The present disclosure is directed to a structural support system that provides acoustic damping, and more specifically, to a wall stud and track system that reduces transmission of sound waves through structural components.
It is desirable in many environments to reduce transmission of sound and vibration through walls of adjacent rooms. This is particularly important in high occupancy buildings such as offices, apartments, and other similar environments, although reduction of sound transmission can also be desirable in typical single family homes and similar environments with lower occupancy.
One measure of how well a building partition attenuates airborne sound is called the sound transmission coefficient or sound transmission class (generally referred to herein as “STC”). The STC roughly reflects the decibel reduction of noise through a partition. In general, the higher the STC of a partition, the better that partition attenuates sound. Generally, an STC in the range of 35 or lower indicates that the wall provides little attenuation of acoustic waves and a significant amount of sound will pass from one room to another through the wall, while an STC in the range of 55-60 or more will provide substantial reduction in sound transmitted through a wall and is therefore often desired. A typical interior wall with a single layer of drywall or gypsum board on each side, a single row of metal studs, and insulation at least in the stud cavities may have an STC of approximately 35-40. Adding a second row of metal studs, such as in a double stud assembly, with one layer of gypsum wall board on each side and insulation in the stud cavities may increase the STC to approximately 52-55.
While construction processes that utilize two rows of studs can achieve high STC ratings, such methods and products also use significantly more steel because there are twice as many studs, which increases costs. Further, the extra row of studs increases labor hours and labor costs to install additional materials, which can affect the project schedule and budget. Other past attempts to increase the STC of wall assemblies have focused on specialty products which, in many instances, are prohibitively expensive. Yet further techniques have been to add additional layers of conventional materials that increase the mass, which, while increasing the STC rating, adds significant cost as well as additional labor cost to install. Another downside of using multiple layers of materials is the reduction in floor area as a result of the additional layers of material extending further into a room than single layers of material.
The present disclosure is directed to a wall assembly that attenuates sound and vibration. The wall assembly includes tracks that are configured to be coupled to supports, such as floor joists or ceiling beams, or concrete in some examples. Wall studs are coupled to the tracks and extend vertically between the tracks to provide support for the wall assembly. The wall studs are of a unitary stud design with multiple channels to increase the wall thickness, which improves the attenuation of sound without a second row of studs. Namely, there are two studs joined together in a single structure to form a unitary assembly. Further, the studs include one or more openings to further reduce the amount of steel in each stud, which reduces the cost. The one or more openings also further attenuate sound by isolating the structural components of the stud to reduce transmission of sound through the studs and by reducing resonance of sound in and through the studs. In some non-limiting examples, the tracks may further include one or more openings to provide additional sound attenuation benefits.
More specifically, a wall assembly includes a first track configured to be coupled to a support and including a first channel. A second track is configured to be coupled to a support and includes a second channel. The first and second tracks are aligned with each other and configured to be coupled to opposite vertical sides of the desired location of a wall (such as to the floor and ceiling, respectively). A wall stud has a first end that is received in the first channel of the first track and a second end received in the second channel of the second track, such that the wall stud extends vertically.
The wall stud includes a multiple channel design with a first sidewall, a first web coupled to the first sidewall and a second sidewall coupled to the first web to define a first channel. A second web is coupled to the second sidewall and a third sidewall is coupled to the second web to define a second channel. A third web is coupled to the third sidewall and a fourth sidewall is coupled to the third web to define a third channel. The second web is offset from the first web and the third web to isolate each of the channels from each other. There may be one or more openings in each of the first web, the second web, and a third web. Further, there may be one or more openings in each of the first, second, third, and fourth sidewalls. The stud design and openings attenuate sound and increase the STC of wall partitions while minimizing the amount of steel and thus reducing cost. Further, the single stud design is more efficient to install because there is only row of studs.
For a better understanding of the embodiments, reference will now be made by way of example only to the accompanying drawings. In the drawings, identical reference numbers identify similar elements or acts. In some figures, the structures are drawn to scale. In other figures, the sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the sizes, shapes of various elements and angles may be enlarged and positioned in the figures to improve drawing legibility.
The present disclosure is generally directed to structural support systems that attenuate sound and vibration. While the following description describes non-limiting examples of wall assemblies according to the present disclosure, it is to be appreciated that the concepts presented herein can be applied to any location or structural support where a reduction in sound transmission is desired. As such, the present disclosure is not limited solely to wall assemblies.
Further, each of the studs 106 includes a first end 110 and a second end 112 opposite the first end 110. The first end 110 of each stud 106 is received in the channel 108 of the first track 102 and the second end 112 of each stud 106 is received in the channel 108 of the second track 104. While the studs 106 are arranged perpendicular to the tracks 102, 104 and generally vertical in most applications, the studs 106 can also be at an angle to the tracks 102, 104, in some embodiments. The studs 106 can be sheet metal studs comprising steel, aluminum, or other like metals as well any available alloy. The studs 106 may also be any material currently listed or included in the future in the American Society for Testing Materials standards, publications, or technical papers in some embodiments. The wall studs 106 are of a unitary stud design with multiple channels to increase the wall thickness, which improves the attenuation of sound without a second row of studs. Namely, there are two or more studs joined together in a single structure stud 106 to form a unitary stud. The studs 106 are spaced from each other along the tracks 102, 104 by a distance 114 between centers of the thicknesses of the studs (or “on center”) that is selected by the installer according to the construction plans. In some embodiments, the studs 106 are spaced 12 inches, 16 inches, 18 inches, or 24 inches apart, or more or less, depending on the plans.
Although
A second web 126 is coupled to the second sidewall 122 and is perpendicular to the second sidewall 122 and parallel to, but offset from, the first web 120, as shown in
A fourth sidewall 134 is coupled to the third web 132 and is perpendicular to the third web 132 to define a third channel 136. The third channel 136 has an opening that faces in the same direction as the first channel 124 and opposite to the second channel 130. In some embodiments, each of the channels 124, 130, 136 face the same direction, or two successive channels, such as the first and second channels 124, 130 face the same direction, while the third channel 136 faces an opposite direction. In some embodiments, the stud 106 includes only two of the channels 124, 130, 136, such as first and second channels 124, 130 or second and third channels 130, 136 to reduce the thickness of the wall containing the stud 106, while still providing sound attenuation through isolation of the structural components.
The fourth sidewall 134 is parallel to the first, second, and third sidewalls 118, 122, 128 and is spaced from the third sidewall 128 across the third web 132. The third channel 136 is defined by the third sidewall 128, the third web 132, and the fourth sidewall 134, such that the second channel 130 and the third channel 136 share the third sidewall 128. Put differently, the third sidewall 128 forms a boundary of both the second channel 130 and the third channel 136. The second web 126 being offset from the first and third webs 120, 132 creates isolation between the walls defining each channel 124, 130, 136, such that the structure of the stud 106 attenuates sound. Each of the first and third channels 124, 136 and the corresponding walls that define the channels 124, 136 may be considered a separate stud with the studs joined together by the second web 126 to form the unitary stud assembly 106. Further, including shared walls or sidewalls between the channels 124, 130, 136 reduces the overall thickness of the stud 106 while also eliminating the labor hours and costs associated with installing multiple single studs together. In some embodiments, the stud 106 further includes a flange 138 coupled to a terminal end of the first sidewall 118 and extending into the first channel 124 and a flange 140 coupled to a terminal end of the fourth sidewall 134 and extending into the third channel 136.
The dimensions of each component part of the stud 106 can be selected according to design preference or load bearing capacity for certain applications. For example, the stud 106 has a width 142 from an outer surface of the first sidewall 118 to an outer surface of the fourth sidewall 134 that could be any dimension between 1 inch and 24 inches, or more or less. In some embodiments, the width 142 is the size of two standard wall studs, or approximately 7.25 inches. The stud 106 further has a depth 144 between an outer surface of the flange 140 and an outer surface of the third web 132 that is between 0.25 inches and 6 inches, or more or less. In some embodiments, the depth 144 is 1.25 inches or 2 inches. Further, the walls have a thickness 146 or gauge that can be selected. In some embodiments, the thickness 146 is less than 3 mm or less than ⅛ inch. In one or more embodiments, the thickness 146 is any value between 10 mils (0.010 inch) to 100 mils (0.10 inch), or more or less. The dimensions 142, 144, 146 of the stud 106 are selected according to span length, load bearing requirements, as well as desired wall thickness and sound attenuation properties.
In some embodiments, the depth 144 is the same for each of the channels 124, 130, 136, while in one or more embodiments, the depth 144 is different for each channel, such as the first and third channels 124, 136 having a greater or less depth than the second channel 130, or each of the channels having different depths. Further, each of the channels 124, 130, 136 have the same width in one or more embodiments, but can also have different widths in some embodiments. In one non-limiting example, the second channel 130 may have a width greater or less than the first and third channels 124, 136.
The stud 106 further includes a first opening 148 (see
Similarly, a second divider 156 is coupled to the second web 126 and extends across the second opening 150 to divide the second opening 150 into two openings 150, 151 that are spaced vertically along the second web 126. A third divider 158 is coupled to the third web 132 and extends across the third opening 152 to divide the third opening 152 into two openings 152, 153 that are spaced vertically along the third web 132. Although the dividers 154, 156, 158 are illustrated in
The stud 106 is designed to have sufficient structural strength despite the openings 148, 149, 150, 151, 152, 152, 153 because the sidewalls 118, 122, 128, 134 do not include openings in order to provide load bearing support, while the dividers 154, 156, 158 improve the rigidity and stiffness of the stud 106 to resist shearing and torsional loads. Further, as mentioned above, the studs 106 can be selected to have dimensions that allow for sufficient load bearing capacity for use in structural applications even with openings 148, 149, 150, 151, 152, 153. For example, increasing the thickness 146 will provide greater support to account for the loss of the material in the webs 120, 126, 132 due to the openings 148, 149, 150, 151, 152, 153. In addition, the openings 148, 149, 150, 151, 152, 153 may be formed by various post-processing techniques, such as stamping the stud 106 to create the openings 148, 149, 150, 151, 152, 153 and the dividers 154, 156, 158 after the stud 106 is rolled into the illustrated shape. However, it may also be possible to form the studs 106 into the shape shown through various molding or casting techniques.
Further, while steel is generally considered a good conductor of sound, the thickness 146 can be reduced, while increasing other measurements to attain load bearing strength, to further dampen sound. Because of the design of the stud 106, each of the channels 124, 130, 136 are isolated from each other, such that the walls defining each channel 124, 130, 136 are spaced from each and are formed of relatively thin steel. As such, an acoustic wave in one channel 124, 130, 136 will not travel well through the thin metal sheet and the acoustic wave will therefore be effectively attenuated. The openings 148, 149, 150, 151, 152, 153 in the stud 106 further disrupt propagation of acoustic waves and prevent resonance of the acoustic wave through the stud 106 to further attenuate the acoustic waves.
The second track 104 may be a bottom track and includes a web 160 and a first sidewall 162 coupled to the web 160 and arranged perpendicular to the web 160. A second sidewall 164 is coupled to the web and arranged perpendicular to the web 160 and parallel to the first sidewall 162 to define the channel 108. As shown in
The channel 108 has a width 172 between a surface of the first sidewall 162 facing the channel 108 and a surface of the second sidewall 165 facing the channel 108 that is structured to receive the studs 106. As such, the width 172 is equal to or greater than the width 142 of the stud 106 described in
Beginning with
In some embodiments, the material 208E is made of any acceptable material that has low acoustic transmission and sufficient structural strength in order to adhere to the stud 200E. There are a number of types of material which would be acceptable for the material 208E. In some non-limiting examples, the material 208E may include various types of rigid materials, rubber, plastic, PVC, foam, sponges, gels, or the like. In a further non-limiting example, the material 208E may be IV3, which is a foam cell polymer material. In the industry, it is sometimes sold under the name Ensolite IV3 and is available from many different manufacturers. This is a closed-cell stiff foam material that is made of a polymer. Further, the material 208E can, in some instances, include neoprene, PVC, or a type of sponge rubber, among other available materials. In some embodiments, the material 208E is added or coupled to the stud 200E at a mass production factory and the completed assembly is sent to a construction site in standard lengths, such as 8 feet, 10 feet, or 12 feet. The installer can then install the stud 200E, with material 208E in a single installation step to reduce costs and installation time, with the material 208E providing further attenuation of acoustic waves relative to other studs described herein.
In
In some embodiments, the stud 200H further includes a flange 214H coupled to the second web 208H and positioned perpendicular to the second web 208H and parallel to the first web 202H. As such, the first web 202H, the second web 208H, and the flange 214H act as an I-beam in the middle of the stud 200H to increase the load bearing capacity of the stud 200H, while reducing the double channel design reduces the overall width of the stud 200H. The stud 200H further includes openings 216H through the first web 202H only in some embodiments, separated by dividers 218H, to isolate the components of the stud 200H and attenuate acoustic waves. However, as above, the openings 216H can also be through the second web 208H as well as the sidewalls 204H, 206H.
In some embodiments, the central stud 406 has openings that are similar to the stud 106. The first and second studs 402, 404 are telescopically received or nested in the central stud 406 and configured to slide relative to the central stud 406. Similar to the stud assembly 300, the overall length of the assembly 400 can be adjusted to account for actual installation dimensions by sliding the first and second studs 402, 404 relative to the central stud 406. Each of the first and second studs 402, 404 and the central stud 406 may have a length that is equal to half of a standard stud length, in some embodiments, such as 4 feet. As such, the assembly 400 can be adjusted from 8 feet to a maximum of 12 feet, such that the same assembly 400 can be used for various sizes of walls. As with assembly 300, the first and second studs 402, 404 can be coupled to the central stud 406 in the final installed configuration with fasteners or any other acceptable coupling method. In
The concepts described with reference to
According to one embodiment, there is provided an assembly, comprising: a first stud, including a first sidewall; a first web coupled to the first sidewall; a second sidewall coupled to the first web to define a first channel; a second web coupled to the second sidewall; a third sidewall coupled to the second web to define a second channel; a third web coupled the third sidewall; and a fourth sidewall coupled to the third web to define a third channel; and a second stud received by the first stud in a telescoping arrangement, the second stud configured to slide relative to the first stud and including: a first sidewall; a first web coupled to the first sidewall; a second sidewall coupled to the first web to define a first channel; a second web coupled to the second sidewall; a third sidewall coupled to the second web to define a second channel; a third web coupled the third sidewall; and a fourth sidewall coupled to the third web to define a third channel, wherein the second channel of each of the first stud and the second stud are offset from the first channel and the third channel of each of the first stud and the second stud.
The assembly may further include: a third stud received by the first stud in a telescoping arrangement, the third stud configured to slide relative to the first stud and including: a first sidewall; a first web coupled to the first sidewall; a second sidewall coupled to the first web to define a first channel; a second web coupled to the second sidewall; a third sidewall coupled to the second web to define a second channel; a third web coupled the third sidewall; and a fourth sidewall coupled to the third web to define a third channel, wherein the second channel of the third stud is offset from the first channel and the third channel of the third stud. The assembly may further include a first opening through at least one of the first web, the second web, and the third web of the first stud; and a second opening through at least one of the first web, the second web, and the third web of the second stud.
As such, the embodiments of the present disclosure provide for wall assemblies that attenuate acoustic waves through isolation. The studs can be installed as a single unit and may include openings that reduce the amount of steel used in formation, which both reduce cost. In some embodiments, the studs have an adjustable length in order to account for variations in installation dimensions or to allow the same stud to be used for different size walls.
In the above description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments. However, one skilled in the relevant art will recognize that embodiments may be practiced without one or more of these specific details, or with other methods, components, materials, etc. In other instances, well-known structures associated with structural supports, sound damping, and vibration isolation devices, systems, and methods have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments.
Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to.” Further, the terms “first,” “second,” and similar indicators of sequence are to be construed as interchangeable unless the context clearly dictates otherwise.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” or other like phrases, such as “in one or more embodiments” or “in some embodiments” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its broadest sense that is as meaning “and/or” unless the content clearly dictates otherwise.
The relative terms “approximately” and “substantially,” when used to describe a value, amount, quantity, or dimension, generally refer to a value, amount, quantity, or dimension that is within plus or minus 5% of the stated value, amount, quantity, or dimension, unless the context clearly dictates otherwise. It is to be further understood that any specific dimensions of components or features provided herein are for illustrative purposes only with reference to the various embodiments described herein, and as such, it is expressly contemplated in the present disclosure to include dimensions that are more or less than the dimensions stated, unless the context clearly dictates otherwise.
The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, applications and publications to provide yet further embodiments.
These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
1951346 | Collins | Mar 1934 | A |
2363164 | Waller | Nov 1944 | A |
2958982 | Baker | Nov 1960 | A |
3270472 | Gilbert | Sep 1966 | A |
3925948 | Sauer et al. | Dec 1975 | A |
4835935 | Murphy | Jun 1989 | A |
5606840 | Hase | Mar 1997 | A |
5647186 | Donaldson | Jul 1997 | A |
5907932 | LeConte et al. | Jun 1999 | A |
7223043 | Andrews | May 2007 | B1 |
7594331 | Andrews et al. | Sep 2009 | B2 |
8061099 | Andrews | Nov 2011 | B2 |
8074416 | Andrews | Dec 2011 | B2 |
8307610 | Landers | Nov 2012 | B2 |
9523197 | Sessler | Dec 2016 | B2 |
9771715 | Sessler | Sep 2017 | B2 |
20050241258 | Shih | Nov 2005 | A1 |
20060032183 | Peterson | Feb 2006 | A1 |
20100218451 | Andrews | Sep 2010 | A1 |
20120000149 | Rice | Jan 2012 | A1 |
20120066993 | Mommer | Mar 2012 | A1 |
20150361659 | Sessler | Dec 2015 | A1 |
20170044760 | Sessler | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
108678233 | Oct 2018 | CN |
202012012342 | May 2013 | DE |
2 691 585 | Feb 2014 | EP |
Entry |
---|
“A Practical Guide to Office Acoustics,” Version 1.0, Robert Derector Associates / SIA Acoustics, Jul. 24, 2020, 56 pages. |
“TRAKLOC® Stud Products: Trakloc® Elevator Stud™ (TLE),” ClarkDietrich, Apr. 25, 2018, 1 page. |
Number | Date | Country | |
---|---|---|---|
20220074199 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
63076241 | Sep 2020 | US |