The present invention relates to a unitarily formed expandable spinal implant for use in spinal surgery. More particularly, the present invention relates to a unitarily formed expandable spinal implant for implantation into a disc space between two adjacent vertebrae, and movable from an unexpanded configuration to an expanded configuration. More specifically, the present invention relates to a unitarily formed expandable spinal implant including a component fixed as a unitary part thereof, which is configured, following implantation of the implant into a disc space between two adjacent vertebrae, to be broken free by an insertion tool, and moved within the implant to force expansion of the implant. The present invention further relates to a unitarily formed expandable spinal implant manufactured using a 3-dimensional printer.
Expandable spinal implants are known in the art. Such expandable spinal implants can be configured to ultimately have lordotic, tapered configurations to assist in the restoration or enhancement of spinal lordosis. The expandability of such implants allows placement thereof into a corresponding surgically-enhanced disc space between two adjacent vertebrae through a relatively small surgical opening in a patient's body. Thereafter, expansion of the implants provides the advantage of increasing the heights thereof within the disc space to assist in the restoration or enhancement of spinal lordosis. The related art expandable fusion implants, however, have certain disadvantages.
The related art implants are typically manufactured with multiple parts, using traditional manufacturing methods, requiring the use of an excessive amount of material, e.g., titanium, to manufacture all of the components. For example, a significant portion of extra manufacturing material is milled away to configure the various necessary components that define the implant. The need to remove such extra manufacturing material both increases the manufacturing cost, and, for the sake of efficiency, requires the manufacture of the various components of the implants in bulk quantities.
The related art implants further are not unitarily formed expandable spinal implants configured to, after implantation into the disc space, be converted to multiple-part implants by breaking one part free from the remainder of the implant and expanding the implant with that one part.
In accordance with the invention, a unitarily formed expandable spinal implant is configured to be inserted into a disc space between two adjacent vertebrae.
The unitarily formed expandable spinal implant includes an upper portion having a proximal end and an opposite distal end, an upper portion exterior surface and an upper portion interior surface, the upper portion exterior surface and the upper portion interior surface extending from at least adjacent the proximal end to at least adjacent the distal end of the upper portion, the upper portion exterior surface configured to contact one of the two adjacent vertebrae, the upper portion interior surface at least in part declining between the upper portion proximal end and the upper portion distal end, and at least one opening being provided in the upper portion between the upper portion interior surface and the upper portion exterior surface.
The unitarily formed expandable spinal implant includes a lower portion having a proximal end and an opposite distal end, a lower portion exterior surface and a lower portion interior surface, the lower portion exterior surface and the lower portion interior surface extending from at least adjacent the proximal end to at least adjacent the distal end of the lower portion, the lower portion exterior surface configured to contact the other of the two adjacent vertebrae, the lower portion interior surface at least in part declining between the lower portion proximal end and the lower portion distal end, and at least one opening being provided in the lower portion between the lower portion interior surface and the lower portion exterior surface.
The unitarily formed expandable spinal implant further includes a chamber between portions of the upper portion and the lower portion.
The unitarily formed expandable spinal implant further includes a proximal wall having an exterior surface and an interior surface, the proximal wall extending between the upper portion and the lower portion, the proximal wall having a maximum height, and an aperture provided in the proximal wall between the interior surface and the exterior surface thereof, the aperture provided in the proximal wall communicating with the chamber.
The unitarily formed expandable spinal implant further includes a first distal wall portion and a second distal wall portion, the first distal wall portion being attached to the upper portion at the distal end thereof, the second distal wall portion being attached to the lower portion at the distal end thereof, the first distal wall portion and the second distal wall portion having a first height less than the maximum height of the proximal wall.
The unitarily formed expandable spinal implant further includes a separator having a leading portion, the separator being unitarily formed with one of the upper portion interior surface, the lower portion interior surface, and the interior surface of the proximal wall. The separator is configured to be separated by an insertion tool inserted through the aperture in the proximal wall and into contact with a trailing portion of the separator from at least one point of attachment to the remainder of the spinal implant, thereby converting the implant into a multiple-part implant. The insertion tool is further configured to force the separator toward the distal end of the spinal implant, and, in doing so, force the upper portion and the lower portion apart from one another to expand the spinal implant in the disc space into an expanded configuration, the first distal wall portion and the second distal wall portion having a second height in the expanded configuration greater than the maximum height of the proximal wall.
In accordance with another aspect of the present invention, a method of manufacturing a unitarily formed expandable spinal implant for implantation in a disc space between two adjacent vertebrae is provided. The method includes utilizing a 3-dimensional printer to lay down sequential layers of an upper portion having a proximal end and an opposite distal end, the upper portion having an upper portion exterior surface and an upper portion interior surface, the upper portion exterior surface and the upper portion interior surface extending from at least adjacent the upper portion proximal end to at least adjacent the upper portion distal end, the upper portion exterior surface being configured to contact one of the two adjacent vertebrae, the upper portion interior surface at least in part declining between the upper portion proximal end and the upper portion distal end, and at least one opening being defined between the upper portion interior surface and the upper portion exterior surface; utilizing the 3-dimensional printer to lay down sequential layers of a lower portion having a proximal end and an opposite distal end, the lower portion having a lower portion exterior surface and a lower portion interior surface, the lower portion exterior surface and the lower portion interior surface extending from at least adjacent the lower portion proximal end to at least adjacent the lower portion distal end, the lower portion exterior surface being configured to contact the other of the two adjacent vertebrae, the lower portion interior surface at least in part inclining between the lower portion proximal end and the lower portion distal end, and at least one opening being defined between the lower portion interior surface and the lower portion exterior surface; utilizing the 3-dimensional printer to lay down sequential layers of a proximal wall having an exterior surface and an interior surface, the proximal wall extending between the upper portion and the lower portion, the proximal wall having a maximum height, and an aperture provided in the proximal wall between the interior surface and the exterior surface thereof, the aperture provided in the proximal wall communicating with a chamber formed between portions of the upper portion interior surface and the lower portion interior surface; utilizing the 3-dimensional printer to lay down sequential layers of a first distal wall portion and a second distal wall portion, the first distal wall portion being attached to the upper portion at the distal end thereof, the second distal wall portion being attached to the lower portion at the distal end thereof, the first distal wall portion and the second distal wall portion having a first height less than the maximum height of the proximal wall; and utilizing the 3-dimensional printer to lay down sequential layers of a separator including a leading portion, the separator being unitarily formed with one of the upper portion interior surface, the lower portion interior surface, and the interior surface of the proximal wall by at least one point of attachment; wherein the separator is configured to be separated from the at least one point of attachment, and be moved along at least a portion of the lower portion interior surface and at least a portion of the upper portion interior surface toward the first distal wall portion and the second distal wall portion to move the upper portion and the lower portion apart from one another into an expanded configuration, the first distal wall portion and the second distal wall portion having a second height in the expanded configuration greater than the maximum height of the proximal wall.
In accordance with yet another aspect of the present invention, a method of implanting a unitarily formed expandable spinal implant into a disc space between two adjacent vertebrae is provided. The method includes utilizing the unitarily formed expandable spinal implant including: an upper portion having a proximal end, an opposite distal end, an upper portion exterior surface, and an upper portion interior surface, the upper portion exterior surface and the upper portion interior surface extending from at least adjacent the upper portion proximal end to at least adjacent the upper portion distal end, the upper portion exterior surface being configured to contact one of the two adjacent vertebrae, the upper portion interior surface at least in part declining between the upper portion proximal end and the upper portion distal end, and at least one opening being defined between the upper portion interior surface and the upper portion exterior surface; a lower portion having a proximal end, an opposite distal end, a lower portion exterior surface, and a lower portion interior surface, the lower portion exterior surface and the lower portion interior surface extending from at least adjacent the lower portion proximal end to at least adjacent the lower portion distal end, the lower portion exterior surface being configured to contact the other of the two adjacent vertebrae, the lower portion interior surface at least in part declining between the lower portion proximal end and the lower portion distal end, and at least one opening being defined between the lower portion interior surface and the lower portion exterior surface; a proximal wall having an exterior surface and an interior surface, the proximal wall extending between the upper portion and the lower portion, the proximal wall having a maximum height, and an aperture provided in the proximal wall between the interior surface and the exterior surface thereof; a chamber formed between portions of the upper portion interior surface, the lower portion interior surface, and the interior surface of the proximal wall, the aperture formed in the proximal wall communicating with the chamber; a first distal wall portion and a second distal wall portion, the first distal wall portion being attached to the upper portion at the distal end thereof, the second distal wall portion being attached to the lower portion at the distal end thereof, the first distal wall portion and the second distal wall portion having a first height less than the maximum height of the proximal wall; and a separator including a leading portion, the separator being unitarily formed with one of the upper portion interior surface, the lower portion interior surface, and the interior surface of the proximal wall by at least one point of attachment; wherein the separator is configured to be separated from the at least one point of attachment and be moved along at least a portion of the lower portion interior surface and at least a portion of the upper portion interior surface toward the first distal wall portion and the second distal wall portion to move the upper portion and the lower portion apart from one another into an expanded configuration, the first distal wall portion and the second distal wall portion having a second height in the expanded configuration greater than the maximum height of the proximal wall; inserting the spinal implant into the disc space; inserting an insertion tool through the aperture defined in the proximal wall and into contact with the separator; applying force to the separator with the insertion tool to break the at least one point of attachment; and forcing the separator along the upper portion interior surface and the lower portion interior surface toward the first distal wall portion and the second distal wall portion to move the upper portion and the lower portion apart from one another into the expanded configuration.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate preferred embodiments of the invention and, together with the description, serve to explain the objects, advantages, and principles of the invention. In the drawings:
In accordance with the present invention, a first embodiment of a unitarily formed expandable spinal implant 10 is depicted in
The spinal implants 10, 110, and 210 can be used as fusion implants, and are configured for placement in a disc space between two adjacent vertebrae. The spinal implants 10, 110, and 210 can be packed with fusion promoting materials to facilitate their use as spinal fusion cages. To that end, the spinal implants 10, 110, and 210 include interior cavities (or chambers) C for receiving the fusion promoting materials therein. Furthermore, as discussed below, the spinal implants 10, 110, and 210 can be moved from an unexpanded configuration to an expanded configuration. In doing so, the implants 10, 110, and 210 can be used in producing an angular relationship between the two adjacent vertebrae corresponding to naturally occurring physiologic lordosis.
As depicted in
The upper portion interior surface 28 and the lower portion interior surface 38 in part define the interior cavity (or chamber) C of the spinal implant 10. As depicted in
As depicted in
The spinal implant 10, as depicted in
As depicted in
The spinal implant 10 includes a separator 60 initially attached as a unitary part of the spinal implant 10. As depicted in
As discussed below, the two stems 68 can be broken so that the separator 60 can be separated from the upper portion interior surface 28. Thereafter, the separator 60 can be moved along the upper portion interior surface 28 and the lower portion interior surface 38. Given the inclinations of the upper portion interior surface 28 and the lower portion interior surface 38, movement of the separator 60 towards the distal end 14 of the spinal implant 10 forces the upper portion 20 and lower portion 30 away from one another. In doing so, the spinal implant 10 can be moved from the unexpanded configuration (
The separator 60 includes a trailing portion 62 and a leading portion 64. The trailing portion 62 is positioned proximate the proximal wall 40, and the leading portion 64 projects from upper and lower ends of the trailing portion 62 toward the first distal wall portion 50 and the second distal wall portion 52. As depicted in
As depicted in
As depicted in
An insertion tool 80 is provided to facilitate insertion of the spinal implant 10 into the disc space between the two adjacent vertebrae, and to facilitate expansion of the spinal implant 10 from the unexpanded configuration to the expanded configuration after insertion thereof. Furthermore, after implantation of the implant 10 into the disc space, the configuration of the insertion tool 80 affords breakage of the separator 60 from the stems 68 (which attach the separator 60 to the implant 10), and movement of the separator 60 along the upper portion interior surface 28 and the lower portion interior surface 38 toward the distal end 14 of the spinal implant 10. As discussed above, such movement of the separator 60 serves in expanding the implant 10 by forcing the upper portion 20 and the lower portion 30 apart from one another.
The insertion tool 80 includes a handle portion 82 configured to be held by a surgeon, and an operational portion 84 configured to cooperate with the separator 60. The operational portion 84 defines an axis Y-Y that is oriented generally transverse to the handle portion 82. As depicted in
As depicted in
The shaft portion 92 is partially split along the axis Y-Y, and includes a first arm portion 96 with a first flange 97 and a second arm portion 98 with a second flange 99. The first and second flanges 97 and 99 are provided at the distal end 87 of the operational portion 84. The first and second arm portions 96 and 98 (and the first and second flanges 97 and 99) are biased toward the axis Y-Y, and the first and second flanges 97 and 99 are moveable from a disengaged position to an engaged position.
The rod portion 94 extends from the aperture 95 between the first and second arms 96 and 98 towards the distal end 87. Movement of the rod portion 94 within the shaft portion 92 towards the distal end 87 moves the two flanges 97 and 99 apart from one another. In doing so, the first and second flanges 97 and 99 can be moved from the disengaged position to the engaged position. As depicted in
With the knob portion 90 engaged to the body portion 88, movement of the knob portion 90 serves in manipulating the rod portion 94. For example, rotation of the knob portion 90 linearly advances the rod portion 94, and movement of the knob portion 90 along axis Y-Y results in movement of the rod portion along axis Y-Y.
Further movement of the knob portion 90 can result in further motion of the rod portion 94 along axis Y-Y. Such motion of the rod portion 94 exerts pressure against the separator 60, and such pressure applied to the separator 60 can break the separator 60 free from its attachment to the remainder of the spinal implant 10. For example, such pressure can break the two stems 68 to release the separator 60 from its attachment to and suspension from the upper portion interior surface 28. Once separated from the remainder of the spinal implant 10, the separator 60 can be moved by the rod portion 94 (via movement of the knob portion 90) along the upper portion of interior surface 28 and the lower portion of interior surface 38 toward the distal end 14. As discussed above, such movement forces the upper portion 20 and lower portion 30 away from one another, so that the spinal implant 10 can be moved from the unexpanded configuration (
After the spinal implant 10 has been implanted, moved from the unexpanded position to the expanded position via movement of the separator 60, and the insertion tool 80 is detached from the spinal implant 10, the interior cavity C can be packed with fusion promoting materials to facilitate its use as a spinal fusion cage. For example, the fusion promoting materials can be inserted through the aperture 48 in the proximal wall 40 into the interior cavity C.
As discussed above, the second embodiment of a unitarily formed expandable spinal implant 110 is depicted in
The present invention further includes a method of manufacturing the unitarily formed expandable spinal implants 10, 110, and 210 having the structural features described above using a 3-dimensional printer. The method includes forming sequential layers of each of the above-described components of the unitarily formed expandable spinal implants 10, 110, and 210 by selectively sintering layers of titanium powder, with a laser, to create sequential layers of each component. The titanium powder is applied, and successive layers sintered, until each respective complete component, and eventually the complete unitarily formed expandable spinal implants 10, 110, and 210, configured as disclosed above, is manufactured. Preferably, the titanium powder is provided by a powder dispensing mechanism, and the laser is controlled by a computer, preprogrammed with CAD data depicting the configuration of each part of the unitarily formed expandable spinal implants 10, 110, and 210, as described above. One complete exemplary description of the manufacturing process used by the 3-dimensional printer is disclosed in U.S. Pat. No. 5,639,070, the contents of which are incorporated herein by reference.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4863476 | Shepperd | Sep 1989 | A |
5639070 | Deckard | Jun 1997 | A |
5653763 | Errico | Aug 1997 | A |
5665122 | Kambin | Sep 1997 | A |
6443989 | Jackson | Sep 2002 | B1 |
6454807 | Jackson | Sep 2002 | B1 |
6491726 | Ferree | Dec 2002 | B2 |
6835206 | Jackson | Dec 2004 | B2 |
7220280 | Kest et al. | May 2007 | B2 |
7850733 | Baynham et al. | Dec 2010 | B2 |
7875078 | Wysocki et al. | Jan 2011 | B2 |
7909869 | Gordon et al. | Mar 2011 | B2 |
8062375 | Glerum et al. | Nov 2011 | B2 |
8105358 | Phan | Jan 2012 | B2 |
8105382 | Olmos et al. | Jan 2012 | B2 |
8123810 | Gordon et al. | Feb 2012 | B2 |
8133232 | Levy et al. | Mar 2012 | B2 |
8187332 | Mcluen | May 2012 | B2 |
8343224 | Lynn et al. | Jan 2013 | B2 |
8382842 | Greenhalgh et al. | Feb 2013 | B2 |
8394145 | Weiman | Mar 2013 | B2 |
8398713 | Weiman | Mar 2013 | B2 |
8403990 | Dryer et al. | Mar 2013 | B2 |
8435298 | Weiman | May 2013 | B2 |
8491651 | Tsai | Jul 2013 | B2 |
8491659 | Weiman | Jul 2013 | B2 |
8496706 | Ragab et al. | Jul 2013 | B2 |
8518120 | Glerum et al. | Aug 2013 | B2 |
8523944 | Jimenez et al. | Sep 2013 | B2 |
8556979 | Weiman et al. | Oct 2013 | B2 |
8568481 | Olmos | Oct 2013 | B2 |
8628577 | Jimenez | Jan 2014 | B1 |
8628578 | Miller et al. | Jan 2014 | B2 |
8632595 | Weiman | Jan 2014 | B2 |
8663329 | Ernst | Mar 2014 | B2 |
8679183 | Glerum et al. | Mar 2014 | B2 |
8685098 | Glerum et al. | Apr 2014 | B2 |
8709086 | Glerum et al. | Apr 2014 | B2 |
8778025 | Ragab et al. | Jul 2014 | B2 |
8795366 | Varela | Aug 2014 | B2 |
8888853 | Glerum et al. | Nov 2014 | B2 |
8888854 | Glerum et al. | Nov 2014 | B2 |
8894711 | Varela | Nov 2014 | B2 |
8894712 | Varela | Nov 2014 | B2 |
8926704 | Glerum | Jan 2015 | B2 |
8940049 | Jimenez | Jan 2015 | B1 |
9039771 | Glerum et al. | May 2015 | B2 |
9119730 | Glerum et al. | Sep 2015 | B2 |
20050113916 | Branch, Jr. | May 2005 | A1 |
20050131536 | Eisermann | Jun 2005 | A1 |
20060247770 | Peterman | Nov 2006 | A1 |
20100145461 | Landry et al. | Jun 2010 | A1 |
20110054621 | Lim | Mar 2011 | A1 |
20110172721 | Varela | Jul 2011 | A1 |
20110172774 | Varela | Jul 2011 | A1 |
20120035729 | Glerum et al. | Feb 2012 | A1 |
20120109319 | Perisic | May 2012 | A1 |
20120150304 | Glerum et al. | Jun 2012 | A1 |
20120150305 | Glerum et al. | Jun 2012 | A1 |
20120158146 | Glerum et al. | Jun 2012 | A1 |
20120158147 | Glerum et al. | Jun 2012 | A1 |
20120158148 | Glerum et al. | Jun 2012 | A1 |
20130144388 | Emery et al. | Jun 2013 | A1 |
20130158664 | Palmatier et al. | Jun 2013 | A1 |
20140121774 | Glerum et al. | May 2014 | A1 |
20140324171 | Glerum et al. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
2753366 | Mar 1998 | FR |
Number | Date | Country | |
---|---|---|---|
20160206440 A1 | Jul 2016 | US |