when the elevator is subjected to a seismic or other significant force generating event the operational position of the guide member relative to a rail of the elevator remains unchanged.
Further, there exists a significant need for a guide member that can compensate for differences in hole patterns without any intermediate element or elements mounted between the base of the guide member and the surface of the elevator component that the base of the guide member is directly mounted on.
An object of the present invention is to provide a novel and unobvious device for a component of an elevator.
Another object of a preferred embodiment of the present invention is to provide a device for a component of an elevator where the hole pattern of the elevator component differs from the hole pattern in the base of a guide member without the need for an installer to fabricate an adapter plate after determining that the existing hole pattern in the component differs from the existing hole pattern in a guide member wherein the device is configured such that when the elevator component is subjected to a seismic event (e.g., earthquake) or other significant force generating event the operational position of the guide member relative to a rail of the elevator remains unchanged.
A further object of a preferred embodiment of the present invention is to provide a device for a guide member wherein the device includes one or more locking/anti-movement/anti-adjustment members that do not hamper the adjustability of the device as the device is being installed to connect a guide member to an elevator component while preventing the operational position of the guide member relative to a rail of an elevator from changing once the one or more locking/anti-movement/anti-adjustment members are installed even when the elevator is subjected to a seismic event or other significant force generating event.
Yet another object of a preferred embodiment of the present invention is to provide a device having a plurality of members at least one of which is adjustable to allow a guide member having a hole pattern different from the hole pattern of an elevator component to be connected to the elevator component wherein the adapter assembly further includes one or more locking or other securement/anti-movement devices that when installed prevent adjustment/movement of the adjustable member so that even when the elevator experiences a predetermined force (e.g., a force imparted by a seismic event) the operational position of the guide member relative to a rail of the elevator remains unchanged.
Yet still another object of a preferred embodiment of the present invention is to provide a device having a plurality of members at least one of which is adjustable to allow a guide member having a hole pattern different from the hole pattern of the corresponding elevator component to be connected to the corresponding elevator component wherein the device is configured such that when the elevator is subjected to a seismic event (e.g., earthquake) or other significant force generating event the operational position of the guide member relative to a rail of the elevator remains unchanged without altering or otherwise modifying any corresponding guide member.
A further object of a preferred form of the present invention is to provide a device having one or more locking or other securement/anti-movement devices that are easily installed to maintain one or more adjustable members of a mounting assembly in a first operational position even when the elevator is subjected to a force imparted by a seismic event or other significant force generating event.
Still another object of a preferred embodiment of the present invention is to provide a device with a locking/anti-adjustment/anti-movement body wherein the locking body includes an opening for receiving a fastener extending in an elongated slot formed in a support member of a mounting assembly or a base of a guide member and the locking body is configured to provide a plurality of optional points for securing the locking body to the support member or the base or the guide member so that the fastener cannot slide along a longitudinal axis of the elongated slot.
Yet still another object of a preferred embodiment of the present invention is to provide a device with a locking/anti-adjustment/anti-movement plate wherein the locking plate includes an opening for receiving a fastener extending in an elongated slot formed in a support member or a base of an elevator guide member (e.g., roller guide or slide guide), a first set of a plurality of optional points for securing the locking plate to the support member or component of the elevator so that the fastener cannot slide along a longitudinal axis of the elongated slot and a second set of a plurality of optional points for securing the locking plate to the support member or a base of the elevator guide member so that the fastener cannot slide along a longitudinal axis of the elongated slot and wherein a user can switch between the first set of a plurality of optional points and the set of a plurality of optional points merely by flipping the locking plate over.
Another object of a preferred embodiment of the present invention is to provide a device with a locking/anti-adjustment/anti-movement plate wherein the locking plate includes an opening for receiving a fastener extending in an elongated slot formed in a support member or a base of a guide member, a first set of a plurality of optional points for securing the locking plate to the support member or a base of a guide member so that the fastener cannot slide along a longitudinal axis of the elongated slot, a second set of a plurality of optional points for securing the locking plate to the support member or a base of a guide member so that the fastener cannot slide along a longitudinal axis of the elongated slot and means for allowing a user to readily distinguish the first set of a plurality of optional points from the second set of a plurality of optional points.
It must be understood that no one embodiment of the present invention need include all of the aforementioned objects of the present invention. Rather, a given embodiment may include one or none of the aforementioned objects. Accordingly, these objects are not to be used to limit the scope of the claims of the present invention.
In summary, a preferred embodiment of the present invention is directed to an apparatus for connecting an elevator guide member to an elevator component of an elevator where a hole pattern in the elevator component is different from a hole pattern of the guide member. The apparatus includes a mounting assembly configured to mount the guide member to a component of an elevator where a hole pattern in the elevator component is different from a hole pattern of the guide member. The mounting assembly includes at least one support member, at least one elongated opening and at least one fastener configured to extend through the at least one elongated opening. An anti-sliding member is connected to the mounting assembly. The anti-sliding member is configured to maintain the at least one fastener in a predetermined operational position in the at least one elongated opening when the mounting assembly and the guide member are mounted in an operational position on the elevator component even when the mounting assembly experiences a predetermined force which would otherwise cause the at least one fastener to slide along a longitudinal axis of the at least one elongated opening.
Another preferred embodiment of the present invention is directed to an adapter assembly for connecting a guide member to a component of an elevator where a hole pattern in the component of the elevator is different from a hole pattern of the guide member. The adapter assembly includes an adjustable mounting assembly for mounting a guide member on a component of an elevator in a first operational position. The adjustable mounting assembly is configured to mount the guide member to the component of the elevator where a hole pattern in the component of the elevator is different from a hole pattern of the guide member. The mounting assembly includes at least one support member having a hole pattern corresponding to a hole pattern formed in a base of a guide member so that the base of the guide member can be secured to the at least one support member using a set of first fasteners extending through the hole pattern in the at least one support member and the hole pattern in the base of the guide member. A locking member. The locking member when installed in an operational position is configured to maintain the roller guide in the first operational position when the elevator experiences a seismic event.
A further preferred embodiment of the present invention is directed to an adapter assembly for connecting a guide member to a component of an elevator car where a hole pattern in the component of the elevator is different from a hole pattern of the guide member. The adapter assembly includes an adjustable mounting assembly for mounting a guide member on a component of an elevator in a first operational position. The adjustable mounting assembly is configured to mount the guide member to the component of the elevator where a hole pattern in the component of the elevator is different from a hole pattern of the guide member. The mounting assembly includes at least one upper support member having a hole pattern corresponding to a hole pattern formed in a base of the guide member so that the base of the guide member can be secured to the at least one upper support member using a set of first fasteners extending through the hole pattern in the at least one support member and the hole pattern in the base of the guide member. The mounting assembly further includes at least one lower support member. The at least one lower support member is configured to connect the at least one upper support member to the component of the elevator. A locking member. The locking member when installed in an operational position is configured to prevent movement of the at least one upper member along a first axis when the mounting assembly experiences a predetermined force which would otherwise cause the at least one upper support member to move along the first axis. The locking member is further configured to prevent movement of the at least one lower support member along a second axis when the mounting assembly experiences a predetermined force which would otherwise cause the at least one lower support member to move along the second axis, and wherein the first axis extends perpendicular to the second axis.
Still a further preferred embodiment of the present invention is directed to an apparatus for connecting an elevator guide member to an elevator component of an elevator where a hole pattern in the elevator component is different from a hole pattern of the guide member. The apparatus includes at least one elongated slot formed in one of a base of a guide member or a support member configured to allow a position of the guide member to be adjusted relative to the elevator component to allow the base of the guide member to be connected to the elevator component where a hole pattern in the elevator component is different from a hole pattern of the guide member. An anti-sliding member is configured to maintain the at least one fastener in a predetermined operational position in the at least one elongated opening when in an operational position even when an elevator is subject to a force which would otherwise cause the at least one fastener to slide along a longitudinal axis of the at least one elongated opening.
The preferred forms of the invention will now be described with reference to
Referring to
While a roller guide B is shown in the preferred embodiment as having a plurality of rollers any other type of elevator guide member can be used including but not limited a guide member that does have any rollers (e.g. slide guides).
Referring to
Roller guide B includes a base 12 having four bolt holes 14 forming a specific bolt hole pattern. Bolt holes 14 may form a rectangular bolt hole configuration or other suitable configuration. As previously explained, when the bolt hole pattern formed in base 12 does not match the bolt hole pattern of the frame of an elevator car or a component of a counterweight, additional time-consuming steps would be required including fabricating an adapter plate after taking the necessary measurements of the exiting bolt hole pattern on the elevator component (e.g., frame of elevator car or a component of a counterweight) and the existing bolt hole pattern of the roller guide. The preferred form of the present invention eliminates the above time-consuming steps.
Referring to
In addition, the adapter assembly A is configured to prevent the operational position of roller guide B relative to the front face 8 of rail D from being altered or changed even when the adapter assembly A and/or elevator car is subjected to a force imparted by a seismic event (e.g., earthquake) or other significant force exerting event. In one preferred form, adapter assembly A is able to withstand the force exerted by a seismic event without altering or otherwise modifying in any way roller guide B. The details of a preferred form of adapter assembly A will now be discussed.
Referring to
Referring to
Preferably, support member E has a notch 22 (as seen in
Preferably, support member E has two elongated slots 28 and 30 extending perpendicular or substantially perpendicular to front face 8 of rail D. In the most preferred form, each of the elongated slots 28 and 30 receives two fasteners 31 and 33, i.e., fasteners 31 and 33 extend through each of slots 28 and 30. However, where only one single lower support member is used, only one fastener need extend through each of elongated slots 28 and 30. Preferably, fasteners 31 and 33 are identical.
Preferably, a conventional washer 35 is used with each of fasteners 33 and each of the fasteners 37 used to secure base 12 to upper support member E.
Preferably, support member E includes a first set of openings 32 positioned adjacent elongated slot 28 and a second set of openings 34 positioned adjacent elongated slot 30. The spacing H between adjacent openings 32 is preferably the same as the spacing I between adjacent openings 34. Preferably, spacing H and spacing I are each 0.04375 inches. Further, opening 36 of the first set of openings 32 which is closest to a front face 38 of support member E is spaced equidistant to that of opening 40 of the second set of openings 34 which is closest to a corresponding front face 42 of support member E.
Preferably, an axis extending through the center of each of the first set of openings 32 extends parallel or substantially parallel to a longitudinal axis extending through elongated slot 28. Preferably, an axis extending through the center of each of the second set of openings 34 extends parallel or substantially parallel to a longitudinal axis extending through elongated slot 30. The first set of openings 32 and the second set of openings 34 provide a plurality of optional points that a corresponding locking/anti-sliding/anti-adjustment/anti-movement member 50 can be connected to support member E. This allows the final operational position of fasteners 31 and 33 to vary to meet the particular needs of the bolt hole pattern of roller guide and the bolt hole pattern of the frame of an elevator car.
Referring to
Regardless of the geometric configuration of the locking/anti-sliding/anti-adjustment/anti-movement member 50, the locking/anti-sliding/anti-adjustment/anti-movement member 50 is preferably configured to prevent relative movement of the roller guide B and the upper support E when a force (e.g., a force exerted by a seismic event or other significant force generating event) is exerted on the elevator car which would exceed the force exerted by the head of fasteners 31 and 33 on support member E which in turn would cause fasteners 31 and 33 to slide or otherwise move in the corresponding elongated slot formed in support E.
Referring to
Referring to
Preferably, member 50, as seen in for example
As seen in
Preferably, pins 80 fix the corresponding member 50 to support member E to prevent fasteners 31 from moving in the corresponding elongated slot so that the operational position of roller guide B does not change even if a seismic force or other force generating event is imparted on the adapter assembly A and/or the elevator car as seen in
Referring to
Lower support member F includes a pair of openings 101 for receiving pins 102 which extend through support member F and a complimentary hole (not shown) formed in frame C to prevent lower support member F from moving relative to the rail of an elevator when a seismic force or other significant force is exerted on assembly A or the elevator car. Similar openings 104 may be formed in lower support member G so that lower support member G and lower support member F are interchangeable as seen in for example
As is readily evident from the above, the preferred adapter assembly A connects a roller guide to a frame of an elevator car where the hole patterns of these two components are not complimentary while withstanding significant force generating events with very little on site fabrication. For example, in situations where the existing bolt holes formed in frame C can be used the only fabrication necessary is drilling two small holes in frame C to receive pins 102. No alternation or modification of the roller guide is required. The preferred adapter assembly A can withstand an operational force of 2,750 lbf along the X axis and an operational force of 5,550 lbf along the Y axis which extends parallel to the longitudinal axis of elongated slots 28 and 30. The components of adapter assembly A can be formed from any suitable material including any suitable metal.
It should be noted that elongated slots similar to elongated slots 28 and 30, the first set of openings 32 and the second set of openings 34 may be formed in the base of the elevator guide member (e.g., roller guide or slide guide) to allow for adjustment of the guide member relative to the elevator component (e.g., frame of an elevator car or surface of a counterweight) where a complimentary hole pattern does not exist between the hole pattern of the elevator guide member and the hole pattern of the elevator component. For example, base 12 of roller guide B could be made larger and formed with a pair of elongated slots which extend parallel to each other. Openings 20 could be disposed between the elongated slots. More specifically, base 12 of roller guide B could be formed in an identical or substantially identical manner to support member E. In this embodiment, all or one or more of the components (e.g., support member E) of adapter A can be omitted. Alternatively, one or more lower supports F and G can be used with the modified base of roller guide B described above. The locking/anti-sliding/anti-adjustment/anti-movement members 50 and the corresponding components including pins 80 can be employed to prevent movement of any fastener extending though the opposing elongated slots formed directly in the base of the guide member when the elevator guide member is installed in an operational position.
Referring to
A substantially rectangular shaped body portion 156 is disposed in each elongated slot 98. Each of the two body portions 156 includes a bore 159 extending vertically therethrough for receiving the shaft of the corresponding fastener 100. The position of bore 159 formed in body portion 156 in the corresponding elongated slot 98 may be readily varied merely by sliding body 156 in the corresponding elongated slot 98. Once body portion 156 and corresponding fastener 100 are positioned in a final operating position, set screws 154 are turned so that an inner surface of each set screw directly abuts the corresponding body portion 156, as shown, for example, in
While this invention has been described as having a preferred design, it is understood that the preferred design can be further modified or adapted following in general the principles of the invention and including but not limited to such departures from the present invention as come within the known or customary practice in the art to which the invention pertains. The claims are not limited to the preferred embodiment and have been written to preclude such a narrow construction using the principles of claim differentiation.
Number | Name | Date | Kind |
---|---|---|---|
5732916 | Gordon | Mar 1998 | A |
6698138 | Lin | Mar 2004 | B1 |
8251186 | Webster et al. | Aug 2012 | B2 |
9708161 | Geroso et al. | Jul 2017 | B2 |
10145166 | Berger | Dec 2018 | B2 |
10414630 | Geroso | Sep 2019 | B2 |
20100258689 | Hufen | Oct 2010 | A1 |
20150198871 | Piraino | Jul 2015 | A1 |
20170057785 | Geroso et al. | Mar 2017 | A1 |
Entry |
---|
U.S. Appl. No. 15/624,940 entitled “Universal Adapter Assembly for Connecting a Roller Guide to a Frame of an Elevator Car”. |
Number | Date | Country | |
---|---|---|---|
20190367329 A1 | Dec 2019 | US |