This invention relates to compressor pistons in general, and specifically to a one piece piston, capable of forging or molding (including casting), which maximizes surface area and strength while minimizing mass within the limitations of the method of manufacture.
Compressor pistons historically were solid metal cylinders, structurally sound and with more than sufficient outer surface area, but inherently massive. Mass could be reduced only by axially shortening the piston, inevitably reducing the outer surface area. Since compressor pistons are typically driven by an inclined swash plate, the reciprocating forces applied to the pistons inevitably have non axial components that act to rock the piston about its axis within the cylinder bore. The outer surface area of the piston is needed to resist these rocking forces, so its outer surface area, ideally, would not be reduced too far from a complete cylinder.
The obvious first approach to maintaining piston outer surface area while reducing mass is to completely hollow out the piston body itself. Just as obviously, this cannot be done in a one piece design. That is, the lower end of a bottle can be integrally formed, but its lid cannot. Thus, myriad designs have been suggested in the prior art where the end cap of the piston, the lid of the bottle, in effect, are attached by numerous techniques. While these are undeniably low mass, with complete outer surface areas, a multi piece design, requiring an extra manufacturing step to join the multiple pieces, is inevitably higher cost than a one piece or unitary design.
The next iterations in the continuing quest to produce compressor pistons that were not solid and massive, but still unitary, were various “hollowed out” designs. That is, internal mass was removed, reducing mass and weight, but outer surface area was inherently removed as well by the process of “hollowing”, whether that process was forging, molding, or machining. These “hollowed out” designs produced many ultimate shapes, most of which were impractical and did not see ultimate production.
An early design in this area is seen in Japanese Patent 2924621, first published in 1995 as Laid Open Application 7-189900. Two ways of hollowing out the piston were proposed there. One hollowed out both sides of the piston up to, and stopping at, a solid web of material at the central plane of the piston. This created an I beam shape, in cross section, leaving outer surface area only at the top and bottom of the piston outer envelope, but none on the sides. The other embodiment hollowed one entire side, leaving a thin walled, C shaped shell on the other side, but with essentially no outer surface area left on the hollowed out side. Both designs had the advantage of being moldable or forgable, that is, formable by only two tools or dies that approach and part along a straight line. None of the internal surfaces, as seen in cross section, present any concavities or “under cuts” relative to the line of tool parting, which can be considered either a result of, or an enabler to, the manufacturing method. Neither design was particularly practical, since one removed too much sides surface area, and the other, while it left a good deal of surface area at least on the critical piston side, left no internal support for the thin, C shaped shell.
A design that followed soon after, disclosed in co assigned U.S. Pat. No. 5,630,353, incorporated herein by reference, was also a hollowed out shape, but with no central web, being hollow through and through, as viewed from the side. A reference frame for the outer surface of the piston was designated in FIG. 8 of the patent, arbitrary but convenient, which divided up the potential outer surface area or envelope of the piston into four basic quadrants or sections, with a central plane P arrayed on the 12 o'clock-six o'clock line. In that context, a radially inwardly facing quadrant I is centered at the 12 o'clock point, an opposed radially outwardly facing quadrant O defined is centered at the 6 o'clock point, and two opposed side quadrants S are centered at the 3 and 9 o'clock points respectively, each subtending 90 degrees of the total 360 degrees. Shorter cylinders F and B at the front and back of the envelope represent, in effect, the top and bottom of the bottle, while the other quadrants divide up the outer surface of the bottle. This reference frame for the piston is defined, most generally, relative only to an arbitrary central plane P of the piston itself. In terms just of how the piston shape is described, it is not necessary that the piston reference frame correspond to the reference frame of the cylinder block/compressor, that is, it isn't necessary that the central plane P of each piston also, if extended, contain the axis of the cylinder block/shaft. The terms “radially facing”, whether inwardly or outwardly, have to be understood, then, in the context of the reference frame of just the piston's center axis itself, considered alone. That is, the radial inward and outward directions might or might not correspond to the same directions relative to the cylinder block/shaft axis. It is convenient for ease of manufacturing the piston as a whole, however, that the central planes P of each piston do intersect the block/shaft axis, so that so that the radial directions “in” and “out” would match, and that is the convention used here.
This arbitrary reference frame, recreated here in
A plethora of patented designs subsequent to these two early disclosures have dealt with these various design constraints with varying degrees of success. U.S. Pat. No. 5,765,464 catalogs the various prior art hollow, or hollowed out, piston designs at that point, noting that one prior design in particular, shown in FIG. 3a, hollowed out the piston with two intersecting cavities, each of which primarily removed surface area from the I and O surface quadrants (as discussed relative to the instant
A more recent patent, U.S. Pat. No. 6,324,960, discloses a variant of the I beam embodiment shown in Japanese patent 2924621 discussed above. As best seen in its FIG. 11A, the lunate, overly thick wall section has been machined out at 224 and 226, thinned out to more closely match the ideally thin, concentric arcs shape. However, this is achieved only at the cost of an additional machining step, done after the molding or forging process.
In conclusion, the piston art to date has failed to achieve an ideal combination of one piece, substantially hollow construction with a well distributed outer surface area that is internally well supported, but with minimal wall thickness behind the outer surface area, and which is also formed with a minimum of manufacturing steps.
The subject invention provides a piston design that substantially meets the ideal guidelines outlined above.
In the preferred embodiment disclosed, the main body of the piston can be formed by two dies or molds that part in a straight parting line, creating two main outer surface areas, each of which is generally a C shaped, arcuate cross section wall, and minimally thick, and approximately the same length. The C shaped walls each extend over slightly more than 180 degrees, on each side of the piston, providing adequate and well balanced bearing surface within the cylinder. The C shaped walls also overlap in narrow strips of lunate in cross section at the top and bottom, which provides some mutual support between the two walls. The majority of the internal support for the C shaped walls is provided by an intermediate support disk, located about half way axially between, and parallel to, the piston head and foot, and a pair of axially extending webs 44 formed integrally with, and central to, the inner surface of each wall C shaped wall. The webs extend axially between each side of the central disk and the piston foot and head, respectively. He central disk and integral webs together provide a symmetrical, cruciform internal support frame for the C shaped bearing walls, and are capable of being manufactured by the same molds or forge dies that form the C shaped walls.
Referring first to
Before turning to particular details of the shape and structure of piston 20, it is useful to review the reference frame defined in
Referring next to
Still referring to
Changes to the disclosed embodiment could be made without departing from the basic structure or manufacturing method. If desired, just the front or body section of the piston 20, including the walls 32 and 34, and their internal supporting structures, could be over molded onto a separately and previously manufactured unit including the stanchions. As noted, the walls 32 and 34 could be molded so as to subtend only 180 degrees, up to, but not beyond, the central plane P. This would avoid the weight of the inevitably thickened, shared strips 36. As noted, the relative axial lengths of the two arcuate walls 32 and 34 could be adjusted relative to one another. Considering just the ease of manufacturing the piston 20 by itself, but assuming that the central plane P still bisects the stanchions 24 and 26, the location of the walls 32 and 34, and of the narrow strips 36, could be shifted 90 degrees. In that case, the webs 44 and 46 would extend parallel to, not perpendicular to, the central plane P, and instead of each tool symmetrically forming one half of each of the stanchions 24 and 26, one tool would form the outer surfaces of both, and one would form the inner surfaces of both. While the piston 20 would still be as easily manufacturable by itself, such a 90 degree shift would also shift the location of the piston outer bearing surface area sections 90 degrees relative to the corresponding sections of the inner surface of the bore 18. In general, then, the designer has a good deal of latitude in where to locate the piston outer surface bearing area, while maintaining the basic manufacturable shap of the piston.
Number | Name | Date | Kind |
---|---|---|---|
5630353 | Mittlefehldt et al. | May 1997 | A |
5765464 | Morita | Jun 1998 | A |
5899135 | Kanou et al. | May 1999 | A |
5941161 | Kimura et al. | Aug 1999 | A |
5953980 | Ota et al. | Sep 1999 | A |
6024009 | Morita | Feb 2000 | A |
6216584 | Terauchi | Apr 2001 | B1 |
6324960 | Enokijima et al. | Dec 2001 | B1 |
6339984 | Sugioka et al. | Jan 2002 | B1 |
6484621 | Kato et al. | Nov 2002 | B1 |
Number | Date | Country |
---|---|---|
H7-189900 | Jul 1995 | JP |
2924621 | May 1999 | JP |